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1. INTRODUCTION

A large number of non-linear programming problems can be formulated as
quadratic programming problems e.g., max-clique problem, rank minimization
problem, etc.[2, 3, 5, 6, 7, 8, 9, 12, 13]. A global unconstrained quadratic op-
timization problem is of the form

Minimize
x∈S

xTAx (1)
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where A is an arbitrary n× n symmetric matrix and S is the standard simplex in
Rn. One of the most significant characteristics of the form (1) is that problems
of such form are NP-hard [2]. Note that, without any loss of generality, all the
entries of A can be assumed as non-negative[5].
The general constrained quadratic minimization problem consists of a quadratic
objective function and a set of linear inequality constraints

Minimize
1

2
xTAx+ bTx

Subject to Bx ≤ c
(2)

where b is an n-vector, c is an m-vector, A is an n×n matrix and B is an m×n ma-
trix. If the matrix A is positive semidefinite or positive definite, then (2) becomes
a convex programming problem and consequently, becomes solvable in polynomial
time [11]. Actually, problems like (2) are generalizations of the linear program-
ming problems, specifically in regard to the objective function. Bomze [6] explored
the possibilities of applying branch-and-bound techniques to Standard Quadratic
problems (StQPs). Anderson, Roos and Terlaky [1] presented an implementation
of a primal-dual interior-point method for solving large scale sparse conic quadratic
optimization problems based on the work of Nesterov and Todd [14] on self-scaled
cones. Man-Cho So, Zhang and Ye [13] studied semidefinite programming (SDP)
models for a class of discrete and continuous quadratic optimization problems in
the complex Hermitian form.
In this paper, instead of considering linear constraints, we have considered quadratic
constraints and characterized the global solution and duality of such class of prob-
lems. Suitable examples have also been cited to illustrate the proposed.

2. NOTATION AND PREREQUISITES

The following notations will be used throughout the sequel:
{ej}nj=1:= The canonical basis of Rn.

e := (1, ..., 1)T .
diag(A):= The n × n diagonal matrix with entries aii of a given matrix n × n
matrix A = (aij).

Definition 2.1. [5] The symbol “ � ” denotes a partial order, namely the Lowner
partial order on the set of matrices, defined as A � B or A−B � 0 if and only if
A−B is positive semidefinite.

Let X1 , X2 ⊆ Rn be two partially ordered spaces and P2 be a positive cone in X2.
Let φ : X1 → X2 and f : X1 → X2 be strictly convex quadratic functions such
that φ(x) = (xTAx + 2bTx + q) and f(x) = (xTCx + 2dTx + k), where x ∈ X1.
Further, suppose that h : X1 → X2 is of the form h(x) = 2aTx+p. Let us consider
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the following class of convex programming problems:

Minimize φ(x),

Subject to f(x) ≤ θX2
,

h(x) = θX2
,

x ≥ θX1
,

(QMP)

where θXi denotes the null vector of Xi, i = 1, 2.
Henceforth, the above problem will be referred to as QMP.

3. DUALITY AND OPTIMALITY

The Lagrangian function of QMP is

L(x, λ, µ) = φ(x) + λf(x) + µh(x). (3)

From (3), we get

L(x, λ, µ) = xTAx+ 2bTx+ q + λ(xTCx+ 2dTx+ k) + µ(2aTx+ p)

= xT (A+ λC)x+ 2(bT + λdT + µaT )x+ q + λk + µp. (4)

Let us consider the following problem:

Minimize
x

L(x, λ, µ). (5)

Since the function is convex and differentiable in x, the minimum is given by

∇xL(x, λ, µ) = 0. (6)

From (6), we get

(A+ λC)x+ (b+ λd+ µa) = 0. (7)

Since A and C are positive definite, they are non-singular and hence, (A + λC)
is non-singular. This implies that equation (6) has a unique solution which is the
minimizer of L(x, λ, µ) and consequently, the minimizer is given by

x = −(A+ λC)−1(b+ λd+ µa). (8)

Substituting the value of x in (4) for the Lagrangian function, we get the dual
objective as to maximize the following function:

L(λ) = − (bT + λdT + µaT )(A+ λC)−1(b+ λd+ µa) + (q + λk + µp). (9)

We rewrite the dual problem by introducing a new variable t = (A+ λC)−1(b+
λd+ µa), as follows:

Maximize − tT (A+ λC)t+ (q + λk + µp)

Subject to (A+ λC)t = (b+ λd+ µa)

λ ≥ 0, µ ≥ 0.

(10)
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Let us now compute the difference ∆ between the values of the primal objective at
the primal feasible solution x and the dual objective at the dual feasible solution
(λ, µ, t), which is given by

∆ = xTAx+ 2bTx+ q − (q + λk + µp− tT (A+ λC)t).

Since b = (A+ λC)t− λd− µa, we have,

∆ = xTAx+ tT (A+ λC)t+ 2[tT (A+ λC)− λdT − µaT ]x− (λk + µp)

= (x+ t)T (A+ λC)(x+ t)− λ(xTCx+ 2dTx+ k) (11)

= −λ(xTCx+ 2dTx+ k).

The immediate consequences of (11) are the following:

Proposition 3.1.(Weak Duality) Since λ > 0 and (xTCx + 2dTx + k) ≤ θX1
,

for any feasible solution x of (QMP), we always get ∆ ≥ 0. Thus, from any feasible
dual solution, one can obtain a lower bound on the value of the primal. Conversely,
primal feasible solution gives upper bounds on the value of the dual.

Proposition 3.2. (Strong Duality) If both primal and dual problems achieve
exactly the same optimal value, then the duality gap ∆ = 0. Since λ ≥ 0, from
(11), we conclude that strong duality holds if and only if either λ = 0 or (xTCx+
2dTx+ k) = 0.

Example 3.1.

Minimize φ(x) = 6(x1 − 10)2 + 4(x2 − 12.5)2

Subject to f1(x) = x1
2 + (x2 − 5)2 − 50 ≤ θ

f2(x) = x1
2 + 3x2

2 − 200 ≤ θ
f3(x) = (x1 − 6)2 + x2

2 − 37 ≤ θ
x ≥ θ

The solution of the problem x = −(A+ λB + δC + µD)−1(a+ λb+ δc+ µd) and
λ ≥ 0, δ ≥ 0, µ ≥ 0.

where A =

(
6 0
0 4

)
, B =

(
1 0
0 1

)
, C =

(
1 0
0 3

)
, D =

(
1 0
0 1

)
,

a =

(
−60
−50

)
, b =

(
0
−5

)
, c =

(
0
0

)
, d =

(
−6
0

)
∴ x = −

(
6 + λ+ δ + µ 0

0 4 + λ+ 3δ + µ

)−1( −60− 6µ
−50− 5λ

)
Using KKT conditions, one can verify that for λ = 2, δ = 0, µ = 4, the optimal
solution x is given by (7, 6) .

4. GLOBAL OPTIMALITY OF A CLASS OF QMP

Let X1 , X2 ⊆ Rn be two partially ordered spaces and P2 is a positive cone in
X2. Let φ : X1 → X2 and fi : X1 → X2, where i ∈ {1, 2, ..., n} be strictly convex
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quadratic functions such that φ(x) = (xTAx+2bTx+c) and fi(xi) = (x2i−1), where
xi ∈ X1. Let us Consider the following class of convex quadratic minimization
problems:

Minimize φ(x)

Subject to fi(x) ≤ θX1
.

(12)

The Lagrangian function of the above problem is

L(x, y) = xTAx+ 2bTx+ c+

n∑
i=1

yi(x
2
i − 1)

= xT (A+ Y )x+ 2bTx+ c− eT y, (13)

where Y = diag(yi), i = 1, 2, ..., n.
The dual problem corresponding to (13) is defined by

sup{h(y) : y ∈ Rn ∩ domh}, (14)

where h is the dual functional given by

h(y) := inf{L(x, y) : x ∈ Rn} (15)

domh = {y ∈ Rn : h(y) > −∞}. (16)

From weak duality relationship, we get

φ(x) ≥ h(y), ∀x ∈ F,∀y ∈ Rn ∩ domh. (17)

We recall the following useful results that follow from basic duality theory.

Lemma 4.1. [3] If there exists x ∈ F , the feasible set of (12) and y ∈ Rn ∩ domh
such that φ(x) = h(y) = inf

x
(L(x, y)), then x is a global optimal solution of (12).

Lemma 4.2. [3] Let A be an n× n symmetric matrix and let φ : Rn → R be the
quadratic function φ(x) = xTAx+ 2bTx+ c, where b ∈ Rn. Then inf{φ(x) : x ∈
Rn} > −∞ if and only if the following two conditions hold
(i) there exists x ∈ Rn such that Ax+ b = 0.
(ii) the matrix A is positive semidefinite.

We now establish the following global optimality criteria:
Theorem 4.1. Let Y be an n×n diagonal matrix with diagonal elements yi, i =
1, 2, ..., n. Let F be the feasible set of problem (12). If x = −(A + Y )−1b ∈ F ,
then x is a global optimal solution of (12).
Proof. From the above lemma, we have inf{L(x, y) : x ∈ Rn} > −∞ if and only
if the following conditions hold
(i) there exists x ∈ Rn such that (A+ Y )x+ b = 0.
(ii) (A+ Y ) � 0.
Let x be any feasible solution of (12). For x = −(A+ Y )−1b ∈ F , let

eT y = −xTAx− bTx. (18)

Hence, we get
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(A+ Y )x+ b = (A+ Y )(−(A+ Y )−1b) + b = 0.

Using (15), we rewrite the dual objective h as

h(y) = inf
x∈Rn

{xT (A+ Y )x+ 2bTx+ c− eT y}

= xT (A+ Y )x+ 2bTx+ c− eT y
= −bTx+ 2bTx+ c+ xTAx+ bTx (19)

= xTAx+ 2btx+ c

= φ(x).

Since (12) is convex, (A + Y ) � 0, implying y is feasible for (14). Hence, from
lemma (4.1) and (4.2), the result follows.

Example 4.1.

Minimize φ(x) = x21 + 6x1x2 + x22 + 9x1 + 3

Subject to f1(x) = x1
2 − 1 ≤ 0

f2(x) = x2
2 − 1 ≤ 0

The solution of the problem is x = −(A + Y )−1b, where A =

(
1 3
3 1

)
and

b =

(
9

2
0

)
.

Therefore, x = −
(

1 + y1 3
3 1 + y2

)−1( 9

2
0

)
.

Using KKT conditions, one can verify that for y1 =
13

2
and y2 = 2, the optimal

solution x is given by (−1, 1) .

5. CONCLUSION

Theorem 4.1. provides with the global optimality criteria for convex mini-
mization problems expressed in the form given by (12). Analogical results can be
investigated for non-convex problems in future.
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