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Abstract: In this paper, we define some new generalizations of strongly convex functions
of order m for locally Lipschitz functions using Clarke subdifferential. Suitable exam-
ples illustrating the non emptiness of the newly defined classes of functions and their
relationships with classical notions of pseudoconvexity and quasiconvexity are provided.
These generalizations are then employed to establish sufficient optimality conditions for a
nonsmooth multiobjective optimization problem involving support functions of compact
convex sets. Furthermore, we formulate a mixed type dual model for the primal problem
and establish weak and strong duality theorems using the notion of strict efficiency of
order m. The results presented in this paper extend and unify several known results from
the literature to a more general class of functions as well as optimization problems.
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1. INTRODUCTION

The nonsmooth phenomena occur naturally and frequently in optimization
theory. This led to the introduction of several types of generalized directional
derivatives and subdifferentials, for comprehensive overview of these concepts,
we refer to Clarke [6], Loffe [16], Michel and Penot [17], Mordukhovich [27] and
the references therein. The class of support functions of convex compact sets
[28] is one among the few classes of non-differentiable functions, for which the
subdifferential can be explicitly expressed. Every sublinear function defined on
whole of Rn may be written as a support function. Due to their direct relation
with cost functions, support functions have wider applications in several areas of
modern research such as microeconomics and consumer theory, for details, see
Zalinescu [32] and the references cited therein. Optimization problems involving
support functions have been extensively studied, since, any property related to
support functions can easily be translated to the corresponding property of the
cost functions. A nonsmooth multiobjective programming problem, in which each
component of the objective function contains a support function, was studied by
Mond and Schechter [26]. Yang et al. [31] studied Wolfe type and Mond-Weir type
dual problems for a class of nonsmooth multiobjective programming problems
involving support functions. Recently, these problems have been widely studied
by many scholars, see for example, Bae et al. [3], Kim and Bae [13], Kim and Lee
[14], Mishra et al. [18-25] and the references cited therein.

The concept of strict local minimizers has been introduced by Cromme [8] in
the study of the convergence of iterative numerical procedures. Auslender [2]
studied the following optimization problem:

Minimize f (x)

subject to x ∈ S,

where f : Rn
→ R is locally Lipschitz function, S is a closed subset of Rn.

He [2] obtained necessary and sufficient optimality conditions for isolated local
minimizers of orders 1 and 2. Studniarski [29] extended the results of Auslender
[2] to any extended real-valued function f , any arbitrary set S ⊆ Rn and isolated
local minimizers of order m.Ward [30] renamed isolated local minimizers of order
m as strict local minimizers of order m and investigated the general conditions for
m = 1, 2 under which mth derivative test characterizes the strict local minimizer
of order m. Jimenez [9] extended the concept of the strict minimality for scalar
optimization problem to multiobjective optimization problem and introduced
the concept of super-strict efficiency. Jimenez and Novo [10-11] derived first
and second order sufficient optimality conditions for smooth and nonsmooth
multiobjective optimization problems with an arbitrary feasible set and twice
directionally differential objective function.
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It is well-known that convexity plays a central role in optimization theory.
However, in some real world applications, the notion of convexity does not suffice
any longer. To provide a more accurate representation, modeling and solutions
of real world problems, several generalizations of the notion of convexity have
been introduced. For more expositions and references about generalized con-
vex functions, we refer to the reader Mishra et al. [23-25]. Lin and Fukushima
[15] introduced the concept of strongly convex functions of order m, which is a
generalization of the notion of strongly convex functions of order 2, given by
Karamardian and Schaible [12]. Bhatia [5] defined strong convexity of order m,
and its generalizations for Lipschitz functions and obtained necessary and suffi-
cient optimality conditions for a nonsmooth multiobjective optimization problem;
also, he established its relation with a variational inequality problem.

Bae and Kim [4] obtained necessary and sufficient optimality conditions for a
nonsmooth optimization problem under higher order strong convexity assump-
tions and established weak and strong duality theorems for a strict minimizer of
order m. Recently, Arora et al. [1] have introduced four new generalized classes
of strongly convex functions of order m and derived the characterizations of the
solution sets of strict minimizers of order m. They have also established sufficient
optimality conditions for a multiobjective optimization problem and obtained
mixed duality results.

Motivated by [1, 4-5], we consider a class of nonsmooth multiobjective opti-
mization problem involving support functions of compact convex sets and derive
sufficient optimality conditions for efficient minimizers of order m in the frame-
work of some new generalizations of strong convexity of order m. Related to the
primal problem, we formulate a mixed dual model and establish weak and strong
duality theorems.

We now briefly sketch the contents of the paper. In Section 2, notations and
preliminaries are given along with some new generalizations of strong convexity
of order m. In Section 3, sufficient optimality conditions have been derived for
a class of nonsmooth multiobjective optimization problems involving support
functions of compact convex sets. In Section 4, we formulate a mixed dual model
for the primal problem and establish weak and strong duality theorems. In Sec-
tion 5, we give conclusions on our results and suggest future research directions.

2. NOTATIONS AND PRELIMINARIES

Let Rn be n-dimensional Euclidean space and Rn
+ be its nonnegative orthant.

Let 〈., .〉 denotes the Euclidean inner product. Let X ⊆ Rn be an open convex set
equipped with the Euclidean norm ‖.‖.
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Throughout the paper, we adopt the following conventions for vectors in Rn :

x = y⇔ xi = yi,∀i = 1, . . . ,n;
x > y⇔ xi > yi,∀i = 1, . . . ,n;
x = y⇔ xi = yi,∀i = 1, . . . ,n;
x ≥ y⇔ xi = yi,∀i = 1, . . . ,n but x , y.

Following notions of nonsmooth analysis are from Clarke [6]:

Definition 2.1. A function f : X → R is said to be locally Lipschitz at z ∈ X if there
exist a positive constant M and a neighbourhood N of z such that for any x, y ∈ N,

| f (x) − f (y) |≤M ‖ x − y ‖ .

The function f is said to be locally Lipschitz on X if the above condition is satisfied
for all z ∈ X.

Definition 2.2. Let f : X → R be locally Lipschitz on X. The Clarke generalized
directional derivative of f at x ∈ X in the direction of a vector v ∈ Rn, denoted by f 0(x; v),
is defined as

f 0(x; v) := lim sup
y→x
t↓0

f (y + tv) − f (y)
t

.

Definition 2.3. Let f : X → R be locally Lipschitz on X. Clarke generalized subdiffer-
ential of f at x ∈ X, denoted by ∂c f (x), is defined as

∂c f (x) := {ξ ∈ Rn : f 0(x; v) ≥ 〈ξ, v〉, ∀v ∈ Rn
}.

Proposition 2.4. Let f : X → R be locally Lipschitz on X. Then, for any scalar k, one
has

∂c(k f )(x) = k∂c f (x).

Definition 2.5. Let D be a compact convex set inRn. The support function of D, denoted
by s(.|D), is defined as

s(x|D) := max{〈x, y〉 : y ∈ D}.

Furthermore, the set D is uniquely characterized by its support function. For
example, the support function of a compact convex set D = [0, 1] is the function

s(x|D) =
x + |x|

2
.

The support function s(.|D) is always convex and finite everywhere. The subdif-
ferential of s(.|D) at x, is defined as

∂cs(x|D) := {z ∈ D : 〈z, x〉 = s(x|D)}.
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Definition 2.6. (Lin and Fukushima [15]) A function f : X→ R is said to be a strongly
convex function of order m if there exists a constant c > 0, such that for any x, y ∈ X and
t ∈ [0, 1], one has

f (tx + (1 − t)y) ≤ t f (x) + (1 − t) f (y) − ct(1 − t)‖x − y‖m.

For m = 2, the function is referred to as strongly convex in the ordinary sense, see
Karamardian and Schaible [12].

Proposition 2.7. (Lin and Fukushima [15]) If each fi : X → R, i = 1, ..., p is strongly

convex of order m on a convex set X, then for ti ≥ 0, i = 1, . . . , p,
p∑

i=1
ti fi and max1≤i≤p fi

are also strongly convex of order m on X.

The following definitions are nonsmooth extensions of the concepts of pseudo-
convex type I (type II) and quasiconvex type I (type II) functions given by Arora
et al. [1].

Definition 2.8. Let f : X → R be locally Lipschitz on X, then f is said to be strongly
pseudoconvex type I of order m on X, if there exists a constant c > 0, such that

〈ξ, x − y〉 ≥ 0, f or some ξ ∈ ∂c f (y)
⇒ f (x) ≥ f (y) + c‖x − y‖m,∀x, y ∈ X,

or equivalently, for all x, y ∈ X,

f (x) < f (y) + c‖x − y‖m ⇒ 〈ξ, x − y〉 < 0,∀ξ ∈ ∂c f (y).

Remark 2.9. Every strongly pseudoconvex type I function of order m is pseudoconvex.
However, the converse may not be true. For example, the function f : X = (0, 2) → R,
defined by

f (x) :=
{

ln x, 1 < x < 2,
0, 0 < x ≤ 1,

is pseudoconvex but not strongly pseudoconvex type I of any order, as for x = 1
2 , y = 1

and ξ = 0 ∈ ∂c f (1) = [0, 1], we have 〈ξ, x − y〉 = 0, however, f (x) ≥ f (y) + c‖x − y‖m

does not hold for any c > 0.

Definition 2.10. Let f :→ R be a locally Lipschitz function on X, then f is said to be
strongly pseudoconvex type II (strictly strongly pseudoconvex type II) of order m on X, if
there exists a constant c > 0, such that

〈ξ, x − y〉 + c‖x − y‖m ≥ 0 f or some ξ ∈ ∂c f (y)
⇒ f (x) ≥ (>) f (y),∀x, y ∈ X,

or equivalently, for all x, y ∈ X,

f (x) < (≤) f (y)
⇒ 〈ξ, x − y〉 + c‖x − y‖m < 0,∀ξ ∈ ∂c f (y).
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Remark 2.11. Every strongly pseudoconvex type II function of order m is pseudoconvex,
but the converse may not be true. For example, the function f : X = (−2, 2)→ R, defined
by

f (x) :=
{
−x2, x ≤ 0,
x, x > 0,

is pseudoconvex but not strongly pseudoconvex type II of any order, as for x = −1, y = 0,
we have f (x) < f (y), but,〈ξ, x − y〉 + c‖x − y‖m > 0, for ξ = 0 ∈ ∂c f (0) = [0, 1] and any
c > 0.

Definition 2.12. Let f : X→ R be a locally Lipschitz function on X, then f is said to be
strongly quasiconvex type I of order m on X, if there exists a constant c > 0, such that

f (x) ≤ f (y)
⇒ 〈ξ, x − y〉 + c‖x − y‖m ≤ 0,∀x, y ∈ X and ξ ∈ ∂c f (y).

Remark 2.13. Every strongly quasiconvex type I function of order m is quasiconvex, but
the converse may not be true. For example, the function f : X = R→ R, defined by

f (x) :=


x, x ≤ 0,
2x, 0 < x < 1,
2 x ≥ 1,

is quasiconvex, but not strongly quasiconvex type I of any order, as for x = 2, y = 1, we
have f (x) < f (y), but for ξ = 2 ∈ ∂c f (1) = [0, 2], we have , 〈ξ, x − y〉 + c‖x − y‖m > 0,
for all c > 0 and any m.

Definition 2.14. Let f : X→ R be a locally Lipschitz function on X, then f is said to be
strongly quasiconvex type II of order m on X, if there exists a constant c > 0, such that

f (x) ≤ f (y) + c‖x − y‖m

⇒ 〈ξ, x − y〉 ≤ 0,∀x, y ∈ X and ξ ∈ ∂c f (y).

Remark 2.15. Every strongly quasiconvex type II function of order m is quasiconvex,
but the converse may not be true. For example, the function f : X = R→ R, defined by

f (x) :=


x, x ≤ 0,
0, 0 < x < 1,
x − 1, x > 1,

is quasiconvex, but not strongly quasiconvex type II of any order, as for x = 1
2 , y = 0 and

for all c > 0, we have f (x) ≤ f (y) + c‖x − y‖m but for ξ = 1 ∈ ∂c f (0) = [0, 1], we have
〈ξ, x − y〉 > 0 .
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3. OPTIMALITY CONDITIONS

In this section, we establish the sufficient optimality conditions for the follow-
ing nonsmooth multiobjective optimization problem (NMOP) involving support
functions: (NMOP)

Minimize ( f1(x) + s(x|D1), . . . , fp(x) + s(x|Dp))
Subject to 1 j(x) ≤ 0, j = 1, . . . , q,

where fi, 1 j : X→ R, i = 1, ..., p, j = 1, ..., q are locally Lipschitz functions on X and
Di, for each i = 1, ..., p is a compact convex subset of Rn. Let S = {x ∈ X : 1 j(x) ≤
0, j = 1, ..., q} and J(x0) = { j|1 j(x0) = 0, j = 1, ..., q} denote the set of all feasible
solutions for (NMOP) and the set of active restrictions at x0, respectively.

Motivated by Chandra et al. [7], Bae and Kim [4] introduced the following
regularity conditions for (NMOP)

Definition 3.1. Let x0 be a feasible solution for (NMOP). The basic regularity condition
(BRC) is said to be satisfied at x0, if there exists r ∈ {1, ..., p} such that the scalars λ0

i ≥ 0,
wi ∈ Di, i = 1, ..., p, i , r, µ0

j ≥ 0, j < J(x0), which satisfy

0 ∈

p∑
i=1,i,r

λ0
i (∂c fi(x0) + wi) +

q∑
j=1

µ0
j∂

c1 j(x0)

are λ0
i = 0,∀i = 1, ..., p, i , r and µ0

j = 0, j = 1, ..., q.

Definition 3.2. (Arora et al. [1]) Let m ≥ 1 be an integer. A point x0
∈ S is said to be

an efficient minimizer of order m for (NMOP) if there exists a constant c ∈ intRp
+, such

that for all x ∈ S,

fi(x) + s(x|Di) � fi(x0) + s(x0
|Di) + ci‖x − x0

‖
m, i = 1, ..., p, i , k

fk(x) + s(x|Dk) ≮ fk(x0) + s(x0
|Dk) + ck‖x − x0

‖
m, f or some k.

Definition 3.3. (Bae and Kim, [4]) Let m ≥ 1 be an integer. A point x0
∈ S is said to be

a strict minimizer of order m for (NMOP) if there exists a constant c ∈ intRp
+, such that

for all x ∈ S,

fi(x) + s(x|Di) ≮ fi(x0) + s(x0
|Di) + ci‖x − x0

‖
m,∀i = 1, ...p.

It is evident by the definitions that every efficient minimizer of order m for (NMOP) is
also strict minimizer of order m.

Now, we state the following necessary optimality conditions for (NMOP) estab-
lished by Bae and Kim [4].
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Theorem 3.4. (Karush-Kuhn-Tucker type necessary optimality conditions) Let x0
∈ S

be a strict minimizer of order m and the functions fi, i = 1, ..., p and 1 j, j = 1, ..., q are
locally Lipschitz at x0.Assume that the basic regularity condition (BRC) holds at x0, then
there exist λ0

∈ R
p
+, w0

i ∈ Di, i = 1, ..., p, µ0
∈ R

q
+ such that

0 ∈

p∑
i=1

λ0
i ∂

c fi(x0) +

p∑
i=1

λ0
i w0

i +

q∑
j=1

µ0
j∂

c1 j(x0), (8)

〈x0,w0
i 〉 = s(x0

|Di), i = 1, ..., p, (9)

µ0
j1 j(x0) = 0, j = 1, ..., q, (10)

〈λ0, e〉 = 1,where e = (1, ..., 1) ∈ Rp. (11)

Now, we prove the following sufficient optimality conditions for (NMOP) using
strong quasiconvexity type II and strong pseudoconvexity type II assumptions.

Theorem 3.5. Let the conditions (8)-(11) be satisfied at x0
∈ S. Assume that ( fi(.) +

〈.,wi〉), i = 1, ..., p be strongly quasiconvex type II of order m on X and
q∑

j=1
µ0

j1 j(.) be

strictly strongly pseudoconvex type II of order m on X, then x0 is an efficient minimizer
of order m for (NMOP).
Proof: We suppose on contrary that x0 is not an efficient minimizer of order m for
(NMOP). Then for every ci > 0, i = 1, ..., p, we have

fi(x) + s(x|Di) ≤ fi(x0) + s(x0
|Di) + ci‖x − x0

‖
m,∀i = 1, ..., p, i , k

fk(x) + s(x|Dk) < fk(x0) + s(x0
|Dk) + ck‖x − x0

‖
m, f or some k.

Since ( fi(.) + 〈.,wi〉), i = 1, ..., p is strongly quasiconvex type II of order m at x0, from the
above inequalities, it follows that

〈ξi + wi, x − x0
〉 ≤ 0,∀i = 1, ..., p, i , k

〈ξk + wk, x − x0
〉 < 0, f or some k,∀ξi ∈ ∂

c fi(x0) and wi ∈ Di.

As 〈λ0, e〉 = 1, we get〈 p∑
i=1

λ0
i ξi +

p∑
i=1

λ0
i wi, x − x0

〉
≤ 0,∀ξi ∈ ∂

c fi(x0) and wi ∈ Di.

Then, from (8), we have〈 q∑
j=1

µ0
jζ j, x − x0

〉
≥ 0,∀ζ j ∈ ∂

c1 j(x0).

The above inequality implies that〈 q∑
j=1

µ0
jζ j, x − x0

〉
+ c‖x − x0

‖
m
≥ 0,∀c > 0 and ζ j ∈ ∂

c1 j(x0).
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Since
q∑

j=1
µ0

j1 j(.) is strictly strongly pseudoconvex type II of order m, from the above

inequality, we get

q∑
j=1

µ0
j1 j(x) >

q∑
j=1

µ0
j1 j(x0) = 0,

which is not possible.
Hence, x0 is an efficient minimizer of order m for (NMOP).

Remark 3.6. In view of the definitions of strictly strong pseudoconvexity type II of order
m, strong quasiconvexity type II of order m and the formulation of the problem (NMOP),
it is clear that our results on optimality extend and generalize corresponding results by
Arora et al. [1], Bae and Kim [4] and Bhatia [5].

The following example justifies the significances of the Theorems 3.4 and 3.5.

Example 3.7. We consider the following multiobjective optimization problem involving
support functions:
(P)

Minimize ( f1(x) + s(x|D1), f2(x) + s(x|D2))
Subject to 1 j(x) ≤ 0, j = 1, 2,

where D1 = [−1, 1], D2 = [1, 3] are compact convex sets and let fi, 1 j : X = (−3, 3) →
R, i, j = 1, 2 are functions defined by

f1(x) = x2,

f2(x) =

{
x, x ≥ 0,
−x2 + x, x < 0, s(x|D1) =| x |, s(x|D2) = 2x+ | x |,

11(x) =

{
x2 + x − 1, x > 0;
x2
− 1, x ≤ 0, and 12(x) =

{
ex
− 1, x > 0;

x3, x ≤ 0.

It is clear that the functions fi, 1 j, i, j = 1, 2 are locally Lipschitz functions on X. Then,
we have

f1(x) + s(x|D1) =

{
x2 + x, x > 0;
x2
− x, x ≤ 0, and f2(x) + s(x|D2) =

{
4x, x ≥ 0,
−x2 + 2x, x < 0.

Now, one can easily evaluate that

∂c( f1(x)+ s(x|D1)) =


2x + 1, x > 0,
[-1,1], x = 0,
2x − 1, x < 0,

∂c( f2(x)+ s(x|D2)) =


4, x > 0,
[2,4], x = 0,
−2x + 2, x < 0,
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∂c11(x) =


2x + 1, x > 0,
[0,1], x = 0,
2x, x < 0,

and ∂c12(x) =


ex, x > 0,
[0,1], x = 0,
3x2, x < 0.

The set of feasible solutions for the problem (P) is S = {x ∈ X|0 ≤ x < 3}. It is evident
that basic regularity conditions (BRC) are satisfied at the feasible point x0 = 0. Moreover,
there exist r = 1 ∈ {1, 2} and the scalars λ0

i = 0, wi ∈ Di, i = 1, 2, i , r, µ0
j = 0, j < J(x0),

which satisfy

0 ∈

p∑
i=1,i,r

λ0
i

(
∂c fi(x0) + wi

)
+

q∑
j=1

µ0
j∂

c1 j(x0)

are λ0
i = 0, ∀i = 2, i , r and µ0

j = 0, j = 1 with J(x0) = {2}. Therefore, it is clear that there
exist λ = (1, 0) ∈ R2

+, µ = (1, 0) ∈ R2
+ such that the basic regularity conditions (BRC)

and optimality conditions (8)-(11) are satisfied at x0 = 0. It is easy to see that the functions
fi(x) + s(x|Di), i = 1, 2 are strongly quasiconvex type II of order 2 with ci = 1, i = 1, 2.

For µ = (0, 1) ∈ R2
+, the function

q∑
j=1
µ0

j1 j(.) is strictly strongly pseudoconvex type II of

order 2 on X, with c = 1. Hence, the assumptions of the Theorem 3.5 are also satisfied.
One can easily check that x0 = 0 is an efficient minimizer of order 2 with c = (1, 1).

4. MIXED DUALITY

In this section, we derive the relationship between (NMOP) and its mixed type
dual under the assumptions of some new generalizations of strong convexity of
order m.

Let the index set Q = {1, ..., q} be partitioned into two disjoint subsets K and J,
such that Q = K∪ J. We formulate mixed type dual model for (NMOP) as follows:
(NMOD)

Maximize

 f1(u) + 〈u,w1〉 +
∑
j∈J

µ j1 j(u), ..., fp(u) + 〈u,wp〉 +
∑
j∈J

µ j1 j(u)


Subject to 0 ∈

p∑
j=1

∂cλi fi(u) +

p∑
i=1

λiwi +

q∑
j=1

∂cµ j1 j(u),

µk1k ≥ 0, k ∈ K,
µ ≥ 0,wi ∈ Di, i = 1, ..., p,
λ = (λ1, ..., λp) ∈ ∧+,

where ∧+ = {λ ∈ Rp : λ ≥ 0, 〈λ, e〉 = 1, e = (1, ..., 1) ∈ Rp
}. Let SD denote the set of

feasible solutions for (NMOD).
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Theorem 4.1. (Weak duality) Let x and (u, λ,w, µ) be feasible solutions for (NMOP)

and (NMOD), respectively. Suppose that

 p∑
i=1
λi( fi(.) + 〈.,wi〉) +

∑
j∈J
µ j1 j(.)

¸ is strongly

pseudoconvex type I of order m at u and
∑
k∈K
µk1k(.) is strongly quasiconvex type I of order

m at u, then the following cannot hold:

fi(x) + 〈x,wi〉 < fi(u) + 〈u,wi〉 +
∑
j∈J

µ j1 j(u),∀i = 1, . . . , p.

Proof. Since (u, λ,w, µ) is a feasible solution for (NMOD). Therefore, we get
p∑

i=1

ξi +

p∑
i=1

λiwi +

q∑
j=1

ζ j = 0 (12)

and

µk1k(u) ≥ 0, k ∈ K,

for some ξi ∈ ∂cλi fi(u), i = 1, ..., p,wi ∈ Di and ζ j ∈ ∂cµ j1 j(u), j = 1, ..., q.
Again, as x is feasible for (NMOP), 1k(x) ≤ 0, k ∈ K and also µk ≥ 0, k ∈ K, we have∑

k∈K

µk1k(x) ≤

∑
k∈K

µk1k(u).

Since
∑
k∈K
µk1k(.) is strongly quasiconvex type I of order m, therefore, there exists

constant c > 0, such that〈∑
k∈K

ζk, x − u
〉

+ c‖x − u‖m ≤ 0,∀ζk ∈ ∂
cµk1k(u), k ∈ K.

Using (12) and the above inequality, we have〈 p∑
i=1

ξi +

p∑
i=1

λiwi +
∑
j∈J

ζ j, x − u
〉
− c‖x − u‖m ≥ 0, (13)

for some ξi ∈ ∂cλi fi(u),wi ∈ Di and ζ j ∈ ∂cµ j1 j(u), j ∈ J.
From (13), it follows that〈 p∑

i=1

ξi +

p∑
i=1

λiwi +
∑
j∈J

ζ j, x − u
〉
≥ 0.

Since

 p∑
i=1
λi( fi(.) + 〈.,wi〉) +

∑
j∈J
µ j1 j(.)

 is strongly pseudoconvex type I of order m

at u, from the above inequality, we get
p∑

i=1

λi( fi(x) + 〈x,wi〉) +
∑
j∈J

µ j1 j(x) ≥

p∑
i=1

λi( fi(u) + 〈u,wi〉) +
∑
j∈J

µ j1 j(u) + c‖x − u‖m.(14)
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From (14), it follows that
p∑

i=1

λi( fi(x) + 〈x,wi〉) +
∑
j∈J

µ j1 j(x) ≥

p∑
i=1

λi( fi(u) + 〈u,wi〉) +
∑
j∈J

µ j1 j(u).

Since 1 j(x) ≤ 0, µ j ≥ 0, j ∈ J, we have
p∑

i=1

λi( fi(x) + 〈x,wi〉) ≥

p∑
i=1

λi( fi(u) + 〈u,wi〉) +
∑
j∈J

µ j1 j(u),

which is equivalent to
p∑

i=1

λi(( fi(x) + 〈x,wi〉) − ( fi(u) + 〈u,wi〉)) ≥

∑
j∈J

µ j1 j(u).

Therefore,

( fi(x) + 〈x,wi〉) < ( fi(u) + 〈u,wi〉) +
∑
j∈J

µ j1 j(u),∀i = 1, ..., p,

cannot hold.
Hence, the result follows.

Now, we prove the weak duality theorem for (NMOD) using strong pseudo-
convex type II and strong quasiconvex type II functions.

Theorem 4.2. (Weak duality) Let x and (u, λ,w, µ) be feasible solutions for (NMOP)

and (NMOD), respectively. Assume that

 p∑
i=1
λi( fi(.) + 〈.,wi〉) +

∑
j∈J
µ j1 j(.)

¸ is strongly

pseudoconvex type II of order m at u and
∑
k∈K
µk1k(.) is strongly quasiconvex type II of

order m at u, then the following cannot hold:

fi(x) + 〈x,wi〉 < fi(u) + 〈u,wi〉 +
∑
j∈J

µ j1 j(u),∀i = 1, ..., p.

Proof. Since (u, λ,w, µ) is feasible solution for (NMOD). Therefore, we get
p∑

i=1

ξi +

p∑
i=1

λiwi +

q∑
j=1

ζ j = 0, (15)

for some ξi ∈ ∂cλi fi(u), i = 1, ..., p,wi ∈ Di and ζ j ∈ ∂cµ j1 j(u), j = 1, ..., q.
Again, as x is feasible for (NMOP), 1k(x) ≤ 0, k ∈ K and also µk ≥ 0, k ∈ K, hence∑

k∈K

µk1k(x) ≤

∑
k∈K

µk1k(u).
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Then, for all c > 0, we have∑
k∈K

µk1k(x) ≤

∑
k∈K

µk1k(u) + c‖x − u‖m. (16)

Since
∑
k∈K
µk1k(.) is strongly quasiconvex type II of order m, from (16), we get〈∑

k∈K

ζk, x − u
〉
≤ 0,∀ζk ∈ ∂

cµk1k(u), k ∈ K. (17)

Using (13) and (17), we have〈 p∑
i=1

ξi +

p∑
i=1

λiwi +
∑
j∈J

ζ j, x − u
〉

+ c‖x − u‖m ≥ 0,

for all c > 0 and for some ξi ∈ ∂cλi fi(u),wi ∈ Di, i = 1, ..., p and ζ j ∈ ∂cµ j1 j(u), j ∈ J.

Since

 p∑
i=1
λi( fi(.) + 〈.,wi〉) +

∑
j∈J
µ j1 j(.)

 is strongly pseudoconvex type II of order m

at u, we get
p∑

i=1

λi( fi(x) + 〈x,wi〉) +
∑
j∈J

µ j1 j(x) ≥

p∑
i=1

λi( fi(u) + 〈u,wi〉) +
∑
j∈J

µ j1 j(u). (18)

From (18), we have
p∑

i=1

λi( fi(x) + 〈x,wi〉) +
∑
j∈J

µ j1 j(x) ≥

p∑
i=1

λi( fi(u) + 〈u,wi〉) +
∑
j∈J

µ j1 j(u).

Since 1 j(x) ≤ 0, µ j ≥ 0, j ∈ J, we get
p∑

i=1

λi( fi(x) + 〈x,wi〉) ≥

p∑
i=1

λi( fi(u) + 〈u,wi〉) +
∑
j∈J

µ j1 j(u),

which is equivalent to
p∑

i=1

λi(( fi(x) + 〈x,wi〉) − ( fi(u) + 〈u,wi〉)) ≥

∑
j∈J

µ j1 j(u).

Therefore,

fi(x) + 〈x,wi〉 < fi(u) + 〈u,wi〉 +
∑
j∈J

µ j1 j(u),∀i = 1, ...p,

cannot hold. Hence, the result follows.
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Definition 4.3. Let m ≥ 1 be an integer. A point (u0, λ0,w0, µ0) ∈ SD is said to be a
strict maximizer of order m for (NMOD) if there exists an c ∈ intRp

+, such that for all
(u, λ,w, µ) ∈ SD and i = 1, ..., p,

fi(x0) + s(x0
|Di) +

∑
j∈J

µ j1 j(x0) + ci‖x − x0
‖

m ≮ fi(x) + s(x|Di) +
∑
j∈J

µ j1 j(x)

Theorem 4.4. (Strong duality) If x0 is a strict minimizer of order m for (NMOP) and the
basic regularity condition (BRC) holds at x0, then there exist λ0

∈ R
p
+,wi ∈ Di, i = 1, ..., p

and µ0
∈ R

q
+, such that (x0,w0, λ0, µ0) is a feasible solution for (NMOD) and 〈x0,w0

i 〉 =

s(x0
|Di), i = 1, ..., p. Moreover, if the assumptions of weak duality theorem(either Theorem

4.1 or Theorem 4.2) are satisfied, then (x0,w0, λ0, µ0) is a strict maximizer of order m for
(NMOD).

Proof. Let x0 is a strict minimizer of order m for (NMOP) and the basic regularity
condition (BRC) holds at x0. Then by Theorem 3.1, there exist λ0

∈ R
p
+, 〈λ

0, e〉 =
1,w0

i ∈ Di, i = 1, ..., p, µ0
∈ R

q
+, such that Karush-Kuhn-Tucker optimality condi-

tions (8)-(11) are satisfied at x0 . From which, we conclude that (x0,w0, λ0, µ0) is a
feasible solution for (NMOD). Applying Theorem 4.1 (Theorem 4.2), the following
cannot hold:

fi(x0) + 〈x0,w0
i 〉 < fi(u) + 〈u,wi〉 +

∑
j∈J

µ j1 j(u),∀i = 1, ..., p,

where (u,w, λ, µ) is any feasible solution for (NMOD).
Therefore, for any c ∈ intRp

+ and any (u,w, λ, µ) ∈ SD, we get

fi(x0) + 〈x0,w0
i 〉 +

∑
j∈J

µ j1 j(x0) + ci‖u − x0
‖

m ≮ fi(u) + 〈u,wi〉 +
∑
j∈J

µ j1 j(u),∀i = 1, ..., p.

Consequently, (x0,w0, λ0, µ0) is a strict maximizer of order m for (NMOD).
Hence, the result follows.

Remark 4.5. If Di = {0}, i = 1, ..., k and the functions fi, 1 j; i = 1, ..., p, j = 1, ..., q are
differentiable, our results on duality reduce to the one of Arora et al. [1]

5. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have defined some new generalizations of strong convexity of
order m for locally Lipschitz functions using Clarke subdifferential. Relationships
between newly defined functions and the existing classical functions are analyzed
through suitable examples. We consider a nonsmooth multiobjective optimization
problem involving support functions (NMOP) and establish sufficient optimality
conditions using these generalizations. Furthermore, we formulate a mixed type
dual model (NMOD) related to the primal problem (NMOP) and establish weak
and strong duality theorems using the generalizations of the strongly convex
functions of order m and the notion of strict efficiency of order m. The results
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of the paper extend and unify several results of Arora et al. [1], Bae and Kim
[4] and Bhatia [5], on optimality and duality into the nonsmooth case as well
as to a more general class of optimization problems. However, for the sake of
simplicity and easy understanding, we have focused on nonsmooth multiobjec-
tive optimization problem involving locally Lipschitz functions and using Clarke
subdifferential. One can attempt to carry out the similar study for a more general
class of nonsmooth vector optimization problems involving only lower semicon-
tinuous functions.It is known that the Mordukhovich limiting subdifferential [27]
has much better Lagrange multiplier rule than Clarke subdifferential and for lo-
cally Lipschitz functions, it is nonempty and bounded by the rank of Lipschitzia.
One can obtain simillar results in more general space setting, such as Banach or
Asplund spaces using limiting subdifferential. Furthermore, the results of this
paper could be used to establish the relationship between nonsmooth vector vari-
ational inequality problems and nonsmooth vector optimization problems using
Michel-Penot subdifferentials [17] or Mordukhovich limiting subdifferentials [27].
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