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Abstract:Abstract:Abstract:Abstract: We describe an algorithm for finding a minimal s -branching (where s  is a 
given number of its arcs) in a weighted digraph with an asymetric weight matrix. The 
algorithm uses the basic principles of the method (previously developed by J. Edmonds) 
for determining a minimal branching in the case when the number of its arcs is not 
specified in advance. Here we give a proof of the correctness for the described 
algorithm. 
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1. INTRODUCTION 

We consider an arc weighted digraph G  without loops and with an 
asymmetric weight matrix. As usual, the weight ( )d H  of any subgraph H  of G  is 
defined to be the sum of weights of arcs of H . 

We start with some specific definitions. 

Definition 1.Definition 1.Definition 1.Definition 1. A tree in which each edge is directed (so that it becomes an arc) is called 
a directeddirecteddirecteddirected treetreetreetree. 

Definition 2.Definition 2.Definition 2.Definition 2. A directed tree is called an arborescencearborescencearborescencearborescence if the following conditions are 
fulfilled: 

1. There is a node x  with no entering arcs; 
2. Exactly one arc enters each of the other nodes. 

Node x  is called the rootrootrootroot. 
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DefinitionDefinitionDefinitionDefinition 3.3.3.3. A digraph whose weakly connected components are arborescences is 
called a branchingbranchingbranchingbranching. A branching with s  arcs is called an s -branchingbranchingbranchingbranching. 

We consider the problem of finding a minimal s -branching in G , i.e. a 
branching with minimal weight. An algorithm for this problem has been developed in 
[6] (see also [8], pp. 59-61) and we describe it here. The algorithm uses the basic 

principles of a method for determining a minimal branching (without a specification of 
the number of arcs in it) in a weighted digraph usually accredited to Edmonds [10], [13], 

[15], [17] although it was previously discovered in [4] and later independently in [2]. 

(Some efficient implementations of this method are given in [3], [12], [16]). Edmonds' 

algorithm cannot of course be directly applied to the problem of determining a minimal 
s -branching, but it was a starting point in developing our algorithm. In fact, our 
algorithm is identical to the one given by Edmonds, except that it stops when the 
number of the chosen arcs is equal to s . This is true in any greedy algorithm when a 
limit is put on the number of elements. However, Edmond's algorithm is not greedy 
since it may change the arcs selected in previous steps. Here we give a proof of the 
correctness for our algorithm. The proof cannot be immediately derived from the 
existing correctness proofs of Edmond's algorithm (see [10], [13], [15]), as the fixed 

number of arcs requires some delicate additional considerations. 
An incomplete version of our paper has been presented in [7]. 
The motivation for considering the problem of finding a minimal s -branching 

is related to a kind of the traveling salesman problem (TSP). Consider the m  traveling 
salesmen problem ( m -TSP) with mk  cities and with an asymmetric weight matrix 
where each of the m  salesmen should visit the given number of k  cities, while their 
tours should be disjoint. The problem of finding a minimal ( )− 1m k -branching can be 

used as a relaxation in a branch-and-bound procedure for solving m -TSP [8]. Note that 

the above version of the m -TSP cannot be solved by a standard transformation [1] 
which reduces the standard m -TSP to the ordinary TSP. Our m -TSP is similar to the 

so-called clover leaf problem [9] which has not been much studied in the literature. 

2. THE ALGORITHM 

The algorithm for finding a minimal s -branching is based on a modification 
M  (defined in [10]) which transforms the weighted digraph G  into a weighted digraph 

′G  in the following way: 
Let C  be a cycle in G . (By cycle we always mean a directed cycle). An arc 

which does not belong to C , but enters (leaves) a node of C , is called the entering 
(leaving) arc of C . The digraph ′G  is obtained from G  by contracting all nodes of C  
into a node v , called a supernode. In ′G  all arcs of G  not incident to a node of C  are 
kept, all arcs from C  are removed, while for all entering and leaving arcs of C , their 
endnodes belonging to C  are replaced by v . 



 D. Cvetkovi}, M. ^angalovi} / Finding Minimal Branchings with a Given Number of Arcs 3 
 
  

 

For each arc ( , )x v  in ′G  a new weight is determined as 

, ( , ) ( , ) ( , ) ( , )= + −C yp x v d x y d p q d z y  (1) 

where ( , )x y  is the corresponding entering arc of C , ( , )p q  an arc in C  having the 
maximal weight, ( , )z y  the arc of C  which enters the same node as ( , )x y , while 

( , ), ( , ), ( , )d x y d p q d z y  are their weights in G , respectively (see Figure 1). Weights of all 

the other arcs from ′G  are the same as in G . It is obvious that ′G  could have multiple 
arcs, i.e. it could be a multi-digraph. Therefore, the expression digraph, used in all 
further considerations, includes the possibility that multiple arcs exist. 

 

 

Figure 1.Figure 1.Figure 1.Figure 1.    

The algorithm uses a concept of minimal arcs. For each internal node v  of G  
(i.e. a node with an entering arc in G ) the minimal arc of v  is one of its entering arcs 
with the minimal weight. 

Remark 1.Remark 1.Remark 1.Remark 1. If v  has more than one entering arc with the same minimal weight, the 
minimal arc of v  can be any of them. 

RemarkRemarkRemarkRemark 2222.    As the minimal arc is unique for each internal node of G , then obviously 
an arbitrary set of minimal arcs, which do not form any cycle, induces a branching in 
G . 

Now a short description of the algorithm for finding a minimal s -branching is given: 

The algorithmThe algorithmThe algorithmThe algorithm    

InitializationInitializationInitializationInitialization , , ,= = = ∅ =0 0 00 0i s A G G  

Phase 1 (forward phase)Phase 1 (forward phase)Phase 1 (forward phase)Phase 1 (forward phase)    

StepStepStepStep    1111.... Determine the set iR  of all minimal arcs from iG  which do not belong to iA . 

If | |< −i iR s s , then STOP: there is no s -branching in G . 

Step 2.Step 2.Step 2.Step 2.    Order all minimal arcs from iR  according to their nondecreasing weights. 

Step 3. Step 3. Step 3. Step 3. Choose minimal arcs from iR , one by one, respecting their ordering, until 

either 
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− the first − is s  chosen arcs do not form, mutually or with arcs from iA , 

any cycle in iG : These arcs and arcs from iA  determine a branching iT ; 

go to Phase 2. 

    or 

− the last chosen arc forms, with the previously chosen arcs from iR  or 

with arcs of iA , a cycle iC  in iG . 

StepStepStepStep    4.4.4.4. Transform iG  into a digraph +1iG  by modification ( )M , contracting all nodes 

of iC  into a supernode iv . Determine +1iA  as the set of all minimal arcs, 

chosen in Step 3, which belong to +1iG . Update +1is  as 

| | ( )+ +
=

= + −∑1 1
0

1
i

i i j
j

s A m  

where jm  is the total number of nodes in the cycle jC . Set = + 1i i  and go to 

Step 1. 

Phase 2 Phase 2 Phase 2 Phase 2 (backward phase).(backward phase).(backward phase).(backward phase).    

Step 5.Step 5.Step 5.Step 5.    If = 0i , then STOP: ≡ 0T T  is a minimal s -branching in G . 

Step 6.Step 6.Step 6.Step 6. A branching −1iT  in the digraph −1iG  is formed as follows: −1iT  contains all 

arcs from iT  not incident to −1iv  and also arcs corresponding to the arcs of iT  

leaving −1iv . 

− If iT  includes the minimal arc of −1iv , then −1iT  contains the 

corresponding entering arc ( , )x y  of −1iC  and all arcs of −1iC , except ( , )z y  

entering the same node as ( , )x y . 

− If iT  does not include the minimal arc of −1iv , then −1iT  contains all arcs 

of −1iC , except an arc of the maximal weight. Set = −1i i  and go to Step 5. 

Remark 3.Remark 3.Remark 3.Remark 3. In the case when the weights of some minimal arcs from iG  are mutually 

equal, the set iR  and the ordering of their elements (Steps 1 and 2 of Phase 1) need 

not be determined in a unique way. 

Remark 4.Remark 4.Remark 4.Remark 4. It can be easily estimated that the numerical complexity of the algorithm is 

( )2O n , where n  is the number of nodes of the digraph. In fact, the most time 
consuming parts of the algorithm are the determination of all minimal arcs (which 

obviously has complexity ( )2O n ) and their sorting (with complexity no more than 

( )2O n ). 

Remark 5.Remark 5.Remark 5.Remark 5. The problem of finding a minimal s -branching becomes NP-hard when the 
resulting branching is required to be connected (i.e. to consist of a simple arborescence 
spanning + 1s  out of n  nodes in the digraph). This follows from the NP-hardness of 

the k -cardinality tree problem proved in [11]. 
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3. THE ALGORITHM CORRECTNESS PROOF 

It is well-known that the problem of finding a minimal branching can be 
formulated as the weighted matroid intersection problem [14], [5]. Namely, branchings 

are common independent sets for the forest matroid of G  and for the matroid of 
subgraphs of G  having indegrees at most 1. (However, branchings for themselves do 
not constitute a matroid). The correctness of our algorithm follows from the 
correctness of the weighted matroid intersection algorithm, in particular, from a 
theorem (Theorem 9.1 of [14], i.e. Theorem 8.24 of [5]) justifying a procedure for 

extending a maximum weight common independent set of cardinality k  to the one of 
cardinality + 1k . However, our algorithm avoids some steps present in the general 

algorithm and has a lower complexity ( ( )2O n  instead of ( )4O n  in general case). In 
addition we offer an elementary correctness proof using graph theoretical terminology, 
thus avoiding more general structures of the matroid theory. 

According to the algorithm definition, it is obvious that the branching T , if it 
is obtained in Step 5 of Phase 2, has s  arcs (if there is no s -branching in G , the 
algorithm stops at Step 1 of Phase 1). We show there that T  is a minimal s -branching 

in G . Our proof is an elaboration of the one outlined in [6]. 
First, several necessary lemmas should be proved. 

Lemma 1.Lemma 1.Lemma 1.Lemma 1. Let minimal arcs of all internal nodes in a weighted graph G  be ordered 
according to nondecreasing weights. If the first k  minimal arcs do not form any cycle in 
G , then they induce a minimal k -branching of G . 

The proof is straightforward and thus omitted. 
Let , ,..., ,≡ ≥0 1 0qG G G G q  be digraphs, considered in Phase 1, and 

, ,...,0 1 qT T T  be the corresponding branchings, generated in Phase 2 of the algorithm. 

For = 0q  it follows, directly from Lemma 1, that ≡ 0T T  is a minimal s -

branching in G . Therefore we shall further suppose that ≥ 1q . 
Let iH  be a subgraph of , { , ,..., }∈ −0 1 1iG i q , induced by all arcs entering 

nodes of the cycle iC  (formed in Step 3 of Phase 1). For each ( , )x y  from iH , which is 

an entering arc of , ( , )i iC p x y  denotes a value, defined by (1) in the modification ( )M , 

i.e. 

( , ) ( , ) ( , ) ( , )= + −ip x y d x y d u w d z y , 

where ( , )u w  is an arc of iC  with the maximal weight and ( , )z y  belongs to iC  and 

enters the same node as ( , )x y . Let *
iG  be a subgraph of iG , induced by all arcs of iG  

which do not belong to iH . 

Now the following lemmas can be proved: 
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Lemma 2.Lemma 2.Lemma 2.Lemma 2. Each arc of *
iG  not entering any internal node of iT , has weight not smaller 

that the weight of any arc in iC . 

Proof:Proof:Proof:Proof: Each arc of *
iG , not entering any internal node of iT , enters either a node 

which does not belong to iT  or a root of iT  not belonging to iC . It is sufficient to prove 

that for each such node y  weight ( , )d x y  of its minimal arc ( , )x y  is not smaller than 
weights of arcs in iC . 

For = −1i q , weight ( , )d x y  cannot obviously be smaller than weights of arcs 
in iC . (Otherwise, arc ( , )x y  would be chosen in Step 3 of Phase 1 before closing the 

cycle iC  and, as ( , )x y  would not be included into any supernode during Phase 1, it 

would belong to iT , i.e. node y  would represent an internal node of iT ). 

Let us consider the case when < −1i q  for > 1q  and let us assume that 
( , )d x y  be smaller than a weight of at least one arc in iC . Then arc ( , )x y  would be 

chosen in Step 3 of Phase 1 before closing cycle iC . As ( , )x y  does not belong to iT , 

this arc would be included to a cycle , { ,..., }∈ + −1 1jC j i q  of a digraph jG  and then 

excluded from jT  in Step 6 of Phase 2 such that either 

(a) jT  contains the entering arc of jC  corresponding to node y  and all arcs 

from jC  except ( , )x y ; or 

(b) jT  does not contain any entering arc of  cycle jC , but contains all its arcs 

except arc ( , )x y  of the maximal weight. 
Consequently, in iG  there would be a path P  from node y  to node x  

belonging to iT  and consisting of arcs which either belong to jC  or they are contracted 

into supernodes of jC . 

Now we shall derive the following contradictions: 
If case (a) occurred, node y  would obviously be an internal node of iT , which 

leads to contradiction. 
The weight of the arc ( , )x y  in jG  would be the same as in iG  and therefore 

in case (b) ( , )d x y  would not be smaller than weights of all the other arcs from jC . 

Moreover, if jC  contained a supernode (formed after closing iC  and before closing 

jC ), ( , )d x y  would not be smaller than weights of all arcs from iG  contracted into this 

supernode. (It follows from the fact that, always when a new supernode is obtained by 
contracting a cycle, new weights of its entering arcs are not smaller than weights of the 
arcs in this cycle). 

Consequently, weights of arcs in path P  would not be greater than ( , )d x y . It 
means that there would be a cycle in iG  (composed of ( , )x y  and P ) which would be 

closed in Step 3 of Phase 1 before iC , which leads to contradiction. ♦ 
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Lemma 3.Lemma 3.Lemma 3.Lemma 3. If +1iT  is a minimal branching in +1iG , then iT  is a minimal branching in 

, { , ,..., }∈ −0 1 1iG i q , where minimal branchings are considered with respect to the 

number of arcs in +1iT  and iT , respectively. 

Proof:Proof:Proof:Proof: Let im  be the number of nodes in the cycle iC  of iG . If +1iT  has r  arcs, then 

iT  has + − 1im r  arcs. Let us suppose that iT  is not a minimal ( )+ −1im r -branching, 

but that there exists a minimal ( )+ −1im r -branching iU  in iG  such that 

( ) ( )<i id U d T . We denote by ′iT  and ′iU  parts of branchings iT  and iU , respectively, 

on the subgraph iH , and with ′′iT  and ′′iU  parts of these branchings on the subgraph 
*
iG  of iG . 

Two cases need to be considered. 

The first case.The first case.The first case.The first case. ′iT  has im  arcs, i.e. ′′iT  has −1r  arcs. It is obvious that 

( ) ( ) ( , ) ( , )′ = + −i id T d C d x y d z y , (2) 

where ( , )x y  is the entering arc of iC  with minimal ( , )ip x y  and ( , )z y  the 

corresponding arc in iC . 

According to the modification *( ), iM G  corresponding to a subgraph of +1iG , 

induced by all arcs not entering the supernode formed by contracting iC . Therefore, we 

have 

( ) ( ) ( , )+ ′′= +1i i id T d T p x y . 

a) ′iU  has im  arcs, i.e. ′′iU  has −1r  arcs. 

It is obvious that the internal nodes of ′iU  must belong to iC . As ′iU  is a part 

of the minimal branching iU , and iC  contains only minimal arcs, then ′iU  consists of 

− 1im  arcs of iC  and an entering arc ( , )1 1x y  of iC . Therefore 

( ) ( ) ( , ) ( , )′ = + −1 1 1 1i id U d C d x y d z y , (3) 

where ( , )1 1z y  is the corresponding arc in iC  which does not belong to ′iU . 

As +1iT  is minimal r -branching in +1iG , then 

( ) ( ) ( , ) ( ) ( , )+ ′′ ′′= + ≤ +1 1 1i i i i id T d T p x y d U p x y . (4) 

From (2)-(4) it follows that ( ) ( )≥i id U d T , which leads to contradiction. 

b) ′iU  has −im l  arcs, ≤ ≤1 il m , i.e. ′′iU  has − +1r l  arcs. 

It is obvious that 
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( ) ( )
=

′ = − ∑
1

l

i i i
i

d U d C t , (5) 

where ,...,1 lt t , are the weights of l  arcs of iC  having the greatest weights. 
*
iG  contains −1r  internal nodes of iT . Therefore, according to Lemma 2, in 

′′iU  there exist at least l  arcs with weights not smaller than weights ,...,1 lt t . Among 

these arcs we choose arbitrary −1l  arcs and denote their weights with , ,..., −′ ′ ′1 2 1lt t t . 

Let *
iU  be a part of ′′iU  not containing arcs with weights , ,..., −′ ′ ′1 2 1lt t t , i.e. 

*( ) ( )
−

=
′′ ′= + ∑

1

1

l

i i i
i

d U d U t . (6) 

As *
iU  has r  arcs, then 

*( ) ( ) ( ) ( , )+ ′′≥ = +1i i i id U d T d T p x y . (7) 

Now, from (2), (5)-(7) it follows that ( ) ( )≥i id U d T , which leads to 

contradiction. 

The second case. The second case. The second case. The second case. ′iT  has − 1im  arcs, i.e. ′′iT  has r  arcs. According to Phase 2 of the 

algorithm, 

( ) ( ) ( , )′ = −i id T d C d u w , (8) 

where ( , )u w  is an arc in iC  with the maximal weight, and ( ) ( )+′′ = 1i id T d T . 

a) ′iU  has − 1im  arcs, i.e. ′′iU  has r  arcs. The internal nodes of ′iU  must belong to iC . 

As ′iU  is a part of the minimal branching iU  and iC  consists of minimal arcs, then 

obviously ′iU  contains − 1im  arcs of iC . Therefore ( ) ( )′ ′≥i id U d T . 

As ′′iU  has r  arcs, then ( ) ( ) ( )+′′ ′′≥ =1i i id U d T d T . Consequently, ( ) ( )≥i id U d T , 

which leads to contradiction. 

b) ′iU  has −im l  arcs, < ≤1 il m , i.e. ′′iU  has − +1r l  arcs. 

In the same way as for the first case b), it can be proved that (5), (6) hold. Also, 
*( ) ( ) ( )+ ′′≥ =1i i id U d T d T . (9) 

From (5), (6), (8), (9) it follows that ( ) ( )≥i id U d T , which leads to 

contradiction. 

c) ′iU  has im  arcs, i.e. ′′iU  has −1r  arcs. 

Now, according to the considerations in the first case a), 

( ) ( ) ( , ) ( , )′ = + −i id U d C d x y d z y , (10) 

where ( , )x y  is an entering arc of iC  and ( , )z y  the corresponding arc in iC . Also we 

have 
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( ) ( , ) ( ) ( )+′′ ′′+ ≥ =1i i i id U p x y d T d T . (11) 

From (8), (10), (11) it follows that ( ) ( )≥i id U d T , which leads to contradiction. 

Since in all considered cases we come to a contradiction, iT  is a minimal 

( )+ −1im r  branching in iG . ♦ 

Lemma 4.Lemma 4.Lemma 4.Lemma 4. The branching qT  in qG  is a minimal branching with respect to the number 

of arcs in qT . 

Proof:Proof:Proof:Proof: Let r  be the total number of arcs in qT  and *
qT  be the set of all arcs from qT , 

chosen in previous steps of Phase 1 (before forming qG ). If * = ∅qT  it follows, directly 

from Lemma 1, that qT  is a minimal r -branching. 

If * ≠ ∅qT , we prove that the weight ( , )d x v  of a minimal arc ( , )x v  in qG  such 

that *( , ) ∉ qx v T , is not smaller than weights of arcs from *
qT . 

If v  is not a supernode formed by contracting the cycle −1qC  in −1qG , then 

( , )d x v  cannot be smaller than weights of arcs in *
qT  (Otherwise, ( , )x v  would be 

chosen in one of the previous steps of Phase 1, i.e. ( , )x v  would belong to *
qT ). 

If v  is a supernode formed by contracting the cycle −1qC  in −1qG , then ( , )x v  

corresponds to an entering arc ( , )x y  of −1qC . Therefore, 

( , ) ( , ) ( , )−= ≥1qd x v p x y d u w , 

where ( , )u w  is an arc of −1qC  with the maximal weight, while ( , )d u w  is its weight in 

−1qG . As ( , )u w  is a minimal arc last chosen in −1qG  (Step 3 of Phase 1), then ( , )d u w  

is not smaller than weights of arcs from *
qT  and, consequently, the same holds for 

( , )d x v . 
According to the above considerations and Lemma 1, all arcs of qG  chosen in 

Step 3 of Phase 1, together with arcs from *
qT , represent a minimal r -branching in 

qG . ♦ 

Now the correctness of the algorithm can be proved in the following way: 

Theorem.Theorem.Theorem.Theorem. The branching ≡ 0T T , generated by the algorithm, is a minimal s -

branching in the digraph G . 

Proof:Proof:Proof:Proof: According to Lemma 4, qT  is a minimal branching of qG  with respect to the 

corresponding number of arcs. Therefore, from Lemma 3 (iteratively applied to iT  for 

,...,= −1 0i q ) it follows that 0T  is a minimal s -branching in ≡0G G . 
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