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Abstract: This paper proposes an emended snake optimizer (ESO) for solving 

hydrothermal, pumped hydro, and solar generators’ non-convex, highly constrained, and 

non-linear power generation scheduling problem. The generation scheduling problem aims 

to reduce thermal generator operating costs and pollutants by maximizing hydro volume 

and utilizing solar power generation. The minimization of operating costs and pollutants is 

subjected to various constraints, like meeting load demand, active power generation 

violations, water volume utilization, etc. The conflicting objectives of the multiobjective 

generation scheduling are handled using the non-interactive approach exploiting the price-

penalty method. The direct heuristics search is utilized to satisfy the load demand and water 

volume constraints. The snake optimization algorithm (SOA) often gets stuck in the local 

minima while solving complex engineering optimization problems, resulting in sluggish 

convergence behavior. The basic SOA is emended through simple search and opposition-

based learning, enhancing exploitation, convergence behavior, and procuring near to global 

solutions. The simulation studies involve solving unconstrained standard benchmark 

problems and electric power system problems. The proposed emended snake optimizer 

offers significant cost savings for electric power systems ranging from 10-15%. Statistical 
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analysis using Wilcoxon signed-rank test and Friedman’s test justifies the amendment. The 

rapid convergence behavior and Whisker box plots justify the proposed ESO’s robustness. 

Keywords: Coordinated generation scheduling, renewable energy, Snake optimization 

algorithm, simplex search method, opposition-based learning, metaheuristics optimization, 

Optimization problem. 

1. INTRODUCTION 

Worldwide, growing electric power consumption and rapid inflation in fuel costs need 

the search for a novel power source for a generation. The electric power network should 

include a variety of energy sources. These are commonly referred to as non-conventional 

energy sources. Solar energy has been identified as the most promising non-conventional 

source of electricity generation in the future [1]. The key renewable energy source that is 

also storable is hydropower. This energy resource contributes significantly to the global 

production of renewable energy-generated electricity. Researchers are increasingly 

interested in non-traditional sources. The public's growing awareness of environmental 

difficulties generated by conventional power generation methods lends credence to non-

conventional power generation alternatives [2]. Renewable energy sources and thermal 

generating units are considered in the coordinated problem to meet the area's generation 

requirement. Environmental considerations must also be addressed when using thermal 

units to generate electricity. As a result, the problem becomes a multi-objective 

coordinated economic generation scheduling problem with two objectives to minimize 

concurrently, namely the fuel cost of thermal units and pollutant emissions during coal 

burning. Both goals are inherently antagonistic. Hydro and solar energy sources help to cut 

thermal power generation costs while lowering pollutant emissions due to the reduced use 

of coal. These resources have the potential to lower the risk of electrical power generation. 

As a result, proper management of these sources is required for both economic and 

reliability reasons. 

Pumped-storage plants and conventional plants are the two different categories of 

hydropower plants. Traditional plants may also be run-of-river plants or storage plants. 

Run-of-river plants don't store much water and only use it when it's needed. When water 

is wasted, spills happen. Water reservoirs in storage-type plants have a certain amount of 

storage space. Scheduling issues for hydrothermal generating can be divided into long-

term and short-term. The scheduling horizon for long-term planning is one year, whereas 

the horizon for short-term planning is either one day or one week. A fixed-head 

hydrothermal generation scheduling problem exists when a hydroelectric power plant has 

a reservoir with a large capacity, and the head of the reservoir is expected to be stationary. 

The hydrothermal scheduling problem is known as variable-head hydrothermal scheduling 

if the hydropower plants have reservoirs with a low capacity [3]. The primary function of 

a pumped storage hydroelectric (PSH) power station is to store cost-effective extra 

electrical power that becomes available during off-peak load periods when water energy 

stored is satisfied by pumping water from the lower storage reservoir to the top storage 

reservoir. The water potential energy stored is utilized to produce electricity when demand 

is high [4]. In order to address the water issue and guarantee optimal water utilization, a 

PSH unit can also be created with hydroelectric plants [5, 6].  

Furthermore, because of the availability of water and solar radiation variability, the 

entire power demand is not put on renewable energy sources. Thermal generating units 
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help renewable energy sources continue offering consumers electrical power. As a result, 

to account for the uncertainties of the sun, the overall participation is restricted by the 

spinning reserves maintained by thermal units. The unit commitment assures that the solar 

generation share does not exceed the authorized power share [7]. The benefit of securing a 

fixed percentage of electricity demand from solar units is that it provides an uninterrupted 

power supply. As a result, retaining thermal-producing units in the system is required. The 

impacts of incorporating solar energy are simulated, and the spinning reserve required is 

factored into the inequality constraint. Generation scheduling is primarily a non-linear, 

multi-objective, multivariable, and highly constrained optimization problem. Other 

renewable solid and liquid fuels, such as biomass, hydrogen fuel, and biodiesel fuels, can 

play an important role in the primary energy supply and the economy in the future due to 

their storability [8] because solar and thermal unit scheduling can result in significant 

financial savings [9]. Hybrid energy generation scheduling (HEGS) is defined as 

combining generations from thermal, hydro, pumped storage, and solar units [10]. Despite 

being clean and green, renewable energy sources are not isolated due to their low ability 

to provide electricity. For more cost-effective operation, a hybrid power system combines 

conventional and renewable energy sources, such as thermal-solar photovoltaic power 

plants [11, 12], thermal power units [13], pumped storage hydro-solar units [14], etc. The 

production of hybrid energy systems has also been corrected in another effort [15]. The 

development of materials and their characterization is very important field for the 

development of photovoltaic solar cells. Dahmani et al. [16] provided valuable insights 

into tailoring the properties of Ti-25Nb-25 Mo alloy through controlled milling processes 

for specific applications, especially in the biomedical field. Zulqarnain et al. [17] addressed 

both theoretical advancements in statistical measures for interval-valued intuitionistic 

fuzzy hyper soft set information and practical implications in decision-making and system 

optimization, particularly in thermal energy storage. Ullah et al. [18] combined theoretical 

modeling, numerical analysis, and practical implications, making it relevant for 

understanding complex fluid behaviors and their applications in engineering systems, 

particularly in heat transfer and cooling processes. 

The problem of generation scheduling can be solved using a variety of optimization 

methods [19, 20], including dynamic programming [21], neural networks [22], simulated 

annealing [23], evolutionary programming [24], Harris hawks optimizer [25], genetic 

algorithm [26], multi-objective genetic algorithm [27], Lagrangian relaxation [28-30], 

branch and bound algorithm [31], Tabu search [32], and particle swarm optimization [33]. 

When solar sources are considered, forecasting makes the generation scheduling problem 

uncertain. Numerous studies have examined the issue of generation scheduling with solar 

cost. [34-40]. 

Nguyen et al. [41] developed an adaptive selective cuckoo search method to handle 

short-term hydrothermal scheduling problems. Logarithmic mixed-integer linear 

programming was used by Jian et al. [42] to handle short-term hydrothermal scheduling 

problems. Yin et al. [43] employed crisscross optimization to fix problems with short-term 

hydrothermal generation scheduling. The hydrothermal generating scheduling with 

pumped storage and solar units is recommended to use the TVAC-PSO integrated 

optimization approach, as described by Patwal et al. [44]. Kaur et al. [45] employed a 

crisscross differential evolution method to handle hydrothermal scheduling problems. 

Patwal and Narang [46] have provided a crisscross PSO-based solution to the scheduling 

of pumped storage hydrothermal generating and examined the effects of renewable sources 
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on cost and pollution emission. Ferreira [47] addressed the short-term pumped storage 

scheduling problem, and the author used the dynamic programming method to tackle 

restrictions. The evolutionary particle swarm optimization (EPSO) that Chen [48] 

introduced combines a fundamental PSO with binary encoding/decoding methods and a 

mutation operation. Binary encoding/decoding techniques are used to model the various 

aspects of a pumped storage system. 

According to the literature review, the coordinated pumped-storage hydro-solar-

thermal generation scheduling problem while considering environmental factors is barely 

implemented. In other words, if the coordinated generation scheduling problem has been 

resolved, either the influence of tilt angle in the solar model has not been considered, or 

the environmental effects of pollutants have been disregarded. Therefore, it is necessary to 

give a model that is similar to the real-time model. This work considers pumped-storage 

hydro and solar generating units in a multi-objective framework to address the HEGS 

problem and presents a hybrid technique to handle the problem. 

Metaheuristic algorithms commonly incorporate random search techniques from 

nature. Most metaheuristic algorithms, as opposed to evolutionary algorithms, use genetic 

rules, such as information sharing, the strengthening of traits, and the survival of the fittest. 

Despite the similarities among these optimizers, nature-inspired optimizers have unique 

traits that set them apart regarding their search methodology. Hashim et al. [49] introduced 

the metaheuristic snake optimization algorithm (SOA) to solve global optimization, which 

takes inspiration from nature. The SOA is modelled on the mating of snakes. If enough 

food is available and the temperature is low, each snake competes to mate with the best 

female. Authors frequently use the SOA to summarize these commonalities since it has a 

strong balance between exploration and exploitation and a steady and rapid convergence 

rate. Numerous engineering problems have used SOA, including feature selection, 

quantum physics, and the medical industry. A snake optimizer was employed by Klimov 

et al. [50] to manage the settings of a quantum processor. Snake optimizer has improved 

the frequencies at which frequency-tunable superconducting qubits implement quantum 

logic circuits. For feature selection problems, Khurma et al. [51] presented a binary snake 

optimizer. The suggested approach is evaluated using the COVID-19 real data set and 

industry-standard benchmark functions. Al-Shourbaji et al. [52] presented the snake 

optimizer, a reptile search algorithm, to find the ideal feature offset. A significant 

preprocessing step, feature selection, aims to improve machine learning model 

performance while decreasing computational costs.  

Heuristic methods are problem-solving techniques that use randomness. Therefore, 

sometimes, these methods stagnate in the local optima. The "stagnation" here refers to a 

situation where the algorithm gets stuck without making progress, leading to inefficient 

outcomes. This stagnation can happen for various reasons, such as inadequate search space 

exploration or being trapped in local optima (suboptimal solutions). When an algorithm 

stagnates, it can produce "inaccurate results" that don't accurately reflect the problem's true 

solution. Additionally, the time taken to converge or reach a near-to-global solution 

increases significantly, making the algorithm less efficient and practical, especially for 

complex optimization problems. To address these limitations of the original Snake 

Optimization Algorithm (SOA), amendments are proposed. One such amendment is 

incorporating a simplex search method. A simplex search is a type of optimization 

technique that explores the search space efficiently. The algorithm can improve its 

exploration capability by combining simplex search with SOA. Another amendment to 
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overcome the inefficiency of SOA is opposition-based learning. Opposition-based learning 

helps to diversify the search process and prevents the algorithm from being stuck in local 

minima (suboptimal solutions that are not globally optimal). A global solution in 

optimization refers to the best possible solution within the entire feasible solution space of 

a problem. In other words, the solution optimizes the objective function to its global 

minimum (in minimization problems) or global maximum (in maximization problems) 

across all possible valid solutions. 

A new algorithm called the Emended Snake Optimizer (ESO) is proposed by 

integrating simplex search and opposition-based learning into the SOA. ESO aims to strike 

a balance between exploration (searching widely for potential solutions) and exploitation 

(focusing on known good solutions) while reducing the risk of getting trapped in 

suboptimal solutions. The possibility of an emended algorithm that performs better than 

any of its component algorithms alone inspired the idea of hybridizing an existing 

algorithm. The problem can be solved with more significant input and better outcomes in 

less time by improving the basic algorithm. Additionally, using hybrid methodologies 

improves exploration and exploitation and spotlights a variety of methods for achieving 

solution accuracy. Hybrid algorithms ensure better solutions, but that comes at the expense 

of increased algorithm complexity and the accumulation of a wider variety of control 

parameters. The local simplex search strategy, which prevents local stagnation and 

sluggish convergence and ultimately enhances the outcomes and convergence of basic 

SOA, is hybridized to strengthen SOA. The proposed ESO is found to be efficient in terms 

of exploration-exploitation balance and convergence curve speed. The paper's contribution 

is described below: 

This work incorporates pumped storage hydro and solar generating units in a multi-

objective framework to address the HEGS problem and presents a new technique to search 

for a global solution. The contribution of the paper is outlined below: 

 A nature-inspired metaheuristic emended snake optimizer (ESO) is proposed to 

solve a non-linear and constrained multi-objective hybrid energy generation 

scheduling (HEGS) problem. The thermal, hydro, pumped storage hydro and solar 

units are considered for generation scheduling to meet the load demand 

requirements. 

 By limiting the solar share to demand and keeping a spinning reserve, which is 

backup power capacity ready to be deployed when needed, the grid can ensure 

reliability even when solar generation fluctuates. Solar power units are committed 

to restrict the solar share to certain demand limits using optimistic one-point 

crossover method. 

 The basic snake optimizer is amended with a simplex search technique and 

opposition-based learning to overcome its premature convergence and stagnating 

to a local solution. 

 The direct heuristics based on proportional sharing handle load demand and 

allocated water volume constraints of constrained optimization problems. 

 A non-interactive approach exploiting the price-penalty method is applied to solve 

the conflicting objectives of the multiobjective generation scheduling problem. 

 Unconstrained (unimodal and multimodal) standard benchmark optimization 

problems and two hydrothermal electric power test systems are used to verify the 

efficacy of the proposed algorithm. 
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 The statistical significance of the proposed algorithm is conducted to ensure the 

robustness of the proposed algorithm by performing Friedman’s test and the 

Wilcoxon sign rank test. 

The remaining part of the paper is divided into seven sections. The mathematical 

description of the multi-objective hybrid energy generation scheduling (HEGS) problem is 

presented in Section 2. Section 3 discusses the commitment of solar units and the procedure 

to get the commitment table. Constraints on equality and inequality. Section 4 describes 

the procedure to get a feasible solution by handling the equality and inequality constraints. 

Section 5 discusses the ESO principles and the idea of combining simplex search and 

opposition-based learning with the snake optimization algorithm. Section 6 describes the 

proposed ESO's results and analyses its performance using twenty-five standard 

benchmark optimization problems, two electric power test systems, and a list of parameters 

and their tuning for the ESO. The significance of statistical findings is explained in this 

section. Section 7 offers the findings' conclusion. 

2. HYBRID ENERGY GENERATION SCHEDULING PROBLEM 

An electric grid is built using 𝑛𝑡  thermal power generators, 𝑛ℎ hydropower generators, 

𝑛𝑝 pumped storage generators and 𝑛𝑠 number of solar units. Short-term hydrothermal 

generation activities are scheduled for 24 hours or a day.  

Objectives-  

 To schedule the thermal, hydro, pumped-storage hydro, and solar generations for 

24 hours (1 day) in order to reduce operating costs of thermal and solar power 

generations by utilizing the available water volume to its fullest extent. 

 The generated hydrothermal and solar power schedule must satisfy each 

hydroelectric and pumped storage hydro unit's pre-specified reservoir volume and 

power load demand. 

 Solar power share is restricted to certain demand limits to maintain the 

uninterrupted supply by committing the solar units using optimistic one-point 

crossover method. 

 While minimizing the operating cost, the load demand is needed to attain energy 

balance and satisfy the water volume constraints of hydro and pumped storage 

hydro units. 

2.1. Thermal model 

The goal is to reduce the cost of fuel for the thermal generating units over the planning 

period. The quadratic equation typically yields the following results in determining the 

generator running cost [53]: 

𝐹𝐶(𝑃𝑡)  = ∑ (∑ 𝑡𝑡(𝑎𝑖 + 𝑏𝑖𝑃𝑡𝑖 + 𝑐𝑖𝑃𝑡𝑖
2 + |𝑑𝑖𝑠𝑖𝑛(𝑒𝑖(𝑃𝑖

𝐿 − 𝑃𝑡𝑖))|)
𝑁𝑡
𝑖=1 )𝑇

𝑡=1     ($) (1) 

where, 𝑃𝑡 = [𝑃𝑡1, … , 𝑃𝑡,𝑛𝑡]
𝑇
and 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖  𝑎𝑛𝑑 𝑒𝑖 are cost coefficients of 𝑖𝑡ℎ generator 

having units ($/h), ($/MWh), ($/𝑀𝑊2ℎ), ($/ℎ), and (𝑟𝑎𝑑/𝑀𝑊), respectively. 𝑁𝑡 
represents the total number of thermal units. 

The usage of coal as a traditional energy source makes it important to take the 

environment into account. Both the thermal operating cost and the number of gaseous 
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pollutants released into the atmosphere by coal combustion during electricity production are 

reduced [53]. 

Minimum emission of gaseous pollutants 

 𝐹𝐸(𝑃𝑡)  = ∑ (∑ 𝑡𝑡(𝑎2𝑖 + 𝑏2𝑖𝑃𝑡𝑖 + 𝑐2𝑖𝑃𝑡𝑖
2 + 𝑑2𝑖𝑒𝑥𝑝(𝑒2𝑖𝑃𝑡𝑖))

𝑁𝑡
𝑖=1 )𝑇

𝑡=1       (Ton) (2) 

A non-interactive approach that exploits the price penalty method is used to solve the 

conflicting objectives of the emission-constrained economic load dispatch problem. 

Considering environmental effects and power generation from conventional sources, the 

objective leading to pollutants’ emission is unified with operating cost thermal units using 

the price penalty factor, as both objectives are quadratic. The unified operating cost 

objective function is rewritten as [54]: 

𝐹𝐶𝐸(𝑃𝑡) =  ∑ (𝐹𝐶(𝑃𝑡) + ℎ 𝐹
𝐸(𝑃𝑡))

𝑇
𝑡=1   (3) 

where ‘h’ (price penalty factor) is described as the proportion of operating cost to the 

emission of pollutants of thermal units calculated at maximum thermal generator power 

outputs and is computed as: 

ℎ =
∑ (𝑎𝑖+𝑏𝑖𝑃𝑖

𝑈+𝑐𝑖(𝑃𝑖
𝑈)

2
+|𝑑𝑖𝑠𝑖𝑛(𝑒𝑖(𝑃𝑖

𝐿−𝑃𝑖
𝑈))|)

𝑁𝑡
𝑖=1

∑ (𝑎2𝑖+𝑏2𝑖𝑃𝑖
𝑈+𝑐2𝑖(𝑃𝑖

𝑈)
2
+𝑑2𝑖𝑒𝑥𝑝(𝑒2𝑖𝑃𝑖

𝑈))
𝑁𝑡
𝑖=1

($ 𝑇𝑜𝑛⁄ ) (4) 

The characteristic equation is validated within the output power limits of thermal 

generation as  

𝑃𝑡𝑖 = {

𝑃𝑡𝑖      

𝑃𝑖
𝐿     

𝑃𝑖
𝑈     

; (𝑃𝑖
𝐿 ≤ 𝑃𝑡𝑖 ≤ 𝑃𝑖

𝑈)

; (𝑃𝑡𝑖 < 𝑃𝑛
𝐿)          

; (𝑃𝑡𝑖 > 𝑃𝑖
𝑈)        

                       (𝑖 ∈ [1, 𝑁𝑡]; 𝑡 ∈ [1, 𝑇]) (5) 

2.2. Hydro model 

In short-term hydrothermal scheduling issues, the hydro units operate for a small fuel 

cost, but the available water volume must be used to the utmost. As a result, the total 

discharge of the hydro units over the planning period must match the reservoir's 

predetermined water volume, which is as follows [55]: 

∑ 𝑡𝑡  𝑞𝑡𝑗 = 𝑉𝑗                             (𝑗 ∈ [1, 𝑁ℎ])
𝑇
𝑡=1  (6) 

where 𝑁ℎ represents the total number of hydro units.  

The input-output characteristics of a hydro generator are the variation in water 

discharge as a function of power output, Pkmand net head, 𝑤𝑘𝑗
ℎ respectively. The Glimn-

Kirchmayer model [56] calculates the jth hydro unit’s discharge rate (𝑞𝑡𝑗) for the tth sub 

interval as follows: 

𝑞𝑡𝑗 = 𝐾𝑗  ∅ (𝑃𝑡𝑚)Ψ(𝑤𝑡𝑗
ℎ )            (𝑗 ∈ [1, 𝑁ℎ]; 𝑡 ∈ [1, 𝑇];𝑚 = 𝑗 + 𝑁𝑡)  (7) 

where Kj is the proportional constant, ∅(𝑃𝑡𝑗)and Ψ(𝑤𝑡𝑗
ℎ ) are hydro-generation and 

reservoir water head functions, respectively, and are defined as: 

∅ (𝑃𝑡𝑚) =  x𝑗𝑃𝑡𝑚
2 + y𝑗𝑃𝑡𝑚 + z𝑗           ( 𝑗 ∈ [1, 𝑁ℎ]; 𝑡 ∈ [1, 𝑇];𝑚 = 𝑗 + 𝑁𝑡) (8) 
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Ψ(𝑤𝑡𝑗
ℎ ) =  𝛼𝑗(𝑤𝑡𝑗

ℎ )
2
+ 𝛽𝑗𝑤𝑡𝑗

ℎ + 𝛾𝑗           (𝑗 ∈ [1, 𝑁ℎ]; 𝑡 ∈ [1, 𝑇]) (9) 

where xj (𝑚
3 𝑀𝑊2ℎ⁄ ), y

j 
(𝑚3 𝑀𝑊ℎ)⁄ and zj(𝑚

3 ℎ⁄ ) are water discharge coefficients 

of the jth hydro unit, αj(𝑚
−2), β

j
(𝑚−1)and γ

j
(unitless) are head variation coefficients of 

the jth hydro unit 

The reservoir of the jth hydro unit is assumed to have vertical sides and a finite capacity 

to compute the effective head. Spillage only occurs when the reservoir’s storage capacity 

is exceeded. The equation for effective head continuity is as follows: 

𝑤𝑡𝑗+1
ℎ = 𝑤𝑡𝑗

ℎ + 
𝑡𝑡

𝑆𝐴𝑗
(𝐼𝑡𝑗 − 𝑞𝑡𝑗)    (𝑗 ∈ [1, 𝑁ℎ]; 𝑡 ∈ [1, 𝑇]) (10) 

where 𝑤𝑡𝑗
ℎ  (𝑚),𝑡𝑡(h), 𝑆𝐴𝑗(𝑚

2) and 𝐼𝑡𝑗  (𝑚
3 ℎ⁄ ) representing the effective head, time 

interval, surface area of the reservoir, and the water inflow, respectively. 

The output power limits on hydro units are imposed as  

𝑃𝑡𝑖 = {

𝑃𝑡𝑖 ,

𝑃𝑖
𝐿 ,

𝑃𝑖
𝑈 ,

           ; (𝑃𝑖
𝐿 ≤ 𝑃𝑡𝑖 ≤ 𝑃𝑖

𝑈)

; (𝑃𝑡𝑖 < 𝑃𝑖
𝐿)

; (𝑃𝑡𝑖 > 𝑃𝑖
𝑈)

          (𝑖 ∈ [𝑁𝑡 + 1,𝑁𝑡 + 𝑁ℎ]; 𝑡 ∈ [1, 𝑇]) (11) 

2.3. Pumped storage model 

During the peak load period, a pumped storage plant performs the same functions as a 

conventional plant. During peak load times, water from the higher reservoir is used as usual 

to power the turbines. During the low load phase, water from the lower reservoir is pumped 

into the upper reservoir to be accessible for use during the upcoming cycle of the peak load 

period. The generator switches to synchronous motor action at this time, driving the turbine, 

which is now acting as a pump. There are two operational modes for pumped storage 

systems: generating mode and pumping mode. When water volume declines during 

generation, the major goal is to keep it constant through pumping [57]. 

𝑉𝑙
𝐼 = 𝑉𝑙

𝐹 − (∑ 𝑡𝑡𝑞𝑡𝑙
+ − ∑ 𝑡𝑡|𝑞𝑡𝑙

−|𝑇
𝑡=1

𝑇
𝑡=1 )     (𝑙 ∈ [1, 𝑁𝑝]; 𝑡 ∈ [1, 𝑇])  (12) 

where, 𝑁𝑝 represents the total number of pumped storage units. The pumping and 

generation modes are selected based on the load demand. During the generation mode (𝜎𝐺), 

the discharge of the pumped storage unit is given as: 

𝑞𝑡𝑙
+ = 𝜒𝑙

+|𝑃𝑡𝑚
2 | + ξ𝑙

+|𝑃𝑡𝑚| + φ𝑙
+      (𝑙 ∈ [1, 𝑁𝑝];𝑚 = 𝑁𝑡 + 𝑁ℎ + 𝑙; 𝑡 ∈ [1, 𝑇])  (13) 

During the pumping mode (𝜎𝑃), the discharge of the pumped storage unit is given as: 

𝑞𝑡𝑙
− = 𝜒𝑙

−|𝑃𝑡𝑚
2 | + ξ𝑙

−|𝑃𝑡𝑚| + φ𝑙
−     (𝑙 ∈ [1, 𝑁𝑝];𝑚 = 𝑁𝑡 +𝑁ℎ + 𝑙; 𝑡 ∈ [1, 𝑇]) (14) 

where 𝜒𝑙
+, 𝜒𝑙

− (𝑚3 𝑀𝑊2ℎ⁄ ), ξ𝑙
+, ξ𝑙

− (𝑚3 𝑀𝑊ℎ)⁄  and φ𝑙
+, φ𝑙

−(𝑚3 ℎ)⁄  are the 

coefficients of generation and pumping modes, respectively. 

The power generation on pumped storage units should remain within limits, as given 

below. 
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𝑃𝑡𝑙 = {

𝑃𝑡𝑙 ,

𝑃𝑙
𝐿  ,

𝑃𝑙
𝑈 ,

          ; (𝑃𝑙
𝐿 ≤ 𝑃𝑡𝑙 ≤ 𝑃𝑙

𝑈)

; (𝑃𝑡𝑙 < 𝑃𝑙
𝐿)

; (𝑃𝑡𝑙 > 𝑃𝑙
𝑈)

(𝑙 ∈ [𝑁𝑡 +𝑁ℎ + 1,𝑁𝑡 +𝑁ℎ + 𝑁𝑝]; 𝑡 ∈

[1, 𝑇]) (15) 

2.4. Solar model 

Solar energy is an eco-friendly form of generation. Solar energy is the energy that is 

created from solar radiation. The solar cell's output is of DC nature. Therefore, it must be 

converted into AC before moving it to the grids. A DC-to-AC converter is used to convert 

DC power into AC power. The AC power output is taken into account during optimal 

integration. A solar PV generator's overall cost follows a linear power generation function. 

The price of producing solar power is provided as [58]: 

𝐹(𝑃𝑡
𝑆) = ∑ (𝐶𝑁

𝑆𝑃𝑡𝑛
𝑆 )𝑁𝑠

𝑛=1 ($ ℎ⁄ )       (𝑡 ∈ [1, 𝑇]) (16) 

with 𝑃𝑡
𝑆 = [𝑃𝑡1

𝑆 , 𝑃𝑡2
𝑆 , . . . , 𝑃𝑡𝑘

𝑆 , . . . , 𝑃𝑡,
𝑆]
𝑇
and 𝐶𝑛

𝑆 ($ 𝑀𝑊ℎ⁄ )is the cost coefficient of nth 

solar PV unit. 𝑁𝑠 represents the total number of solar units. 

The power generation from nth solar PV plant at the time, t is expressed as: 

𝑃𝑡𝑛
𝑆 = 𝐼𝑡𝑛

𝑇 𝐴𝜂𝑒𝜂𝑑𝜂𝑐𝜂𝑤 (17) 

where, 𝑃𝑡𝑛
𝑆  is the output power (W), 𝐼𝑡𝑛

𝑇  is the total solar radiation on the tilted PV array-

hourly (W/m2), A is the surface area of the PV array (m2), 𝜂𝑒 is an efficiency of PV array, 

𝜂𝑑 is a factor of degradation of the PV array, 𝜂𝑐 is the efficiency of the power conditioning 

devices and 𝜂𝑤 is the PV array wiring efficiency [57]. 

2.5. Coordinated hydrothermal-pumped storage-solar generation scheduling 

problem. 

The aim is to keep the overall cost of operating thermal and solar units over the 

scheduling horizon (T) as low as possible. The capital cost of solar units is fixed. The 

equation for operating costs that must be minimized is as follows: 

𝐹(𝑃𝑡 , 𝑃𝑡
𝑆)  = ∑ (𝐹𝑖

𝐶𝐸(𝑃𝑡𝑖) + 𝐹𝑘(𝑃𝑡
𝑆)) 𝑇

𝑡=1  (18) 

Subject to: 

(i) Energy Balance equation: Along with the transmission losses of the power 

network, the combined power generation from all thermal, hydro, pumped storage, and 

solar generating units must meet the entire power demand [53]. 

∑ 𝑃𝑡𝑖
𝑁𝑡
𝑖=1 + ∑ 𝑃𝑡𝑗

𝑁ℎ
𝑗=1  + ∑ 𝑃𝑡𝑙 + ∑ 𝑃𝑡𝑛

𝑁𝑠
𝑛=1 =

𝑁𝑝
𝑙=1  𝑃𝐷𝑡 + 𝑃𝐿𝑡           (𝑡 ∈ [1, 𝑇]) (19) 

where𝑃𝐷𝑡 (MW) is total load demand and 𝑃𝐿𝑡 (MW) represents the transmission losses 

and are calculated using Kron’s loss formula as follows: 

𝑃𝐿𝑡 = 𝐵00 + ∑ 𝐵0𝑖𝑃𝑡𝑖
𝑁𝑔
𝑖=1

+ ∑ ∑ 𝑃𝑡𝑖𝐵𝑖𝑗𝑃𝑡𝑖
𝑁𝑔
𝑖=1

𝑁𝑔
𝑗=1

(𝑡 ∈ [1, 𝑇]) (20) 

with 𝑁𝑔 = 𝑁𝑡 + 𝑁ℎ + 𝑁𝑝 + 𝑁𝑠 
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where 𝐵00 (MW), 𝐵0𝑖, 𝐵𝑖𝑗(𝑀𝑊
−1) represents the loss coefficients evaluated by 

performing a.c., load flow analysis [53]. 

(ii) Solar power generation uncertainty 

To prevent the system from deteriorating into a power shortage brought on by the 

unreliability of solar output, the entire demand cannot be placed on solar generators. As a 

result, solar energy production should account for no more than λ of the overall power 

consumption. Thermal power plants provide a base load, while solar energy provides a 

peak load. The permitted percentages of wind power [58]: 

∑ 𝑃𝑡𝑛
𝑆  ≤

𝑁𝑆
𝑛=1  λ 𝑃𝐷𝑡          (𝑡 ∈ [1, 𝑇]) (21) 

where λ is a constant, and its value is 0.3. 

(iii) The water volume of hydro units 

The total discharge of the hydro units over the planning period must be equal to the 

pre-specified water volume of the reservoir as given in Eq. (6). 

(iv) The water volume of pumped storage units 

The pumped storage reservoir’s initial water volume must equal the reservoir’s final 

water volume, as given in Eq. (12) 

(v) Output power generation bounds 

The output power generation limit of each thermal, hydro, pumped storage, and solar 

generator during the feasible operation of the described power system is provided as 

follows: 

𝑃𝑖
𝐿 ≤ 𝑃𝑡𝑖 ≤ 𝑃𝑖

𝑈           (𝑖 ∈ [1, 𝑁𝑡 + 𝑁ℎ + 𝑁𝑝]; 𝑡 ∈ [1, 𝑇]) (22) 

0 ≤ 𝑃𝑡𝑘
𝑆 ≤ 𝑃𝑘

𝑈           (𝑡 ∈ [1, 𝑇]; 𝑘 ∈ [1, 𝑁𝑠]) (23) 

(vi) Spinning Reserves 

According to Wood (1982), the spinning reserve is the unused capacity that connected 

devices can use to influence active power. 10% of the power needed for spinning reserves 

is taken into account in this work. So, 'x' is set to 0.1. 

(∑ 𝑚𝑖𝑛 ((𝑃𝑗
𝑈 − 𝑃𝑡𝑗) , 𝑈𝑅𝑗)

𝑁𝑔
𝑗=1

) ≥ 𝑥𝑃𝐷𝑡    (24) 

3. COMMITMENT OF SOLAR UNITS 

Solar power share should not exceed certain demand limits to maintain the 

uninterrupted supply. Solar units are quick-to-start units and have uncertain sun radiation, 

respectively. If the available number of solar units is more than the required number, and 

their share exceeds the certain limits of demand, then the commitment of units is required. 

The commitment to solar units is stated in tth time below. 

The minimum operating cost of solar power at the time, t [58]: 

Minimize(F𝑡
𝑆) = ∑ ((𝐶𝑛

𝑆P𝑡𝑛
𝑆 U𝑡𝑛

𝑆 ))
𝑁𝑠
𝑛=1

$
ℎ⁄    (25) 

Subject to: 

(i) solar power share limits from the committed units are given below: 

∑ U𝑡𝑛
𝑆 𝑃𝑡𝑛

𝑆𝑁𝑠
𝑛=1 ≤ λ𝑃𝑡

𝐷      (𝑡 ∈ [1, 𝑇]) (26) 
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(ii) The limits of committed wind and solar generators are: 

𝑃𝑛
𝑆𝐿 ≤ U𝑡𝑛

𝑆 𝑃𝑡𝑛
𝑆 ≤ 𝑃𝑛

𝑆𝑈        (𝑛 ∈ [1, 𝑁𝑠]; (𝑡 ∈ [1, 𝑇])) (27) 

where U𝑡𝑛
𝑆  are binary variable that gives the status of committed solar power units at 

time, t. ‘1’ status gives the committed (ON) unit, and 0 is for de-committed (OFF) units. 

3.1. Computational Steps for Commitment of Solar Units 

Because solar power output is intermittent and unpredictable, it is necessary to commit 

the solar generating units via an optimistic one-point crossover [59]. The power from these 

units is expected to be accessible at that moment. The steps are outlined below: 

Initialization: Solar units, by using the following mathematical relation, are randomly 

committed/de-committed: 

𝑈𝑘𝑡𝑛
𝑆 = {

1 ; 𝑟𝑑 ≥ 0.5
0 ; 𝑟𝑑 < 0.5

         (𝑛 ∈ [1, 𝑁𝑆]; 𝑡 ∈ [1, 𝑇]; 𝑘 ∈ [1, 𝑛𝑠])  (28) 

where rand () is a uniform random number and ∈ [0,1]  
Fitness evaluation: The operating cost of solar generators is calculated with the 

sustainable region and is referred to as the fitness value for the system, with limits 

incorporated using a penalty factor. 

𝐴𝑘𝑡 = 𝐹𝑘𝑡
𝑆 + 𝑅𝑘(∑ 𝑈𝑡𝑛

𝑆𝑁𝑠
𝑛=1 𝑃𝑡𝑛

𝑆 − λ𝑃𝐷𝑡) (𝑘 ∈ [1, 𝑛𝑠]; 𝑡 ∈ [1, 𝑇]) (29) 

where 𝑅𝑘 is an exterior penalty factor and set to a large value. 

Crossover: The commitment table has been updated using a very optimistic 

minimization procedure. Arrange all members following their increasing fitness value. The 

first half is considered the better population, while the second half is considered the worst 

population. Members of the better half of the population are exchanged for members of the 

worst half of the population. The exchange only 𝑁𝑠 − 𝑗 characteristics of the member.  

𝑈𝑘𝑡𝑛
𝑆 ↔ 𝑈𝑙𝑡𝑛

𝑆             (𝑛 ∈ [𝑗𝑟 , 𝑁𝑠]; 𝑡 ∈ [1, 𝑇];  𝑘 ∈ [1,
𝑛𝑠

2
] , 𝑙 = 𝑘 +

𝑛𝑠

2
) (30) 

De-commitment of Units:  when ∑ 𝑃𝑘𝑡𝑛
𝑆 𝑈𝑘𝑡𝑛

𝑆 > λ𝑃𝐷𝑡
𝑁𝑠
𝑛=1  it is needed to de-commit the 

randomly selected committed unit among solar units until ∑ 𝑃𝑘𝑡𝑖
𝑆 𝑈𝑘𝑡𝑖

𝑆 ≤ λ𝑃𝐷𝑡
𝑁𝑠
𝑖=1 . The de-

commitment procedure is defined below: 

𝑈𝑘𝑡𝑚
𝑆 = {

0 ; 𝑈𝑘𝑡𝑚
𝑆 = 1 and(∑ 𝑃𝑘𝑡𝑛

𝑆 𝑈𝑘𝑡𝑛
𝑆 > λ𝑃𝐷𝑡

𝑁𝑠
𝑛=1 )    

no change ;  otherwise                                                              
(𝑘 ∈

[1, 𝑛𝑠]) (31) 

where m is a random integer ∈ [1, 𝑁𝑠] 
Stopping Criterion: The proposed optimization technique ends when the specified 

number of iterations is completed, and the upgraded best operating cost is recorded. 

The constraints imposed on the generation scheduling problem are handled using the 

direct search heuristic method. The constraints handling procedure is discussed in detail.  
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4. PROCEDURE TO ATTAIN A FEASIBLE SOLUTION 

The multiobjective hybrid energy generation scheduling (HEGS) problem is subjected 

to a certain set of physical and operational constraints. These constraints include output 

power violation and meeting the load demand with the transmission losses. The following 

equations are used to satisfy the above-mentioned constraints. 

4.1. Managing inequality constraints 

During the search, a replacement method is used to restraint the power generation 

within the limit of the ith generator: 

𝑃𝑘𝑖 = {

𝑃𝑘𝑖
𝑃𝑖
𝐿

𝑃𝑖
𝑈

; (𝑃𝑖
𝐿 ≤ 𝑃𝑘𝑖 ≤ 𝑃𝑖

𝑈)

; (𝑃𝑘𝑖 < 𝑃𝑖
𝐿)

; (𝑃𝑘𝑖 > 𝑃𝑖
𝑈)

           (𝑖 ∈ [1, 𝑁𝑔]; 𝑘 ∈ [1, 𝑇]) (32) 

4.2. To utilize the available water volume  

An iterative repair technique is used to manage the equality restrictions based on the 

proportional sharing of the water utilized by hydro units during each sub-interval. The 

following formula is used to compute the difference between the total water volume in the 

reservoir and the total water discharge rate. 

𝐸𝑗
𝑣 = 𝑉𝑗 −∑ 𝑡𝑡𝑞𝑡𝑗

𝑇
𝑡=1              (𝑗 ∈ [1, 𝑁ℎ]) (33) 

When the value of |𝐸𝑗
𝑣| ≤ ϵ the reservoir's overall storage is utilized to its greatest 

potential; otherwise, power generation is updated to increase or decrease its value using 

the following equation. 

𝑃𝑡,𝑗+𝑁𝑡 =

{
 
 

 
 𝑃𝑡,𝑗+𝑁𝑡 +min ((𝑃𝑗

𝑈 − 𝑃𝑡,𝑗+𝑁𝑡)𝑟𝑗 ,   (
|𝐸𝑗
𝑣|

∑ 𝑞𝑘𝑗
𝑇
𝑡=1

)𝑃𝑡,𝑗+𝑁𝑡)  ; (𝐸𝑗
𝑣 > 0)

𝑃𝑡,𝑗+𝑁𝑡 −min((𝑃𝑡,𝑗+𝑁𝑡 − 𝑃𝑗
𝐿)𝑟𝑗 ,   (

|𝐸𝑗
𝑣|

∑ 𝑞𝑡𝑗
𝑇
𝑡=1

)𝑃𝑡,𝑗+𝑁𝑡) ; (𝐸𝑗
𝑣 < 0)

 (34) 

(𝑗 ∈ [1, 𝑁ℎ]; 𝑡 ∈ [1, 𝑇])  
 

4.3. Technique to utilize the available water volume of pumped storage hydro unit 

The difference between the beginning volume and end volume of the pumped storage 

units is measured using the following equation, which is represented by𝐸𝑙
𝑃𝑆 

𝐸𝑙
𝑃𝑆 = 𝑉𝑙

𝐹 − 𝑉𝑙
𝐼 − (∑ 𝑡𝑡𝑞𝑡𝑙

+ − ∑ 𝑡𝑙|𝑞𝑘𝑙
− |𝑇

𝑡=1
𝑇
𝑡=1 )           (𝑙 ∈ [1, 𝑁𝑝]; 𝑡 ∈ [1, 𝑇]) (35) 

Two pumped storage discharge variables𝑅𝐺𝑙 and 𝑅𝑃𝑙 are selected for the pumping and 

generation mode of pumped storage units, respectively. 

𝑅𝐺𝑙 =
∑ 𝑡𝑡𝑞𝑡𝑙

+𝑇
𝑡=1

∑ 𝑡𝑡
𝑇
𝑡=1 |𝑞𝑡𝑙

+|+∑ 𝑡𝑡|𝑞𝑡𝑙
−|𝑇

𝑡=1
         (𝑙 ∈ [1, 𝑁𝑝]) (36) 
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𝑅𝑃𝑙 =
∑ 𝑡𝑘|𝑞𝑘𝑗

− |𝑇
𝑘=1

∑ 𝑡𝑡|𝑞𝑡𝑙
+|𝑇

𝑡=1 +∑ 𝑡𝑡|𝑞𝑡𝑙
−|𝑇

𝑡=1
          (𝑙 ∈ [1, 𝑁𝑝]) (37) 

In case, |𝐸𝑙
𝑃𝑆| ≤ ϵ the reservoir’s overall storage is then used to its maximum capacity. 

The power output of pumped storage units is modified within its limits using the following 

equations for pumping as well as generation mode. 

𝑃𝑡𝑙 =

{
  
 

  
 
𝑃𝑡𝑙 +min((𝑃𝑙

𝑈 − 𝑃𝑡𝑙)𝑟𝑗 , 𝑅𝑃𝑙 (
|𝐸𝑙

𝑃𝑆|

∑ 𝑡𝑞𝑡𝑗
+𝑇

𝑡=1

) |𝑃𝑡𝑙|) ; (𝜎𝐺  and 𝐸𝑙
𝑃𝑆 > 0)

𝑃𝑡𝑙 −min((𝑃𝑡𝑙 − 𝑃𝑗
𝐿)𝑟𝑗 , 𝑅𝐺𝑙 (

|𝐸𝑙
𝑃𝑆|

∑ 𝑡𝑡|𝑞𝑡𝑙
−|𝑇

𝑡=1

) |𝑃𝑡𝑙|) ; (𝜎𝐺  and 𝐸𝑙
𝑃𝑆 < 0)

 

(𝑙 ∈ [𝑁𝑡 + 𝑁ℎ + 1,𝑁𝑡 + 𝑁ℎ + 𝑁𝑝]; 𝑡 ∈ [1, 𝑇])           (38) 

𝑃𝑡𝑙 =

{
 
 

 
 𝑃𝑡𝑙 −min ((𝑃𝑡𝑙 − 𝑃𝑙

𝐿)𝑟𝑗 , 𝑅𝐺𝑙 (
|𝐸𝑙
𝑃𝑆|

∑ 𝑡𝑡|𝑞𝑡𝑙
−|𝑇

𝑡=1
) |𝑃𝑡𝑙|) ; (𝜎𝑃 and 𝐸𝑙

𝑃𝑆 > 0)

𝑃𝑡𝑙 +min ((𝑃𝑚
𝑈 − 𝑃𝑡𝑙)𝑟𝑗 , 𝑅𝑃𝑙 (

|𝐸𝑙
𝑃𝑆|

∑ 𝑡𝑡𝑞𝑡𝑙
+𝑇

𝑡=1
) |𝑃𝑡𝑙|) ; (𝜎𝑃  and 𝐸𝑙

𝑃𝑆 < 0)

 (39) 

(𝑙 ∈ [𝑁𝑡 + 𝑁ℎ + 1,𝑁𝑡 + 𝑁ℎ + 𝑁𝑝]; 𝑡 ∈ [1, 𝑇]) 

4.4. To meet the load demand 

The power mismatch for the generation schedules during each sub-interval is calculated 

using the following equation and is indicated by 𝐸𝑡
𝑃𝐷. 

𝐸𝑡
𝑃𝐷 = 𝑃𝑡

𝐷 + 𝑃𝑡
𝐿𝑜𝑠𝑠   − ∑ 𝑃𝑡𝑖

𝑁𝑔
𝑖=1

         (𝑡 ∈ [1, 𝑇]) (40) 

When the value of |𝐸𝑡
𝑃𝐷| ≤ ϵ the generated power is within the feasible range, and the 

solution does not need to be repaired. Within generation limits, the solution is repaired 

using the following equation based on proportional sharing of unmet demand to each 

generator. 

𝑃𝑡𝑖 =

{
 
 

 
 𝑃𝑡𝑖 +min ((𝑃𝑖

𝑈 − 𝑃𝑡𝑖)𝑟𝑖 ,   (
|𝐸𝑡
𝑃𝐷|

∑ 𝑃𝑡𝑖
𝑛𝑔
𝑖=1

)𝑃𝑡𝑖)  ; (𝐸𝑡
𝑃𝐷 > 0)

𝑃𝑡𝑖 −min ((𝑃𝑡𝑖 − 𝑃𝑖
𝐿)𝑟𝑖 ,   (

|𝐸𝑡
𝑃𝐷|

∑ 𝑃𝑡𝑖
𝑛𝑔
𝑖=1

)𝑃𝑡𝑖) ; (𝐸𝑡
𝑃𝐷 < 0)

              (41) 

(𝑖 ∈ [1, 𝑁𝑡 + 𝑁ℎ]; 𝑡 ∈ [1, 𝑇]) 

The feasible solution should satisfy the following equation so that equations (33), (35), 

and (40) are satisfied. 

𝐸 = (∑ (𝐸𝑗
𝑣)
2
+ ∑ (𝐸𝑙

𝑃𝑆)2
𝑁𝑝
𝑙=1 + ∑ (𝐸𝑡

𝑃𝐷)2𝑇
𝑡=1

𝑁ℎ
𝑗=1 )

1
2⁄

   ≤ 𝜖  (42) 

where 𝜖 is a small positive value closer to zero. 
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5. EMENDED SNAKE OPTIMIZER (ESO) 

The proposed emended snake optimizer (ESO) is used to explore the constrained 

multiobjective hybrid energy generation scheduling (HEGS) problem. For improved 

performance, the basic snake optimization algorithm is combined with the simplex search 

technique. The primary idea of ESO is to conduct real-world research into snake mating 

behaviour. Snakes are scaled, cold-blooded reptiles with no legs. Snakes have extended 

bodies and tails and lack limbs. Three thousand six hundred snake species are divided into 

520 genera and 20 snake families. Almost all snakes have skulls with several joints, 

allowing them to swallow prey larger than their heads. Snakes have a distinct mating 

behaviour. They mate in the early and late summer seasons. When a male snake travels far 

during mating season in search of a female, the mating process begins. Males can travel in 

large groups and engage in physical altercations or confrontations with one another over a 

female snake on occasion. Mating is mostly determined by the availability of food and the 

temperature. A sufficient amount of food and a cold temperature leads to mating; 

otherwise, snakes look for food or eat what is already there. Exploration and exploitation 

are the two stages of the search process. When no appropriate amount of food is available 

during the exploration phase, snakes migrate solely in search of food. The exploitation step 

encompasses several phases to obtain a global solution. Snakes take food when it is 

accessible, but the temperature is high. Snakes mate when food is available, and the 

weather is cold. 

There are two modes of mating: fight mode and mating mode. Male snakes will battle 

to get the best female in fight mode. When snakes fight, they bite each other. These reptiles 

compete for the fertilization of a single female snake, believed to be a receptive female. 

Depending on the female's acceptability, the fight's winner will mate. After mating, the 

female lays eggs and departs as soon as the eggs hatch into baby snakes. The steps in SOA 

are described below [49]. 

5.1. Initialization 

The snake population is generated randomly, the initial feasible solution in the search 

space. Within the limits of hydrothermal power output generation, an initial population of 

snakes (𝑃𝑘𝑡𝑖) is formed at random as follows: 

𝑃𝑘𝑡𝑖 = 𝑃𝑖
𝐿 + (𝑃𝑖

𝑈 − 𝑃𝑖
𝐿)𝑟𝑘𝑡𝑖                   (𝑖 ∈ [1, N𝑔]; 𝑡 ∈ [1, 𝑇];  𝑘 ∈ [1, 𝑛s])  (43) 

𝑛s is the population of snakes and 𝑛𝑔(n+m) is the total number of hydro and thermal 

generators. To begin the optimization algorithm, a matrix of size (𝑛s × T × 𝑛𝑔) is 

generated randomly as:  

𝑃𝑘(𝑔) =

[
 
 
 
 
𝑃𝑘11(𝑔) 𝑃𝑘12(𝑔) ⋯ ⋯ 𝑃𝑘1𝑛𝑔(𝑔)

𝑃𝑘21(𝑔) 𝑃𝑘22(𝑔) ⋯ ⋯ 𝑃𝑘2𝑛𝑔(𝑔)

⋮
𝑃𝑘𝑇1(𝑔)

⋮
𝑃𝑘𝑇2(𝑔)

⋮
⋯

⋮
⋯

⋮
𝑃𝑘𝑇𝑛𝑔(𝑔)]

 
 
 
 

𝑇×𝑁𝑔

(𝑘 ∈ [1, 𝑛s]) 

The objective function 𝐹𝑘(𝑔)of each snake can be calculated as: 

𝐹𝑘(𝑔) = 𝐹(𝑃𝑘(𝑔))     (𝑘 ∈ [1, 𝑛s]) (44) 



 A.Kaur, et al. / Emended Snake Optimizer 15 

5.2. Categorization of Male and Female Snakes 

Males and females compose the total population. Each group accounts for half of the 

entire population. The population of snakes, 𝑛s is equally divided into males, 𝑛𝑙 and 

females, 𝑛𝑜. The male, 𝑋𝑘(𝑔) and female, 𝑌𝑘(𝑔) population and corresponding objective 

function of male 𝐹𝑘
𝑋(𝑔) and female, 𝐹𝑘

𝑌(𝑔) are represented as vectors of snakes as 𝑃𝑘(𝑔) =
 [𝑋𝑘(𝑔) ⋮ 𝑌𝑘(𝑔)]

𝑇and 𝐹𝑘(𝑔) =  [𝐹𝑘
𝑋(𝑔) ⋮ 𝐹𝑘

𝑌(𝑔)]𝑇. The iteration counter is represented by 

g. 

5.3. Temperature and Food Quantity 

The temperature and availability of food influences snake mating. The temperature 

𝑇𝑡𝑒𝑚𝑝 and food quantity 𝑄 are defined below: 

𝑇𝑡𝑒𝑚𝑝 = 𝑒𝑥𝑝 (
−𝑔

𝐺𝑚𝑎𝑥
) (45) 

𝑄 = 𝐶1𝑒𝑥𝑝 (
𝑔−𝐺𝑚𝑎𝑥

𝐺𝑚𝑎𝑥
) (46) 

where 𝑔 and 𝐺𝑚𝑎𝑥  refers to the current iteration and the maximum number of 

iterations. C1is constant and set equals to 0.5. 

5.4. Exploration Phase 

Food is scarce during the exploratory phase, so snakes forage. If Q is less than the 

chosen threshold value for available food, snakes will hunt for it by selecting any random 

spot and updating their positions in relation to it. If 𝑄 < 0.25 then the exploration phase is 

modelled as follows. 

𝑃𝑘𝑡𝑖(𝑔 + 1)

=

{
 
 

 
 𝑌𝑢𝑡𝑖(𝑔) ± 𝐶2 (𝑒𝑥𝑝 (−

𝐹𝑢
𝑌(𝑔) − 𝐹𝑏𝑒𝑠𝑡(𝑔)

𝐹𝑘
𝑋(𝑔) − 𝐹𝑏𝑒𝑠𝑡(𝑔) + 𝜖

)) ((𝑃𝑖
𝐿 − 𝑃𝑖

𝑈)𝑟𝑖 + 𝑃𝑖
𝐿) ;  𝑟 < 0.6

𝑋𝑢𝑡𝑖(𝑔) ± 𝐶2 (𝑒𝑥𝑝 (−
𝐹𝑣
𝑋(𝑔) − 𝐹𝑏𝑒𝑠𝑡(𝑔)

𝐹𝑘
𝑌(𝑔) − 𝐹𝑏𝑒𝑠𝑡(𝑔) + 𝜖

)) ((𝑃𝑖
𝑈 − 𝑃𝑖

𝐿)𝑟𝑖 + 𝑃𝑖
𝐿) ;  𝑟 ≥ 0.6

 

(𝑖 ∈ [1, 𝑁𝑔]; 𝑡 ∈ [1, 𝑇]; 𝑘 ∈ [1, 𝑛𝑠])      (47) 

where 𝑃𝑘𝑡𝑖(𝑔 + 1) is the kth snake position, 𝑋𝑢𝑡𝑖(𝑔) 𝑎𝑛𝑑 𝑌𝑢𝑡𝑖(𝑔) represents the random 

positions of male and female snakes, respectively during the (𝑔 + 1) 𝑡ℎ movement and 𝑣 ∈
[1, 𝑛𝑙] and 𝑢 ∈ [1, 𝑛𝑜] are random integers. 𝐶2 is a constant and set equal to 0.05.  𝑟𝑖 is a 

random number between 0 and 1. 𝐹𝑣
𝑋(𝑔) and 𝐹𝑢

𝑌(𝑔) refers to the fitness of random male 

and female snakes. The exponent term considers the decreasing ratio of the fitness 

distances of solutions from the best solution so that the factor plays an effective role in 

updating the variables. 𝜖 is a small value to ensure that the denominator does not lead to 

zero. 

5.5. Exploitation Phase 

The exploitation phase occurs when the food amount exceeds the threshold value 

(Q>threshold), indicating that food exists. When the temperature is high (higher than the 
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threshold (0.6), or when the temperature is high, there is no mating, and snakes will only 

migrate towards food, as indicated by the following equation: 

𝑃𝑘𝑡𝑖(𝑔 + 1) = 𝑃𝑢𝑡𝑖(𝑔) ± 𝐶3𝑇𝑡𝑒𝑚𝑝 (𝑃𝑡𝑖
𝑏𝑒𝑠𝑡 − 𝑃𝑘𝑡𝑖(𝑔)) 𝑟𝑖   

 (𝑖 ∈ [1, 𝑁𝑔]; 𝑡 ∈ [1, 𝑇]; 𝑘 ∈ [1, 𝑛𝑠])  (48) 

where Pti
bestrefers to the position of the best snake and 𝐶3is a constant equal 3.u is a 

random integer ∈ [1, 𝑛𝑠]. 

When the temperature is low or chilly, it implies the temperature is less than the 

threshold of 0.6, and snakes will be in fight or mating mode for male and female snakes, 

respectively. In fight mode, each male snake competes for the best female snake, while 

each female snake chooses the best male snake. The fighting mode for male and female 

snakes is indicated mathematically below: 

𝑋𝑘𝑡𝑖(𝑔 + 1) = 𝑋𝑘𝑡𝑖(𝑔)

± (𝑒𝑥𝑝 (−
(𝐹𝑌

𝑏𝑒𝑠𝑡 − 𝐹𝑏𝑒𝑠𝑡(𝑔))

(𝐹𝑘
𝑋(𝑔) − 𝐹𝑏𝑒𝑠𝑡(𝑔) + 𝜖)

)) (𝑄𝑌𝑡𝑖
𝑏𝑒𝑠𝑡 − 𝑋𝑘𝑡𝑖(𝑔)) 𝑟𝑖 

(𝑖 ∈ [1, 𝑁𝑔]; 𝑡 ∈ [1, 𝑇]; 𝑘 ∈ [1, 𝑛𝑙]) (49) 

𝑌𝑘𝑡𝑖(𝑔 + 1) = 𝑌𝑘𝑡𝑖(𝑔) ± (𝑒𝑥𝑝 (−
(𝐹𝑋

𝑏𝑒𝑠𝑡 − 𝐹𝑏𝑒𝑠𝑡(𝑔))

(𝐹𝑘
𝑌(𝑔) − 𝐹𝑏𝑒𝑠𝑡(𝑔) + 𝜖)

)) (𝑄𝑋𝑡𝑖
𝑏𝑒𝑠𝑡 − 𝑌𝑘𝑡𝑖(𝑔)) 𝑟𝑖 

(𝑖 ∈ [1, 𝑁𝑔]; 𝑡 ∈ [1, 𝑇]; 𝑘 ∈ [1, 𝑛𝑜]) (50) 

where FY
bestand  FX

best represents the fitness of the best female and best male, 

respectively.𝐹𝑘
𝑋 and 𝐹𝑘

𝑌represents the fitness of kth female and male agents, respectively. 

Mating happens between each pair based on the quantity of food available during cold 

weather scenarios. The mating mode is given mathematically below. 

𝑋𝑘𝑡𝑖(𝑔 + 1) =  𝑋𝑘𝑡𝑖(𝑔 + 1)

± ( 𝑒𝑥𝑝 (−
(𝐹𝑘

𝑌(𝑔) − 𝐹𝑏𝑒𝑠𝑡(𝑔))

(𝐹𝑘
𝑋(𝑔) − 𝐹𝑏𝑒𝑠𝑡(𝑔) + 𝜖)

)) (𝑄𝑋𝑘𝑡𝑖(𝑔) − 𝑌𝑘𝑡𝑖(𝑔 + 1))𝑟𝐼 

(𝑖 ∈ [1, 𝑁𝑔]; 𝑡 ∈ [1, 𝑇]; 𝑘 ∈ [1, 𝑛𝑙])    (51) 

𝑌𝑘𝑡𝑖(𝑔 + 1) =  𝑌𝑘𝑡𝑖(𝑔 + 1)

± ( 𝑒𝑥𝑝 (−
(𝐹𝑘

𝑋(𝑔) − 𝐹𝑏𝑒𝑠𝑡(𝑔))

(𝐹𝑘
𝑌(𝑔) − 𝐹𝑏𝑒𝑠𝑡(𝑔) + 𝜖)

)) (𝑄𝑌𝑘𝑡𝑖(𝑔)

− 𝑋𝑘𝑡𝑖(𝑔 + 1))𝑟𝐼  

(𝑖 ∈ [1, 𝑁𝑔]; 𝑡 ∈ [1, 𝑇]; 𝑘 ∈ [1, 𝑛𝑜]) (52) 

Where 𝐹𝑘
𝑋(𝑔)and 𝐹𝑘

𝑌(𝑔)are the fitness of kth male and kth female agents, respectively. 

Choose the worst male and female and replace them if the egg incubates. 
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𝑃𝑘𝑡𝑖
𝑤𝑜𝑟𝑠𝑡 = 𝑃𝑖

𝐿 + (𝑃𝑖
𝑈 − 𝑃𝑖

𝐿)𝑟𝑖    (𝑖 ∈ [1, 𝑁𝑔]; 𝑡 ∈ [1, 𝑇]; 𝑘 ∈ [1, 𝑛𝑠])         (53) 

Where 𝑃𝑘𝑡𝑖
𝑤𝑜𝑟𝑠𝑡  represents the position of worst snake and is divided into two equal parts 

of worst male and female position and is represented by 𝑃𝑙
𝑤𝑜𝑟𝑠𝑡and 𝑃𝑜

𝑤𝑜𝑟𝑠𝑡 , respectively. 

5.6. Simplex Search Method 

Nelder and Mead's simplex approach is an extension of the method proposed by 

Spendley et al. [60]. This approach is a local search strategy that exploits the geometric 

qualities of the n-dimensional space to construct a simplex in an n-dimensional space 

(𝑁𝑔+1) The four basic operations are reflection, expansion, contraction, and shrinkage, and 

they are used to rescale the simplex based on the function's local behaviour. The simplex 

can successfully improve itself and thrive closer to the optimal solution through these steps. 

To begin, choose the worst snake agent (𝑃𝑙1𝑡), the best agent (𝑃𝑙2𝑡) and the next worst 

agent (𝑃𝑙3𝑡) from the initial set of snake agents. Calculate the centroid (𝑃𝑡𝑖
𝐶) of all snake 

agents using the formula: 

𝑃𝑡𝑖
𝐶 =

1

𝑛𝑠
∑ 𝑃𝑘𝑡𝑖
𝑛𝑠+1
𝑘=1,𝑘≠𝑙1

                  (𝑖 ∈ [1, 𝑁𝑔]; 𝑡 ∈ [1, 𝑇]) (54) 

The new reflected agent, 𝑃𝑡𝑖
𝑅, is computed as follow: 

𝑃𝑡𝑖
𝑅 = 𝛾𝑃𝑡𝑖

𝐶 − 𝑃𝑙1𝑡𝑖                            (𝑖 ∈ [1, 𝑁𝑔]; 𝑡 ∈ [1, 𝑇]) (55) 

The new position of snake is computed as given below: 

𝑃𝑡𝑖
𝑁 =

{
 
 

 
 
(1 + 𝛼)𝑃𝑡𝑖

𝐶 − 𝛼𝑃𝑙1𝑡𝑖        ; 𝐹(𝑃
𝑅) < 𝐹(𝑃𝑙2)                    (Expansion)                 

(1 − 𝛽)𝑃𝑡𝑖
𝐶 − 𝛾𝑃𝑙1𝑡𝑖        ; 𝐹(𝑃

𝑅) ≥ 𝐹(𝑃𝑙1)                     (insideContraction)   

(1 + 𝛽)𝑃𝑡𝑖
𝐶 + 𝛾𝑃𝑙1𝑡𝑖        ; 𝐹(𝑃𝑙3) < 𝐹(𝑃𝑅) < 𝐹(𝑃𝑙1)    (outside contraction)

𝑃𝑡𝑖
𝑅                                     ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                        

 (56) 

(𝑖 ∈ [1, 𝑁𝑔]; 𝑡 ∈ [1, 𝑇]) 

A better one is selected, and a new simplex is formed. The process can be terminated 

if no improvement is observed in the objective function. i.e. |𝐹(𝑃𝑡𝑖
𝑁) − 𝐹𝐺(𝑃𝑡𝑖

𝑏𝑒𝑠𝑡)| ≤ 𝜖 . 𝜖 

is the termination parameter. 

5.7. Opposition based learning 

Certain randomly generated starting solutions are necessary in order to improve the 

optimal point in heuristic optimization methods. The time it takes to calculate the optimal 

solution is affected by the distance between the initial and optimal solutions. Starting with 

a better solution and comparing it to its opposite solution can help to reduce computing 

time. Iteration begins with selecting the initial solution, which is either the opposite of the 

original solution or the better alternative from the initial guess. In probability theory, there 

are half chances, and a hypothesis is closer to the solution than its inverse hypothesis. 

Opposition-based learning considers quasi-opposite, quasi-reflection, extended opposite, 

and reflected opposite numbers to find improved solutions to the hybrid energy generation 

scheduling problem. 
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Opposing numbers are considered in opposition-based learning. Each variable is 

reflected across the center of its search area when computing an opposite number. The 

snakes are forming on the opposite number using the following equation: 

𝑃𝑘𝑡𝑗
𝑜 (𝑔) = 𝑃𝑡𝑗

𝑈𝐿(𝑔) + 𝑃𝑡𝑗
𝐿𝐿(𝑔) − 𝑃𝑘𝑡𝑗(𝑔)            (𝑗 ∈ [1, 𝑁𝑔]; 𝑡 ∈ [1, 𝑇]; 𝑘 ∈

[1, 𝑛𝑠])  (57) 

where, 

𝑃𝑡𝑗
𝐿𝐿(𝑔) = {

𝑚𝑖𝑛(𝑃𝑘𝑡𝑗(𝑔)   ; 𝑘 ∈ [1, 𝑛𝑠]) ; 𝑟𝑎𝑛𝑑 >
𝑔

𝐺𝑚𝑎𝑥

𝑃𝑗
𝐿                                     ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    

 

𝑃𝑡𝑗
𝑈𝐿(𝑔) = {

𝑚𝑎𝑥(𝑃𝑘𝑡𝑗(𝑔)   ; 𝑘 ∈ [1, 𝑛𝑠]) ; 𝑟𝑎𝑛𝑑 <
𝑔

𝐺𝑚𝑎𝑥

𝑃𝑗
𝑈                                      ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    

 

Each variable is randomly reflected between its search space and the variable itself in 

quasi-reflected opposition. As expressed mathematically, 

𝑃𝑘𝑡𝑗
01 = 𝑃𝑘𝑡𝑗 + 𝑟𝑎𝑛𝑑(𝑑𝑡𝑗 − 𝑃𝑘𝑡𝑗)    (𝑗 ∈ [1,𝑁𝑔]; 𝑡 ∈ [1, 𝑇]; 𝑘 ∈ [1, 𝑛𝑠]) (58) 

where, 𝑑𝑡𝑗 =
𝑃𝑡𝑗
𝑈𝐿+𝑃𝑡𝑗

𝐿𝐿

2
 (𝑗 ∈ [1, 𝑁𝑔]; 𝑡 ∈ [1, 𝑇]) 

Quasi-opposition moves each variable to a random point from the middle of its search 

space and its opposite number and, mathematically, stated as  

𝑃𝑘𝑡𝑗
02 = 𝑑𝑡𝑗 + 𝑟𝑎𝑛𝑑(𝑃𝑘𝑡𝑗

𝑜 − 𝑑𝑡𝑗)        (𝑗 ∈ [1, 𝑁𝑔]; 𝑡 ∈ [1, 𝑇]; 𝑘 ∈ [1, 𝑛𝑠]) (59) 

Extended opposition shifts each variable to a random point between its opposite number 

and the nearest bound of its search space to its opposite number.  

𝑃𝑘𝑡𝑗
03 = {

𝑃𝑘𝑡𝑗
𝑜 + 𝑟𝑎𝑛𝑑(𝑃𝑡𝑗

𝑈𝐿 − 𝑃𝑘𝑡𝑗
𝑜 );   𝑃𝑘𝑡𝑗

𝑜 < 𝑑𝑡𝑗

𝑃𝑡𝑗
𝐿𝐿 + 𝑟𝑎𝑛𝑑(𝑃𝑘𝑡𝑗

𝑜 − 𝑃𝑡𝑗
𝐿𝐿);    𝑒𝑙𝑠𝑒

  (𝑗 ∈ [1, 𝑁𝑔]; 𝑡 ∈ [1, 𝑇]; 𝑘 ∈

[1, 𝑛𝑠]) (60) 

Reflected Extended Opposition reflects the extended opposite point to compute the 

reflected extended opposite point and, mathematically, stated as 

𝑃𝑘𝑡𝑗
04 = {

𝑃𝑘𝑡𝑗 + 𝑟𝑎𝑛𝑑(𝑃𝑡𝑗
𝑈𝐿 − 𝑃𝑘𝑡𝑗); 𝑃𝑘𝑡𝑗 > 𝑑𝑡𝑗

𝑃𝑡𝑗
𝐿𝐿 + 𝑟𝑎𝑛𝑑(𝑃𝑘𝑡𝑗 − 𝑃𝑡𝑗

𝐿𝐿);            𝑒𝑙𝑠𝑒
  (𝑗 ∈ [1,𝑁𝑔]; 𝑡 ∈ [1, 𝑇]; 𝑘 ∈ [1, 𝑛𝑠]) (61) 

Out of available 2𝑛𝑠 snakes, best 𝑛𝑠 snakes are retained for further improvement after 

applying each opposition move [61]. 

Comprehensive Opposition The comprehensive opposition shifts the variable to one of 

its opposite points 𝑃𝑘𝑖
𝑜4, 𝑃𝑘𝑖

𝑜3, 𝑃𝑘𝑖
𝑜1 or 𝑃𝑘𝑖

o2 whose probability of being selected are 

𝐸1, 𝐸2, 𝐸3𝑎𝑛𝑑𝐸4, respectively [62]. In other words, it can be defined as given below: 

𝑃𝑘𝑖
𝑐𝑜 =

{
 
 

 
 𝑃𝑘𝑖

𝑂4 ; 𝑟 ≤ 𝐸1                                      

𝑃𝑘𝑖
01 ; 𝐸1 < 𝑟 ≤ 𝐸1 + 𝐸2                   

𝑃𝑘𝑖
𝑜2 ; 𝐸1 + 𝐸2 < 𝑟 ≤ 𝐸1 + 𝐸2 + 𝐸3
𝑃𝑘𝑖
03 ; 𝐸1 + 𝐸2 + 𝐸3 < 𝑟 ≤ 1           

  (62) 
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where rand is a random number uniformly distributed in [0,1] and the optimum values 

of the parameters of 𝐸1, 𝐸2, 𝐸3 and 𝐸4 are probabilities to be adjusted. After applying each 

opposition move, the best agents are retained from among those available for further 

improvement.  

Calculation of time complexity: The time complexity has also been analyzed in the 

current work. Number function evaluations can be computed as 𝑁𝐹𝐸 = 𝑛𝑆 +
𝐺𝑚𝑎𝑥(𝑛𝑆 + 2𝐺𝑠

𝑚𝑎𝑥). The complexity order is 2. The complexity order is 2. The addition 

of a simplex search strategy and opposition-based learning adds the function evaluations, 

which results in more time consumption to perform the algorithm but improves the 

algorithm's performance. 

The stepwise procedure of the emended snake optimizer (ESO) is outlined in algorithm 

I.  

Algorithm-I Stepwise procedure of hybrid snake optimizer (ESO) 

1 Inputs 

 
n, m, 𝑛𝑆, 𝑛𝑙, 𝑛𝑜, Total number of iterations, 𝐺max 

𝑃𝑈, 𝑃𝐿, 𝑃𝑡
𝐷(𝑡 ∈ [1, 𝑇]), 𝑎𝑖, 𝑏𝑖, 𝑐𝑖  , 𝑑𝑖 and 𝑒𝑖(𝑖 ∈ [1, 𝑁𝑡]), 𝑥𝑗 ,𝑦𝑗  and 𝑧𝑗(𝑗 ∈ [1, 𝑁ℎ]), 𝛼𝑗 ,𝛽𝑗  

and 𝛾𝑗(𝑗 ∈ [1, 𝑁ℎ]) 

2 Initialize snakes population using Eq. (43)  

3 Find a feasible solution while satisfying Eq. (33), Eq. (35), Eq. (40), and Eq. (42) 

4 Compute fitness of snake members using Eq. (44) 

5 Divide the population 𝑛𝑆 into two equal groups 𝑛𝑙 and 𝑛𝑜 

6 Divide the fitness of male and female agents as step 5. 

7 
Compute the best fitness value of the best male,𝐹𝑋

𝑏𝑒𝑠𝑡𝑚𝑖𝑛{𝐹𝑘
𝑋(𝑔); 𝑘 ∈ [1, 𝑛𝑙]}and female 

snake agent, 𝐹𝑌
𝑏𝑒𝑠𝑡𝑚𝑖𝑛{𝐹𝑘

𝑌(𝑔); 𝑘 ∈ [1, 𝑛𝑜]}. 

8 Compute the global fitness value, 𝐹𝑏𝑒𝑠𝑡 = 𝑚𝑖𝑛{𝐹𝑋
𝑏𝑒𝑠𝑡 , 𝐹𝑋

𝑏𝑒𝑠𝑡} and 𝑃𝑡𝑖
𝑏𝑒𝑠𝑡; 𝑖 ∈ [1,𝑁𝑔]; 𝑡 ∈

[1, 𝑇] 9 Set counter 𝑔 = 1 

10 WHILE (𝑔 ≤ 𝐺max) DO 

11  Define 𝑇𝑇𝑒𝑚𝑝, temperature using Eq. (45) 

12  Define food quantity Q using Eq. (46) 

13  𝐈𝐅(𝐐 < 0.25)𝐓𝐇𝐄𝐍 

14  Perform exploration using Eqs.(47) 

15  𝐄𝐋𝐒𝐄 𝐈𝐅(Q > 0.25)𝐓𝐇𝐄𝐍 

16  Perform exploitation using Eq. (48) 

17  𝐄𝐋𝐒𝐄 

18   𝐈𝐅(rand > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (0.6))𝐓𝐇𝐄𝐍 

19   Snakes in fight mode using Eqs. (49) and (50) 

20   𝐄𝐋𝐒𝐄 

21   Snakes in mating mode using Eqs. (51) and (52) 
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22   Update the worst male and female using Eq. (53)  

23   END IF 

24  END IF 

25  Find a feasible solution while satisfying Eq. (33), Eq. (35), Eq. (40), and Eq. (42) 

26  Compute fitness of snake members, 𝐹𝑘
𝑋(𝑔) and 𝐹𝑘

𝑌(𝑔)using Eq. (44) 

27  Find 𝐹𝑋
𝑏𝑒𝑠𝑡 = 𝑚𝑖𝑛{𝐹𝑘

𝑋(𝑔); 𝑘 ∈ [1, 𝑛𝑙]} and Find 𝐹𝑌
𝑏𝑒𝑠𝑡 = 𝑚𝑖𝑛{𝐹𝑘

𝑌(𝑔); 𝑘 ∈ [1, 𝑛𝑜]} 

28  Find 𝐹𝑛𝑏𝑒𝑠𝑡 = 𝑚𝑖𝑛{𝐹𝑋
𝑏𝑒𝑠𝑡 , 𝐹𝑋

𝑏𝑒𝑠𝑡} and 𝑃𝑛𝑏𝑒𝑠𝑡 

29  IF (𝐹𝑛𝑏𝑒𝑠𝑡 < 𝐹𝑏𝑒𝑠𝑡)THEN 

30  Update 𝐹𝑏𝑒𝑠𝑡 ← 𝐹𝑛𝑏𝑒𝑠𝑡 and 𝑃𝑡𝑖
𝑏𝑒𝑠𝑡 ← 𝑃𝑡𝑖

𝑛𝑏𝑒𝑠𝑡; 𝑖 ∈ [1,𝑁𝑔]; 𝑡 ∈ [1, 𝑇] 

31  ENDIF 

32  Set counter 𝑔1 = 1 

33  WHILE (𝑔1 ≤ 𝐺𝑠
𝑚𝑎𝑥) DO (Simplex Search Method) 

34   Determine worst snake (𝑃𝑙1), the best snake (𝑃𝑙2) and next to the worst agent (𝑃𝑙3) 

35   Computer agent at centroid, 𝑃𝑡𝑖
𝐶 using Eq.(54) 

36   Compute new reflected agent, 𝑃𝑡𝑖
𝑅 using Eq. (55) 

37   Find a feasible solution while satisfying Eq. (33), Eq. (35), Eq. (40), and Eq. (42) 

38   Compute fitness of snake member, 𝐹𝑅(𝑃𝑅) using Eq. (44) 

39 
  Perform expansion, inside, and outside contraction to locate the new position 𝑃𝑡𝑖

𝑁, of 

the snake agent using Eq. (56). 

40   Find a feasible solution while satisfying Eq. (33), Eq. (35), Eq. (40), and Eq. (42) 

41   Compute fitness of snake member, 𝐹𝑁(𝑃𝑁) Eq. (44) 

 42   Replace worst function value with new function 𝐹𝑙1(𝑃𝑙1) ← 𝐹𝑁(𝑃𝑁) and 𝑋𝑡𝑖
𝐻 ←

𝑃𝑙1𝑡𝑖
𝑁 𝑖 ∈ [1,𝑁𝑔]; 𝑡 ∈ [1, 𝑇] 

43   IF(𝐹𝑁 < 𝐹𝑏𝑒𝑠𝑡)THEN 

44   Update 𝐹𝑏𝑒𝑠𝑡 ← 𝐹𝑁 and 𝑃𝑡𝑖
𝑏𝑒𝑠𝑡 ← 𝑃𝑡𝑖

𝑁; 𝑖 ∈ [1,𝑁𝑔]; 𝑡 ∈ [1, 𝑇] 

45   ENDIF 

46   IF (The termination criterion is met) THEN EXIT 

47   Increment counter𝑔1 = 𝑔1 + 1 

48  END WHILE 

49 Apply opposition based learning using Eqs. (57-62) 

50 Increment counter𝑔 = 𝑔 + 1 

51 END WHILE 

52 STOP 

6. RESULTS AND DISCUSSIONS 

The results of the standard benchmark optimization problems (unconstrained unimodal, 

multimodal) and scalar and bi-objective hydrothermal generation scheduling problems 
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with pumped storage and solar generating units using an emended snake optimizer are 

discussed in this section. 

6.1. Standard benchmark optimization problems 

The proposed emended snake optimizer (ESO) algorithm's viability is examined on 13 

standard benchmark optimization problems. The parameters of ESO are selected by 

performing simulation and are given in Table 1. Some of the solar power generation 

parameters for coordinated generation are given in Table 2.  

Table 1: Parameters of ESO 

Parameter Value Parameter Value 

Dimension, D 10 Control parameter, C1 0.5 

Population, 𝑛s 30 Control parameter, C2 0.05 

Maximum iterations, Gmax 100 Control parameter, C3 3 

Maximum iteration, for simplex, 

𝐺𝑠
𝑚𝑎𝑥 

250 
Independent trial number of N-

run 
30 

Parameter tuning: In the simplex search strategy, the considered value for the expansion 

factor (𝛾) is 2, and for contraction (𝛽), the factor is 0.5 for undertaken HEGS problems. 

The control parameters of ESO are C1, C2, and C3. The next and most important parameter 

is the population of snakes (𝑛s). Variations in the snake population impact the algorithm's 

performance. Therefore, several experiments have been done on these parameters, and 

their best value for test systems is given in Table 1. Table 2 gives the solar power system 

parameters used for coordinated generation. The definitions of standard benchmark 

functions are given in Table 3. 

Table 2: Solar power generation system parameters 
PARAMETER VALUE PARAMETER VALUE 

β (tilt angle) 
30° 

ηw(PV array wiring 

efficiency) 
98% 

d (day number) 135 (15th May) Tc
P(cell temperature) 50°C 

δ (declination angle) 
23.371 radian 

Tr
P(temperature of the cell at a 

reference temperature) 
25°C 

Φ (Latitude of location) 28.7041 

(Delhi) 
𝑇𝑛
𝑛𝑜𝑡normal operating cell 

temperature) 
45°C 

σ(constant) 
0.144 

Z(temperature coefficient of 

the solar cell) 
-0.004 °C-1 

C(constant) 0.071 S(insolation) 80(mW cm2⁄ ) 
ηe(efficiency of PV array) 11% ρ(ground reflectivity) 0.20 

ηd(factor of degradation) 
90% 

A(surface area of the PV 

array) 
90900 m2 

ηr(efficiency of a solar cell 

at a reference solar 

radiation) 

10.5% μ(constant) 1215 

ηc(efficiency of the power 

conditioning devices) 
99%   
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Table 3: Definitions of standard benchmark optimization problems 
No. Name Mathematical expression of the objective function Range 𝑓𝑚𝑖𝑛 

𝑓1(𝑥) 
Sphere 

𝑓1(𝑥) =∑ 𝑥𝑖
2

𝑛

𝑖=1
 [-100,100] 0 

𝑓2(𝑥) Schwefel’s 2.22 𝑓2(𝑥) =∑ |𝑥𝑖| +∏ |𝑥𝑖|
𝑛

𝑖=1

𝑛

𝑖=1
 [-10,10] 0 

𝑓3(𝑥) Schwefel’s 1.2 𝑓3(𝑥) =∑ (∑ 𝑥𝑗
𝑖

𝑗−1
)

2𝑛

𝑖=1
 [-100,100] 0 

𝑓4(𝑥) Schwefel’s 2.21 𝑓4(𝑥) = 𝑚𝑎𝑥(|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛) [-100,100] 0 

𝑓5(𝑥) Rosenbrock 𝑓5(𝑥) =∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2]
𝑛−1

𝑖=1
 [-30,30] 0 

𝑓6(𝑥) Step 𝑓6(𝑥) =∑ (|𝑥𝑖 + 0.5|)
2

𝑛

𝑖=1
 [-100,100] 0 

𝑓7(𝑥) Quartic 𝑓7(𝑥) =∑ 𝑖𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚[0,1)

𝑛

𝑖=1
 [-1.28,1.28] 0 

𝑓8(𝑥) Rastrigin 𝑓8(𝑥) =∑ −𝑥𝑖𝑠𝑖𝑛 (√|𝑥𝑖|)
𝑛

𝑖=1
 [-500,500] -418.98D 

𝑓9(𝑥) Schwefel’s 2.26 𝑓9(𝑥) =∑ [𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1
 [-5.12,5.12] 0 

𝑓10(𝑥) Ackley 

𝑓10(𝑥) = −20𝑒𝑥𝑝(−0.2√
1

𝑁
∑ 𝑥𝑖

2
𝑁

𝑖=1
) 

−𝑒𝑥𝑝 (−
1

𝑁
∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑁

𝑖=1
) 

+20 + 𝑒 
 

[−32,32] 0 

𝑓11(𝑥) Griewank 

𝑓11(𝑥) =∑
1

4000
∑ 𝑥𝑖

2
𝑛

𝑖=1

𝑛

𝑖=1
 

−∏ 𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
) + 1

𝑛

𝑖=1
 

[-600,600] 0 

𝑓12(𝑥) Penalized 

𝑓12(𝑥) =
𝜋

𝑁{10 sin (𝜋𝑦𝑖)}
 

+
𝜋

𝑁
{∑(𝑦𝑖 − 1)

2[1 + 10𝑠𝑖𝑛2 (𝜋𝑦𝑖+1)]

𝑁−1

𝑖=1

} 

+∑𝑢(𝑥𝑖, 𝑎, 𝑘,𝑚)

𝑁

𝑖=1

 

 𝑦𝑖 = 1 +
𝑥𝑖+1

4
 

𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚)={

𝑘(𝑥𝑖 − 𝑎)
𝑚      𝑥 > 𝑎       

0 − 𝑎              < 𝑥𝑖 < 𝑎

𝑘(−𝑥𝑖 − 𝑎)
𝑚 𝑥𝑖 < −𝑎

 

  [−50,50] 0 

𝑓13(𝑥) Penalized 2 

𝑓13(𝑥) = 0.1{𝑠𝑖𝑛
2(3𝜋𝑥1) 

+∑(𝑥𝑖 − 1)
2[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖 + 1)]

𝑁

𝑖=1

 

+
1

2
(𝑥𝑁 − 1)

2[1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑁)]2} 

+∑𝑢(𝑥𝑖 , 5,100,4)

𝑁

𝑖=1

 

  [−50,50] 0 

The average, median, minimum, maximum, and standard deviation values of standard 

benchmark functions for SOA and ESO are tabulated in Table 4. The comparison of results 

for ESO with other techniques viz. particle swarm optimization (PSO), genetic algorithm 
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(GA), differential evolution (DE), Harris hawk optimizer (HHO) and biogeography-based 

optimization (BBO) present in literature [63] is given in Table 5. This comparison shows 

that the proposed ESO gives better results than other techniques for all standard benchmark 

functions. Hence it is concluded that ESO performs better than SOA and other techniques. 

Friedman’s test is performed to validate the results, and ESO got the first rank among all 

competing algorithms. 

Table 4: Performance analysis of SOA and ESO on standard benchmark optimization problems 
Test 

Function 
Algorithm 

Objective Function Value 
Stdev 

Average Median Minimum Maximum 

𝑓1(𝑥) 
SOA 8.259E-297 8.14E-297 5.94E-297 9.9E-297 0 

ESO 7.7802E-297 8.06E-297 5.77E-297 9.2526E-297 0 

𝑓2(𝑥) 
SOA 4.683E-149 4.635E-149 3.77E-149 6.19E-149 4.8E-150 

ESO 4.5523E-149 4.5007E-149 3.1486E-149 5.6457E-149 4.8E-150 

𝑓3(𝑥) 
SOA 1.1313E-297 1.135E-297 8.91E-298 1.38E-297 0 

ESO 1.1004E-297 1.0772E-297 8.3147E-298 1.4532E-297 0 

𝑓4(𝑥) 
SOA 2.962E-150 2.98E-150 2.58E-150 3.27E-150 1.6E-151 

ESO 2.8932E-150 2.9352E-150 2.5757E-150 3.2044E-150 1.6E-151 

𝑓5(𝑥) 
SOA 28.99468 28.99889 28.94956 29 0.010237 

ESO 28.7396 28.75511 28.50983 28.82333 0.040035 

𝑓6(𝑥) 
SOA 0 0 0 0 0 

ESO 0 0 0 0 0 

𝑓7(𝑥) 
SOA 1.73E-04 1.82E-04 1.29E-04 1.82E-04 1.98E-05 

ESO 1.30E-04 1.29E-04 1.29E-04 1.35E-04 9.67E-07 

𝑓8(𝑥) 
SOA 189.752579 251.8700343 0 329.110684 120.3292 

ESO 1.7524E-06 1.90811E-06 0 3.41431E-06 1.06E-06 

𝑓9(𝑥) 
SOA 9968.755 9971.006 9178.597 10674.94 410.2554 

ESO 8680.08 8694.393 7978.659 9087.25 292.4701 

𝑓10(𝑥) 
SOA 3.574E-16 -5.89E-16 -5.89E-16 2.96E-15 1.59E-15 

ESO 3.397E-18 -5.887E-16 -5.887E-16 2.963E-15 1.34E-15 

𝑓11(𝑥) 
SOA 0.068656912 0 0 1.030401861 0.261282 

ESO 4.07082E-17 0 0 1.22125E-15 2.22E-16 

𝑓12(𝑥) 
SOA 1.50709 1.656081 0.637 1.668971 0.270905 

ESO 0.053166 0.03205 0.00301 0.185242 0.048696 

𝑓13(𝑥) 
SOA 14.24916 17.88704 5.798664 25.05247 6.987106 

ESO 1.836966 1.458072 0.259541 5.8 1.584617 

 
Table 5: Comparison for ESO on standard benchmark functions 

Function Function 

Value 
PSO [63] GA [63] DE [63] HHO [63] 

𝑓1(𝑥) 
Mean 1.83E+04 1.03E+03 1.33E−03 4.24E-287 

StDev 3.01E+03 5.79E+02 5.92E−04 0.00E+00 

𝑓2(𝑥) 
Mean 3.58E+02 2.47E+01 6.83E−03 1.72E-159 

StDev 1.35E+03 5.68E+00 2.06E−03 3.35E-170 

𝑓3(𝑥) 
Mean 4.05E+04 2.65E+04 3.97E+04 3.03E-289 

StDev 8.21E+03 3.44E+03 5.37E+03 0.00E+00 

𝑓4(𝑥) 
Mean 4.39E+01 5.17E+01 1.15E+01 3.19E-135 

StDev 3.64E+00 1.05E+01 2.37E+00 2.23E-134 

𝑓5(𝑥) 
Mean 1.96E+07 1.95E+04 1.06E+02 2.84E+01 

StDev 6.25E+06 1.31E+04 1.01E+02 1.80E-01 

𝑓6(𝑥) 
Mean 1.87E+04 9.01E+02 1.44E−03 0.00E+00 

StDev 2.92E+03 2.84E+02 5.38E−04 0.00E+00 
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𝑓7(𝑥) 
Mean 1.07E+01 1.91E−01 5.24E−02 2.29E-04 

StDev 3.05E+00 1.50E−01 1.37E−02 1.35E-04 

𝑓8(𝑥) 
Mean −3.86E+03 −1.26E+04 −6.82E+03 −1.17E+04 

StDev 2.49E+02 4.51E+00 3.94E+02 1.46E+03 

𝑓9(𝑥) 
Mean 2.87E+02 9.04E+00 1.58E+02 0.00E+00 

StDev 1.95E+01 4.58E+00 1.17E+01 0.00E+00 

𝑓10(𝑥) 
Mean 1.75E+01 1.36E+01 1.21E−02 5.89E-16 

StDev 3.67E−01 1.51E+00 3.30E−03 2.96E-31 

𝑓11(𝑥) 
Mean 1.70E+02 1.01E+01 3.52E−02 0.00E+00 

StDev 3.17E+01 2.43E+00 7.20E−02 0.00E+00 

𝑓12(𝑥) 
Mean 1.51E+07 4.77E+00 2.25E−03 1.83E-03 

StDev 9.88E+06 1.56E+00 1.70E−03 4.50E-04 

𝑓13(𝑥) 
Mean 5.73E+07 1.52E+01 9.12E−03 3.48E-01 

StDev 2.68E+07 4.52E+00 1.16E−02 2.46E-01 

 
Table 5: Comparison for ESO on standard benchmark functions 

Function Function 
Value 

BBO [63] SOA ESO 

𝑓1(𝑥) 
Mean 7.59E+01 8.26E-297 7.78E-297 

StDev 2.75E+01 0.00E+00 0.00E+00 

𝑓2(𝑥) 
Mean 1.36E−03 4.68E-149 4.55E-149 

StDev 7.45E−03 4.84E-150 4.90E-150 

𝑓3(𝑥) 
Mean 1.21E+04 1.13E-297 1.10E-297 

StDev 2.69E+03 0.00E+00 0.00E+00 

𝑓4(𝑥) 
Mean 3.02E+01 2.96E-150 2.89E-150 

StDev 4.39E+00 1.64E-151 1.65E-151 

𝑓5(𝑥) 
Mean 1.82E+03 2.90E+01 2.87E+01 

StDev 9.40E+02 1.02E-02 7.00E-02 

𝑓6(𝑥) 
Mean 6.71E+01 0.00E+00 0.00E+00 

StDev 2.20E+01 0.00E+00 0.00E+00 

𝑓7(𝑥) 
Mean 2.91E−03 1.73E-04 1.30E-04 

StDev 1.83E−03 1.98E-05 9.67E-07 

𝑓8(𝑥) 
Mean −1.24E+04 -1.90E+02 1.75E-06 

StDev 3.50E+01 1.20E+02 1.07E-06 

𝑓9(𝑥) 
Mean 0.00E+00 9.97E+03 8.68E+03 

StDev 0.00E+00 4.10E+02 2.92E+02 

𝑓10(𝑥) 
Mean 2.13E+00 3.57E-16 3.40E-18 

StDev 3.53E−01 1.60E-15 1.35E-15 

𝑓11(𝑥) 
Mean 1.46E+00 6.87E-02 4.07E-17 

StDev 1.69E−01 2.61E-01 2.23E-16 

𝑓12(𝑥) 
Mean 6.68E−01 1.51E+00 5.32E-02 

StDev 2.62E−01 2.71E-01 4.87E-02 

𝑓13(𝑥) 
Mean 1.82E+00 1.42E+01 1.84E+00 

StDev 3.41E−01 6.99E+00 1.58E+00 

The convergence curves using logarithmic scale for standard benchmark optimization 

problems are given in Figure 1, and these curves clearly show that the ESO converges to 

its optimal value faster than SOA. For the functions (𝑓1 − 𝑓7), 𝑓12-𝑓13 ESO converges in 

less than 20 iterations and shows the same trend as 𝑓1 converges. For the other functions, 

the convergence curves are given and shows that ESO has faster convergence than SOA. 
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(i) Function,𝑓1 (ii) Function,𝑓8 

  
(iii) Function,𝑓9 (iv) Function,𝑓10 

 

(v) Function,𝑓11 

Figure 1: Convergence curves of standard benchmark problems 

A whisker-box plot for the standard benchmark optimization problem is given in Figure 

2. Box plots show that ESO performs better than SOA because of having small quartiles 

and less number of outliers. For the functions 𝑓2, 𝑓7, 𝑓11 and 𝑓12 SOA has more outliers 

than ESO. Function 𝑓8, 𝑓10 and 𝑓13 has a large quartile of SOA compared to ESO. This 

depicts that the ESO gives competing results over the SOA for this function. For functions 

𝑓1, 𝑓3 − 𝑓6  𝑎𝑛𝑑 𝑓9 SOA has a higher median value than ESO; hence, ESO gives better 

results for all the functions. 
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Figure 2: Whiskers Box plot curves for standard benchmark functions 

6.2. Hydrothermal test systems 

The proposed emended snake optimization approach has been implemented to solve 

two real-world complex engineering problems. The two practical problems are taken from 

the power system generation scheduling background. This paper addresses the HEGS 

problem using the proposed ESO. In HEGS problems, the variable head is considered. TS1 

and TS2 denote the power system test problems. The description of these test systems along 

with parameters, is given in Table 8. In the proposed ESO, 30 independent trial runs while 

implementing ESO. The operating fuel cost of thermal units is $/hr. A detailed discussion 

of results obtained by ESO is given in the ensuing subsections. The detail of the systems 

undertaken for the study is given in Table 6. 

Table 6: Elements of test systems taken for study 

Test 

System 

Time 

Horizon 

Number of 

Thermal 

Generators  

Number of 

Hydro 

Generators  

Number of 

Pumped 

Storage 

Generators 

Number of 

Solar 

Generators  

Total 

Generating 

Units 

Reference 

TS1 24h 2 2 1 1 6 
[64] 

TS2 24h 5 4 1 1 11 
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The study uses two electric power test systems with four different cases to validate the 

proposed method for solving the HEGS problem. The time horizon is set at 24 hours, then 

divided into 24-time intervals. Each period lasts for one hour. 

Four cases (Case-I, II, III, and IV) are taken in the study and are represented in Table 7 for 

the test system TS1. In Case-I, hydrothermal units, pumped storage units, and solar units 

are all considered in the multiobjective framework. In Case-II, the effect of pumped storage 

units is considered. In Case-III, hydrothermal units with multi objectives framework are 

considered while not considering the pumped storage and wind units. Case-IV considers 

only hydrothermal units with a single objective while not considering pumped storage units 

and solar units. 

Table 7: Different cases of the test system taken for experimental studies 

Test 

System 
Cases Hydrothermal 

Pumped 

Storage 
Solar 

Number Of 

Objectives 

TS1 

Case-I ✓ ✓ ✓ Two 

Case-II ✓ ✓ ⨉ Two 

Case-III ✓ ⨉ ⨉ Two 

Case-IV ✓ ⨉ ⨉ Single 

The pumped storage hydro unit’s data for the test system is given in Table 8, 

representing the generation and pumping coefficients along with power generation limits 

of pumped storage hydro generators. 

Table 8: Pumped storage unit input data 

Pumped 

Storage 

Unit 

Generation Coefficients Pumping Coefficients 
𝑃𝑖
𝑚𝑖𝑛 

(MW) 

𝑃𝑖
𝑚𝑎𝑥 

(MW) 
𝜒𝑙
+ 

(m3/MW2h) 

ξ𝑙
+ 

(m3/MWh) 

φ𝑙
+ 

(m3/h) 

𝜒𝑙
− 

(m3/MW2h) 

ξ𝑙
− 

(m3/MWh) 

φ𝑙
− 

(m3/h) 

TS1 0.00022 0.306 1.98 0.00036 0.612 0.936 0 300 

The gaseous pollutants emission coefficients of the thermal station for test systems TS1 

and TS2 are given in Table 9 and Table 10, respectively. 

Table 9: Emission coefficients for hydrothermal test system TS1 

Thermal Unit  
𝑎2𝑖 

(𝑙𝑏/𝑀𝑊2ℎ) 
𝑏2𝑖 

(𝑙𝑏/𝑀𝑊ℎ) 
𝑐2𝑖 

(𝑙𝑏/ℎ) 
𝑑2𝑖  

(𝑙𝑏/ℎ) 
𝑒2𝑖 

(𝑀𝑊−1) 
1 0.00232 3.84632 182.2605 0.0 0.0 

2 0.00232 3.84632 182.2605 0.0 0.0 

 
 

Table 10: Emission coefficients for hydrothermal test system TS2 

Thermal Unit  
𝑎2𝑖 

(𝑙𝑏/𝑀𝑊2ℎ) 
𝑏2𝑖 

(𝑙𝑏/𝑀𝑊ℎ) 
𝑐2𝑖 

(𝑙𝑏/ℎ) 
𝑑2𝑖  

(𝑙𝑏/ℎ) 
𝑒2𝑖 

(𝑀𝑊−1) 
1 0.00419 0.32767 13.85932 0.0 0.0 

2 0.00419 0.32767 13.85932 0.0 0.0 

3 0.00683 0.54551 40.2669 0.0 0.0 

4 0.00683 0.54551 40.2669 0.0 0.0 

5 0.00461 0.51116 42.89553 0.0 0.0 
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Test System-TS1: the first hydrothermal test system TS1 considers the two thermal, two 

hydro, one pumped storage, and one solar unit for power generation for 24 hours [64]. 

Case-I: The solar commitment table for the electric power test system TS1 is given in 

Table 11. When U𝑡𝑘
𝑆  is set to 0, which means the solar unit is OFF, and if U𝑡𝑘

𝑆  is set 1 

presents a particular solar unit is ON for the respective interval. 

Table 11: Commitment schedule of solar units for test System-TS1(Case-I) 
Interval, t Solar committed 

units (U𝑡𝑘
𝑆 ) 

Interval, t Solar committed units 

(U𝑡𝑘
𝑆 ) 

1 0000000000000 13 0111110011111 

2 0000000000000 14 1111111110101 

3 0000000000000 15 0011111011111 

4 0000000000000 16 0000000000000 

5 0000000000000 17 0000000000000 

6 0000000000000 18 0000000000000 

7 0000000000000 19 0000000000000 

8 0000000000000 20 0000000000000 

9 0000000000000 21 0000000000000 

10 1111011111110 22 0000000000000 

11 1100111111111 23 0000000000000 

12 1111110111111 24 0000000000000 

The power generation schedules for total thermal, total hydro, pumped storage and solar 

units are shown in Table 12. Total demand and transmission losses, along with power 

mismatch, are also included in Table 12. The power generation schedule of thermal and 

hydro generating units is given in Table 13. The solar power generation schedule is given 

in Table 14. The water discharge rates for hydro units are shown in Table 15. The lowest 

obtained thermal fuel cost is 54780.5 $/hr, while the emission is 76029.75 tons for 24 

hours. The power balance equality constraint |𝐸𝑡
𝑃𝐷| in Tables 12 and 15 is less than 0.001, 

and the volume constraint |𝐸𝑗
𝑣| is nearly 0. The solutions are practical because both the 

power balance equality and volume constraints are met.  

Table 12: Power generation, load demand, and transmission losses for test System-TS1(Case-I) 

Interval, 

t 
𝑃𝐷𝑡 (MW) 

𝑃𝐿𝑡 
(MW) 

Total thermal 

generation 
(MW) 

Total hydro 

generation 
(MW) 

Pumped storage 

generation (MW) 
Solar 

generation 

(MW) 

|𝑬𝒕
𝑷𝑫| 

(MW)  

1 800 28.9527 500.9984 424.66232 -96.70743 0 0.00059 

2 700 20.32185 297.1892 435.88093 -12.74733 0 0.00095 

3 600 13.62555 315.6852 314.75965 -16.81863 0 0.00067 

4 600 15.94972 385.28521 305.7048 -75.03928 0 0.00101 

5 600 19.76236 321.7459 406.60673 -108.5894 0 0.00087 

6 650 20.72585 393.5619 376.17342 -99.00908 0 0.00039 

7 800 24.47142 459.4611 393.9913 -28.98009 0 0.00089 

8 1000 41.55117 643.9629 467.3848 -69.79615 0 0.00038 

9 1330 41.51477 690.0295 432.62016 248.866 0 0.00089 

10 1350 38.63902 593.938 474.2594 -70.04523 390.4879 0.00105 

11 1450 53.00381 499.5139 685.5355 -81.40521 399.3604 0.00078 

12 1500 46.84646 634.0257 540.5567 -6.799764 379.0646 0.00078 

13 1300 55.07063 616.5907 638.686 -79.04504 178.8361 0.00287 

14 1350 34.91125 584.6223 432.60733 -31.60393 399.2863 0.00075 

15 1350 35.3909 638.9941 397.08589 -56.47545 405.7871 0.00074 

16 1370 41.81533 649.7686 462.0473 300 0 0.00057 
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17 1450 47.54082 733.1277 464.41412 300 0 0.001 

18 1570 59.2019 922.2797 406.92335 299.9997 0 0.00085 

19 1430 45.55378 728.7493 447.2484 299.5569 0 0.00082 

20 1350 41.01181 666.0114 445.46108 279.5401 0 0.00077 

21 1270 62.44126 743.5905 615.6918 -26.84037 0 0.00067 

22 1150 55.02782 892.5554 365.75297 -53.27977 0 0.00078 

23 1000 37.26646 688.8693 360.8993 -12.50165 0 0.00049 

24 900 34.65259 669.8767 328.68553 -63.90866 0 0.00098 

Minimum Fuel Cost ($) 54780.5 

Emission (ton) 76029.75 

 

 

Table 13: Power generation schedule of thermal and hydro generating units for test System-

TS1(Case-I) 

Interval, 
t 

𝑃1𝑡 (MW) 𝑃2𝑡 (MW) 𝑃3𝑡 (MW) 𝑃4𝑡 (MW) 

1 168.3542 332.6442 374.361 50.30132 

2 122.1892 175 342.7471 93.13383 

3 95 220.6852 309.5984 5.16125 

4 97.32411 287.9611 199.0343 106.6705 

5 146.7459 175 307.2339 99.37283 

6 158.0596 235.5023 316.3407 59.83272 

7 138.5148 320.9463 368.9857 25.0056 

8 107.6718 536.2911 358.6882 108.6966 

9 179.0761 510.9534 371.3794 61.24076 

10 205.5618 388.3762 291.4461 182.8133 

11 224.557 274.9569 484.6985 200.837 

12 103.931 530.0947 432.6949 107.8618 

13 218.0451 398.5456 389.0502 249.6358 

14 212.4805 372.1418 415.3465 17.26083 

15 184.8013 454.1928 360.8466 36.23929 

16 119.1722 530.5964 213.1019 248.9454 

17 232.8556 500.2721 400.4961 63.91802 

18 243.5658 678.7139 322.6775 84.24585 

19 187.0096 541.7397 385.61 61.6384 

20 211.7625 454.2489 362.9722 82.48888 

21 250.2344 493.3561 435.5349 180.1569 

22 336.3335 556.2219 342.7419 23.01107 

23 245.1539 443.7154 251.5762 109.3231 

24 268.8951 400.9816 244.8358 83.84973 
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Table 14: Solar power generation for test System-TS1(Case-I) 
Interval, 

t 
Solar power generation (MW) 

𝑆1𝑡 𝑆2𝑡 𝑆3𝑡 𝑆4𝑡 𝑆5𝑡 𝑆6𝑡 𝑆7𝑡 𝑆8𝑡 𝑆9𝑡 𝑆10𝑡 𝑆11𝑡 𝑆12𝑡 𝑆13𝑡 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 22.64 28.30 28.30 28.30 0.00 33.96 39.61 39.61 45.27 45.27 45.27 45.27 0.00 

11 22.82 28.53 0.00 0.00 34.23 34.23 39.94 39.94 45.64 45.64 45.64 45.64 45.64 

12 22.97 28.72 28.72 28.72 34.46 34.46 0.00 40.20 45.95 45.95 45.95 45.95 45.95 

13 0.00 28.84 28.84 28.84 34.61 34.61 0.00 0.00 46.15 46.15 46.15 46.15 46.15 

14 23.15 28.93 28.93 28.93 34.72 34.72 40.51 40.51 46.29 0.00 46.29 0.00 46.29 

15 0.00 0.00 28.98 28.98 34.78 34.78 40.58 0.00 46.38 46.38 46.38 46.38 46.38 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 0 0 0 0 0 0 

22 0 0 0 0 0 0 0 0 0 0 0 0 0 

23 0 0 0 0 0 0 0 0 0 0 0 0 0 

24 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
Table 15: Hydro units water discharge for test System-TS1(Case-I) 

Interval, t 𝑄1𝑡 
(𝑚3 ⁄ ℎ) 

𝑄2𝑡 
(𝑚3 ⁄ ℎ) 

𝑄3𝑡 
(𝑚3 ⁄ ℎ) 

Interval, t 𝑄1𝑡 
(𝑚3 ⁄ ℎ) 

𝑄2𝑡 
(𝑚3 ⁄ ℎ) 

𝑄3𝑡 
(𝑚3 ⁄ ℎ) 

1 130.5216 51.39428 -63.4878 13 136.096 273.6637 -51.5609 

2 117.3569 96.10519 -8.79586 14 147.3295 17.97396 -20.6372 

3 103.9892 6.45289 -11.3308 15 124.1571 36.51846 -36.6472 

4 62.61987 110.5428 -48.8872 16 67.28139 271.7531 113.22 

5 102.998 102.5355 -71.6377 17 140.7599 64.05476 113.22 

6 106.5685 60.91014 -65.0586 18 108.5427 84.85336 113.2198 

7 127.9982 25.7999 -18.9742 19 134.3148 61.63469 113.027 

8 123.6619 112.3376 -45.405 20 124.7987 82.88915 104.3981 

9 128.892 62.21019 91.51082 21 155.745 188.8869 -17.6217 

10 96.63136 195.1728 -45.57 22 116.4072 23.32771 -34.5652 

11 178.6792 215.8065 -53.1416 23 81.03925 110.6221 -8.64327 

12 155.0772 110.6622 -5.1141 24 78.53374 83.89132 -41.5185 

Computed Volume (𝒎𝟑) 2849.999 2449.999 

 Available Volume 𝑽𝒋 (𝒎
𝟑) 2850 2450 

Error in Volume |𝑬𝒋
𝒗| (𝒎𝟑) 0.001 0.001 

The variation of power generation schedules for thermal and hydro units for all four 

cases is given in Figure 3- Figure 6 for the sake of comparison. Whisker box plots for 

hydrothermal for all cases of test system TS1 of SOA and ESO are shown in Figure 7. Box 

plot for TS1 (Case-I-Case-III) shows that SOA has a higher median value than ESO. For 
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test system TS1 (case-IV), SOA has a larger quartile than ESO, which shows that ESO 

gives better results than SOA and performs better. 

 

Figure 3: Power generation schedule for thermal unit 1 𝑷𝟏𝒕 (MW) for all cases of TS1 

 

Figure 4: Power generation schedule for thermal unit 2 𝑃2𝑡 (MW) for all cases of TS1 

 

Figure 5: Power generation schedule for hydro unit 1 𝑃3𝑡  (MW) for all cases of TS1 
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Figure 6: Power generation schedule for hydro unit 2 𝑃4𝑡 (MW) for all cases of TS1 
 

 

Figure 7: Whisker box plots for all cases of TS1 
 

The convergence behaviour of SOA and ESO is depicted in Figure 8. These curves 

show that ESO converges faster than SOA to its optimal value in all cases. Table 16 shows 

the Commitment schedule of solar units for the System-TS2 (Case-I) electric power test 

system. When U𝑡𝑘
𝑆  is set to 0, the specific solar unit is turned off, and when U𝑡𝑘

𝑆  is set to 1, 

the specific solar unit is turned on during the specified interval. 
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Figure 8: Convergence curves for all cases of TS1 

 

 

Table 16: Commitment schedule of solar units for test System-TS2 
Interval, t Solar committed units 

(U𝑡𝑘
𝑆 ) 

Interval, 

k 

Solar committed units 

(U𝑡𝑘
𝑆 ) 

1 0000000000000 13 1111111111111 

2 0000000000000 14 1111111111111 

3 0000000000000 15 1111111111111 

4 0000000000000 16 0000000000000 

5 0000000000000 17 0000000000000 

6 0000000000000 18 0000000000000 

7 0000000000000 19 0000000000000 

8 0000000000000 20 0000000000000 

9 0000000000000 21 0000000000000 

10 1111111111111 22 0000000000000 

11 1111111111111 23 0000000000000 

12 1111111111111 24 0000000000000 

Table 17 shows the power generation schedules for total thermal, total hydro, pumped 

storage, and solar units. Table 17 additionally includes total demand and transmission 

losses along with power mismatch.  
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Table 17: Power generation, load demand, and transmission losses for test System-TS2 

Interval, t 
𝑃𝐷𝑡 

(MW

) 

𝑃𝐿𝑡 
(MW) 

Total thermal 

generation 

(MW) 

Total hydro 

generation 

(MW) 

Pumped storage 

generation 

(MW) 

Solar 

generation 

(MW) 

|𝐸𝑡
𝑃𝐷| 

(MW) 

1 5448 595.8401 3925.959 2031.02 86.86116 0 4.40E-04 

2 5776 689.1898 4305.402 2025.886 133.902 0 5.00E-04 

3 5664 642.9438 4055.547 2118.866 132.5305 0 1.20E-03 

4 5624 650.1658 4097.733 2043.935 132.4978 0 9.00E-04 

5 5928 732.8257 4451.639 2122.711 86.47606 0 3.40E-04 

6 6064 749.3846 4377.121 2302.566 133.6969 0 8.00E-04 

7 6068 776.1031 4582.673 2176.518 84.91042 0 1.18E-03 

8 5856 711.7569 4381.968 2087.207 98.58076 0 1.04E-03 

9 5480 629.9535 4156.435 1830.837 122.681 0 8.00E-04 

10 5464 526.8383 3638.912 1954.015 -83.1257 481.0357 1.21E-03 

11 5728 534.4049 3685.643 1958.276 133.5471 484.9376 5.00E-04 

12 5536 488.8742 3356.733 2126.505 53.44678 488.1893 4.20E-04 

13 5400 495.3604 3541.16 1920.044 -56.201 490.3569 5.80E-04 

14 5828 559.6325 3813.344 1951.188 131.2252 491.8744 9.00E-04 

15 3928 227.6189 2271.328 1477.872 -86.3232 492.7415 2.40E-04 

16 3840 276.225 2486.462 1635.857 -6.09418 0 7.81E-04 

17 3784 270.683 2387.853 1721.542 -54.7127 0 8.70E-04 

18 3608 253.0855 2471.499 1476.077 -86.4915 0 6.70E-04 

19 3584 236.6901 2303.97 1526.932 -10.2127 0 9.50E-04 

20 3544 233.5538 2346.959 1434.979 -4.38481 0 1.31E-03 

21 3528 234.4278 2233.638 1591.308 -62.5184 0 3.40E-04 

22 3552 247.3346 2426.07 1455.834 -82.569 0 5.80E-04 

23 3688 274.8646 2553.768 1496.872 -87.7768 0 9.60E-04 

24 3840 288.6955 2508.892 1708.058 -88.2547 0 1.70E-04 

Minimum Fuel Cost($) 429842.8 

Emission(ton) 375341.9 

Table 18 shows the solar power generation schedule. Table 19 shows the water 

discharge rates for hydro units. The lowest fuel cost obtained is 429842.8 $/h, while the 

emission is 375341.9 tons. The power balance equality constraint |𝐸𝑡
𝑃𝐷| is less than 1.31E-

03, and the volume constraint |𝐸𝑗
𝑣| is nearly 0. The solutions are practical since they satisfy 

both the power balance equality and volume constraints. 

Table 18: Solar power generation for test System-TS2(Case-I) 

Interval, t Solar power generation (MW) 

𝑆1𝑡 𝑆2𝑡 𝑆3𝑡 𝑆4𝑡 𝑆5𝑡 𝑆6𝑡 𝑆7𝑡 𝑆8𝑡 𝑆9𝑡 𝑆10𝑡 𝑆11𝑡 𝑆12𝑡 𝑆13𝑡 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 22.64 28.30 28.30 28.30 33.96 33.96 39.61 39.61 45.27 45.27 45.27 45.27 45.27 
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11 22.82 28.53 28.53 28.53 34.23 34.23 39.94 39.94 45.64 45.64 45.64 45.64 45.64 

12 22.97 28.72 28.72 28.72 34.46 34.46 40.20 40.20 45.95 45.95 45.95 45.95 45.95 

13 23.08 28.84 28.84 28.84 34.61 34.61 40.38 40.38 46.15 46.15 46.15 46.15 46.15 

14 23.15 28.93 28.93 28.93 34.72 34.72 40.51 40.51 46.29 46.29 46.29 46.29 46.29 

15 23.19 28.98 28.98 28.98 34.78 34.78 40.58 40.58 46.38 46.38 46.38 46.38 46.38 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 0 0 0 0 0 0 

22 0 0 0 0 0 0 0 0 0 0 0 0 0 

23 0 0 0 0 0 0 0 0 0 0 0 0 0 

24 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
Table 19: Hydro units water discharge (𝑚3 ⁄ ℎ) for test System-TS2 

Interval, t 𝑄1𝑡 𝑄2𝑡 𝑄3𝑡 𝑄4𝑡 𝑄5𝑡 
1 502.8061 379.1065 427.7679 425.1179 30.18921 

2 491.0201 532.8895 344.3972 369.4405 46.82683 

3 368.2838 457.3678 583.4129 441.4314 46.32823 

4 451.8486 393.5674 335.1059 582.399 46.31636 

5 499.9757 434.3516 469.2318 441.8903 30.05695 

6 550.8453 542.0093 592.9739 400.0594 46.75223 

7 443.775 560.3033 362.6369 558.8583 29.5199 

8 396.0083 443.4529 498.2304 464.7943 34.24483 

9 360.9429 413.8032 391.7292 330.3741 42.77131 

10 523.4988 446.697 313.5406 368.1327 -54.2965 

11 424.7621 405.4039 414.2517 398.9146 46.69775 

12 442.3307 409.4978 581.0191 424.4908 18.95173 

13 349.4112 512.1243 380.1193 364.8779 -36.4681 

14 330.5711 463.199 387.6797 459.8254 45.85444 

15 227.3089 270.0647 270.8375 352.9139 -56.4484 

16 441.095 238.281 362.0494 255.6229 -4.67901 

17 394.3742 314.267 378.6937 289.5381 -35.4978 

18 273.2868 275.6919 303.5538 261.6299 -56.5619 

19 293.6972 248.3217 260.1429 368.9933 -7.22369 

20 345.5628 261.7812 195.2439 278.9991 -3.62642 

21 252.7155 292.8867 365.6722 325.3212 -40.6044 

22 191.6496 233.3528 388.5141 295.7505 -53.9226 

23 276.1396 203.3854 193.7827 500.3016 -57.4291 

24 343.0918 443.1964 374.4157 215.3243 -57.7519 

Computed 

Volume (𝒎𝟑) 
9175 9175.001 9175 9175.001 

 

Available 

Volume 𝑽𝒋 

(𝒎𝟑) 

9175.0 9175.0 9175.0 9175.0 

Error in 

Volume |𝑬𝒋
𝒗| 

(𝒎𝟑) 

0.00E+00 9.77E-04 0.00E+00 9.77E-04 
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Whisker box plots for all cases of the test system are given in Figure 9. For TS2 (Case-

I), SOA has two outliers, and ESO has one outlier. SOA has a higher median value than 

ESO, which depicts that ESO gives better results than SOA and performs better. For TS2 

(Case-II-Case-IV), SOA has a higher median value than ESO, which shows that ESO 

performs better and gives better results than SOA. 

 

Figure 9: Whisker box plots for all cases of TS2 

The convergence curves for all cases of TS2 are given in Figure 10. The convergence 

plots show that ESO converges faster than SOA to its optimal value. The results for solving 

electric test system TS1 using the proposed ESO in terms of emission and operating cost 

(minimum, average, maximum, and standard deviation) are compared with predator-prey 

optimization (PPO), and SOA is given in Table 20. 
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Figure 10: Convergence curves for all cases of TS2 

It is observed that ESO obtains the minimum operating cost in every case (Case-I – 

Case-IV) for TS1. In Case-IV of TS1, there is one objective, but if emission is calculated 

as per the thermal power generation schedule, it comes out to be 94946.71. The results 

show that in Case-III, TS1, the emission (ton) is decreased from 94946.71 to 94934.42, 

offering a significant drop of 0.0129%, but the operating cost is increased due to the 

conflicting nature of objectives considered. In Case-II, TS1, the emission (ton) drops from 

94934.42 to 85709.63, showing a percentage drop of 9.717%, and fuel cost ($/h) is reduced 

from 67995.88 to 62171.95, showing a cost reduction of 8.565%, due to penetration of 

pumped storage units. Similarly, in Case-I, TS1 gives the least emission and fuel cost due 

to the penetration of pumped storage and solar units. The emission (ton) is reduced from 

85709.63 to 76029.75, offering a significant drop of 11.29%, and operating fuel cost ($/hr) 

is reduced from 62171.95 to 54780.5 showing an 11.88% reduction in operating cost. 
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Table 20: Comparison of results (emission, thermal operating cost, solar cost and total cost) for 

test system TS1 

Test System Case-IV Case-III Case-II Case-I 

Method PPO  SOA ESO SOA ESO SOA ESO SOA ESO 

Emission NA 94946.7 94946.7 94969.6 94934.4 86537.2 85709.6 76029.7 76029.7 

T
h

er
m

al
 

o
p
er

at
in

g
 c

o
st

 

($
/h

r)
 

Min 68379.7 67989.7 67989.7 68220.3 67995.8 62429.4 62171.9 54780.5 54780.5 

Avg NA 67996.9 67992.9 68261.7 68000.9 62802.1 62744.1 55217.6 55170.6 

Max NA 68002.2 67999.3 68304.2 68010.3 63302.2 63096.7 55409.5 55697.7 

SD NA 3.5493 3.4549 30.1311 3.32653 310.657 251.658 112.470 192.946 

Solar 
cost($/hr) 

− − − − − − − 
642337.2 642337.2 

Total 

cost($/hr) 
− − − − − − − 

697117.7 697117.7 

The results for solving electric test system TS2 using the proposed ESO in terms of 

emission and operating cost (minimum, average, maximum, and standard deviation) are 

compared with real coded genetic algorithm (RCGA) [65], PPO [64], and SOA are given 

in Table 21. It is observed that ESO obtains the minimum operating cost in each case (Case-

I – Case-IV) for TS2. In Case-IV of TS2, since there is one objective if emission (ton) is 

calculated as per the thermal power generation schedule, it comes out to be 479875. The 

results show that in Case-III, TS2, the emission (ton) is decreased from 479875 to 

401783.4, offering a significant drop of 16.27%, but the operating cost is increased due to 

the conflicting nature of objectives considered. In Case-II, TS2, operating fuel cost ($/hr) 

is reduced from 458337.8 to 456229, showing a cost reduction of 0.46% due to penetration 

of pumped storage units. The emission increased by 0.19%. Similarly, in Case-I, TS2 gives 

the least emission and fuel cost due to the penetration of pumped storage and solar units. 

The emission (ton) is reduced from 402578.6 to 375341.9, offering a significant drop of 

6.765%, and operating fuel cost ($/hr) is reduced from 456229 to 429842.8 showing a 

5.783% reduction in operating cost. 

Table 21: Comparison of results (emission, thermal operating cost, solar cost, and total cost) for 

test system TS1 

Case Method Emission 
Thermal Operating cost ($/hr) Solar 

cost($/hr) 

Total 

cost($/hr) Min Avg Max SD 

Case-I 
SOA 375341.9 429842.8 431138.3 431584.9 566.9106 761919.8 1191762.6 

ESO 375341.9 429842.8 431138.3 431584.9 566.9106 761919.8 1191762.6 

Case-II 
SOA 406716.8 458868.1 458467.6 459731.5 885.4777 − 458868.1 

ESO 402578.6 456229 458467.6 459731.5 885.4777 − 456229 

Case-III 
SOA 412974.5 464352.1 464637.6 465027.2 204.3919 − 464352.1 

ESO 401783.4 458337.8 458371.4 458473.7 28.39035 − 458337.8 

Case-IV 

RCGA[65] NA 461717.73 NA NA NA − 461717.73 

PPO[64] NA 458409.7 NA NA NA − 458409.7 

SOA 684647.5 458181.2 458192.8 458206.2 7.367465 − 458181.2 

ESO 479875 458176.7 458189.9 458192.8 6.747369 − 458176.7 
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6.3. Statistical analysis 

The Wilcoxon signed-rank test is applied on standard benchmark functions for result 

analysis and is given in Table 22. The Wilcoxon signed-rank test is a non-parametric test 

that compares two matched samples based on their ranks. The Wilcoxon signed-rank test 

is used for making inferences in paired-sample data concerning the value of the median of 

the population of differences. The results obtained by SOA are compared with the results 

obtained by ESO while solving the hydrothermal generation scheduling problem. 

Table 22: Wilcoxon signed rank test ESO versus SOA for benchmark functions 

Function p-value Function p-value 

𝑓1 1.087 E-04 𝑓8 5.1239E-04 

𝑓2 6.147E-10 𝑓9 3.0104E-11 

𝑓3 3.328E-05 𝑓10 8.0834E-05 

𝑓4 1.668E-11 𝑓12 3.0104E-11 

𝑓5 6.6363E-11 𝑓13 8.3695E-11 

𝑓7 2.0519E-10  

Table 23 shows that the p-value obtained for every benchmark function is significant 

for 5%, which concludes that the proposed ESO method gives improved results for every 

benchmark function under consideration. This justifies the robustness of ESO. 

Friedman’s test is performed to obtain the mean ranking of all competing algorithms 

on (𝑓1 − 𝑓13) benchmark optimization problems and proposed ESO. Figure 11 shows that 

the ESO obtains first rank having the mean rank value of 3.5 among all competing 

algorithms. 

 

 
Figure 11: Mean ranking values of all competing algoritms and ESO on (𝑓1 − 𝑓13) benchmark 

functions 

Wilcoxon sign rank test is performed on test systems TS1 and TS2, and p-values for 

test systems are tabulated in Table 23, which shows that for both test systems, in all cases, 

p-values are significant for 5%, and this justifies that the results are statistically significant 

and ESO is a robust algorithm. 
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Table 23: Wilcoxon signed-rank test ESO versus SOA for test system TS1 and TS2 

Test Systems Case p-value 

TS1 

Case-I 2.3890E-11 

Case-II 0.03844 

Case-III 3.0199E-11 

Case-IV 1.7E-03 

TS2 

Case-I 2.3E-03 

Case-II 1.5415E-10 

Case-III 3.0199E-11 

Case-IV 3.0199E-11 

7. CONCLUSIONS 

This paper proposes an emended snake optimizer (ESO) to address the multiobjective 

hybrid energy generation scheduling (HEGS) problem. A snake optimization algorithm is 

amended with simplex search method and opposition-based learning to enhance the snake 

optimizer’s exploration and exploitation ability and convergence rate. The amendment 

improves the performance of SOA by enhancing the global solution accuracy, avoiding 

stagnation of local solutions and avoiding premature convergence. The proposed ESO 

technique is tested on thirteen standard benchmark problems. The results show that ESO 

gives better results during experimentation. The efficacy of the ESO is proved by the better 

convergence behavior while solving these standard benchmark problems. The competitive 

results obtained on standard benchmark problems prove the effectiveness of the ESO. To 

evaluate ESO's supremacy, two non-linear and highly constrained hydrothermal generation 

scheduling test systems are solved. An iterative repair technique is utilized to handle the 

equality constraints, and a replacement method is utilized to handle the inequality 

constraints. The proposed ESO significantly reduces the operating cost and emissions by 

11.88% and 11.29%, respectively, for TS1. For TS2, the significant reduction in operating 

cost is 5.783%, and emission is 6.7765%. Box plots were given for the standard benchmark 

function to prove the robustness of ESO Whisker. Convergence curves are drawn to 

authenticate the results by a better convergence rate. Wilcoxon signed-rank test and 

Friedman rank test have been performed to justify the robustness of ESO.  

The major limitation of renewable energy sources is the uncertainty due to fluctuations 

in weather conditions. which makes it difficult and challenging to predict and schedule 

their availability accurately. In the future, wind energy can be considered to enhance the 

scope of the present work. The optimal load flow considering demand side management 

can be the future scope study to apply the proposed ESO. A further modification is also 

possible in the proposed algorithm by hybridizing it with any other nature-inspired 

algorithm to achieve the improvement.  

Funding: This research received no external funding. 
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