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Abstract:Abstract:Abstract:Abstract: In this paper we present a modification of the second-order step-size 
algorithm. This modification is based on the so called "forcing functions". It is proved 
that  this modified algorithm is well-defined. It is also proved that every  point of 
accumulation of the sequence generated by this algorithm is a second-order point of the  
nonlinear programming problem. Two different convergence proofs are given having in 
mind two interpretations of the presented algorithm. 
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1. INTRODUCTION 

We are concerned with the following problem of the unconstrained 
optimization: 

min{ ( ) | }ϕ ∈x x D   (1)  

where :ϕ ⊂ →nD R R  is a twicecontinuously differentiable function on an open set  D. 
We consider iterative algorithms to find an optimal solution to problem (1) 

generating sequences of points { }kx of the following form: 

, , ,...α β+ = + + =1 0 1k k k k k kx x s d k , (2) 

, , ( ), ,ϕ≠ ∇ ≤0 0k k k ks d x s  (3) 

and the steps αk  and βk  are defined  by a particular step-size algorithm. 
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Before we present the modified algorithm, we shall define the original second-
order step-size algorithm.  

The original Mc Cormick-Armijo's second order step-size algorithm [4] defines 
αk  in the following way: α > 0k      is a number satisfying    

( )α −= 2 i k
k  , 

where ( )i k  is the smallest integer        from , ,...= 0 1i , such that                
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i k
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k k k kx x s d D  

and 

( )( ) ( ) ( ), ( ) ,ϕ ϕ γ ϕ −
+

 − ≥ − ∇ −  
1

1
2

2
i k

k k k k k k kx x x s H x d d ,  

where γ< <0 1  is a preassigned constant, ( )H x     ----    the Hessian    matrix  of the function 
ϕ  at , ,k kx s d  -direction vectors satisfying relations (3). 

We begin with the definition which we need in the following text. 

Definition Definition Definition Definition (See[5]). A mapping : [ , ) [ , )σ ∞ → ∞0 0  is a forcing function if for any 
sequence { } [ , )⊂ ∞0kt  

lim ( )σ
→∞

= 0k
k

t implies     lim
→∞

= 0k
k

t  

and ( )σ > 0t   for .> 0t  

(The concept of the forcing function was introduced  first by Elkin in [3].) 

2. A MODIFICATION OF THE SECOND-ORDER STEP-SIZE 
ALGORITHM 

The modified algorithm defines αk  in the following way:α > 0k  is a number 

satisfying 

( ) , ,α −= > 1i k
k q q  

where ( )i k  is the smallest integer from , ,...= 0 1i , such that         

( )
( )

−
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k k k kx x q s q d D  (4) 

and 

( )( ) ( ) ( ( ), ) ( ( ) , )ϕ ϕ σ ϕ σ−
+

 − ≥ − ∇ + −  
1 1 2

1
2

i k
k k k k k k kx x q x s H x d d  (5) 
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where : [ , ) [ , )σ ∞ → ∞1 0 0  and : [ , ) [ , )σ ∞ → ∞2 0 0  are the forcing functions such that 

( )δ σ δ≤ ≤1 1 1t t t ,  ( )δ σ δ≤ ≤2 2 2t t t    ,δ δ δ δ< < < < < <1 1 2 20 1 0 1    and ,k ks d  are the 

direction vectors satisfying (3) and ( ) , .≤ 0k k kH x d d  

In order to have a finite value ( )i k , it is sufficient that ks  and kd  satisfy (3) 

and, in addition, that 

( ),ϕ∇ < 0k kx s   whenever  ( )ϕ∇ ≠ 0kx  (6A) 

and 
( ) , < 0k k kH x d d    whenever  ( )ϕ∇ = 0kx . (6B) 

Now we shall prove the first convergence theorem. 

Theorem 1.Theorem 1.Theorem 1.Theorem 1.        Let  :ϕ ⊂ →nD R R  be a twicecontinuously differentiable function on the 

open set D. Let the sequence { }kx be defined by relations (2), (3), (4),(5),(6A) and (6B). Let 

x be a point of accumulation of { }kx and 1K  a set of indices such that →kx x  for 

.∈ 1k K  

Assume that: 
1. the sequences { }ks and { }kd are uniformly bounded; 

2. ( ), (|| ( ) ||), ,ϕ µ ϕ− ∇ ≥ ∇ ∈ 1k k k kx s x k K  where : [ , ) [ , )µ ∞ → ∞0 0k , ∈ 1k K are forcing 

functions; 
3. there exists a value β > 0  such that 

min min( ) , ( ) , ,β− ≥k k k k k kH x d d H x e e  

where min
ke  is an eigenvector of  ( )kH x  associated with its minimum eigenvalue. 

Then x  is a stationary point, that is  

( )ϕ∇ = 0x  

and ( )H x is a positive semidefinite matrix with at least one eigenvalue equal to zero. 
 

Proof:Proof:Proof:Proof: There are two cases to consider. 
a) The integers { ( )}i k  for ∈ 1k K  are uniformly bounded from above by some 

value I. 
Because of the descent property it follows that all points of the accumulation 

have the same function value and  

( ) ( ) ( ) [ ( ) ( )]ϕ ϕ ϕ ϕ +
∈
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min min(|| ( ) ||) ( ) , .δ µ ϕ β−

∈

 ≥ ∇ +  
∑

1

1
2

I
k k k k k

k K
q x H x e e  

Since ( )ϕ x  is finite and since each term in the brackets is greater than, or 
equal to zero for each ∈ 1k K , it follows that ( ( )) || ( ) ||µ ϕ ϕ∇ → ⇒ ∇ →0 0k k kx x   

(according to the definition of forcing functions) ( )ϕ⇒ ∇ = 0x  and that  

min min( ) , = 0H x e e , where  mine  is some accumulation point of  min{ }ke  for  .∈ 1k K  

b) There is a subset  ⊂2 1K K  such that   lim ( ) .
→∞

= ∞
k

i k  

Because of the definition of ( )i k , then either  

( )
( )

− +
− ++ + ∉

1
1 2

i k
i k

k k kx q s q d D  

or 
( )

( )( )ϕ ϕ
− +

− +
 
 − + + <
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( ) ( ( ), ) ( ) , .σ ϕ σ− +   < − ∇ + −    
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i k
k k k k kq x s H x d d  

If the former condition held infinitely often, then because 

( )
( ) , ,

− +
− ++ + → ∈

1
1 2

2

i k
i k

k k kx q s q d x k K  

it would follow that  x  is on the boundary of D.  Since D is an open set,  ∉x D , it 
contradicts the theorem hypothesis. Therefore, without the loss of generality (7) can be 
considered to hold for all .∈ 2k K  

Since ϕ ∈ 2C , and since the sequences { }ks and { }kd are assumed to be 

uniformly bounded, the left -hand side of inequality (7) can be written as 
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q x s H x d d

q x s H x d d . 
  

k

 

Combining terms and incorporating a term where appropriate into ( )( )− +1i ko q  

yields (using the fact that  ( ),ϕ− ∇ ≥ 0k kx s ): 
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( ) ( )( ) ( ) ( ), ( ) ( ) ,δ ϕ δ− + − +  > − + ∇ − − +  
1 1

1 2
1

1 1
2

i k i k
k k k k ko q q x s H x d d . 

Using the theorem hypothesis 3 we obtain 

( ) ( ) min min( ) ( ) ( ), ( ) ( ) , .βδ ϕ δ− + − +  > − + ∇ + − +  
1 1

1 21 1
2

i k i k
k k k k ko q q x s H x e e  

Dividing by ( )− +1i kq  yields 

( )
min min
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min min
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Since each term  is, according to the assumptions, greater than or equal to 
zero, taking the limit as → ∞k  for ∈ 2k K  yields 

(|| ( ) ||) || ( ) || ( )µ ϕ ϕ ϕ∇ → ⇒ ∇ → ⇒ ∇ =0 0 0k k kx x x  

and  

min min
min min( ) , ( ) , .→ = 0k k kH x e e H x e e  

To prove the second  convergence theorem we shall follow Y. Amaya [ ]1 . 

Namely, we are going to show that the trajectory 

( , ) = + +2
k k k kf t x x t s t d  (8) 

proposed by the presented algorithm (i.e. satisfying the relations (2), (3), (4), (5), (6A) 
and (6B)) and 

( ),

( ),

ϕ

ϕ

∇ <

∇ ≤

0

0
k k

k k

x s

x d
 (9) 

and 
( ) , = 0k k kH x d d  

if ( )kH x  is positive semidefinite, and 

( ),

( ),

ϕ

ϕ

∇ ≤

∇ ≤

0

0
k k

k k

x s

x d
 (10) 

and 
( ) , < 0k k kH x d d   

if ( )kH x  is not positive semidefinite, has the properties set out in Amaya's paper. 

Firstly, we shall briefly present Amaya's algorithm [ ]1 . 



126 N. Djuranovi}-Mili~i} / On a Second-Order Step-Size Algorithm 

Let :ϕ ⊂ →nD R R  be a twicecontinuously differentiable function on the open 

set D (i.e. ϕ ∈ 2C ) which we want to minimize, and : + × → nh R D R is a function such 

that, for all , ( , ) .∈ =0x D h x x  We suppose  that for every , ( , )∈x D h t x  is C2 for .≥ 0t  

Given ∈x D , the function ( , )h t k  describes a trajectory in ⊂ nD R  originating 
at x. The minimizing algorithm defines a sequence { }kx  in the following way: 

,
( , ) ,+

∈
=  ∉

1
if
if

k k
k

k k k

x x M
x

h t x x M
 (11) 

where { | ( ) ( ) , , }.ϕ= ∈ ∇ = ≥ ∈0 and 0 nM x D x H x p p p R  

For ∈x D , we define the C2  - class function  : + → n
xf R R  by 

( ) [ ( , )], .ϕ += ∈xf t h t x t R  

This function is shown to satisfy 

'

''

( ) ( ), ( , )

( ) ( ) ( , ), ( , ) ( ), ( , ) ,

ϕ

ϕ

= ∇

= + ∇

0 0 and

0 0 0 0

k

k

x k k

x k k k k k

f x h x

f H x h x h x x h x
 

where h  and h  denote respectively the first and second derivatives of h with respect 
to t. 

The following assumptions are made: 

A1.A1.A1.A1.  { | ( ) ( )}ϕ ϕ= ∈ ≤ 0L x D x x  is bounded; 

A2.A2.A2.A2.   ' ( ) ;≤ ∉0 0 for all  xf x M  

A3.A3.A3.A3.   ' ''( ) , ( ) .∉ = <if  and 0 0  then 0 0x xx M f f  

Amaya in Theorem 3.1 in [ ]1  proves the convergence of a subsequence of 

points of { }kx defined by (11) to ,∈x M  provided that ϕ ∈ 2C  and that assumptions A1, 

A2, A3 hold. 
Now we can present the second convergence theorem for the modified Mc 

Cormick-Armijo's algoritm. 

Theorem 2.Theorem 2.Theorem 2.Theorem 2.    Under assumptions A1, A2 and A3 every point of accumulation x  of the 
sequence { }kx  generated by the modified McCormick-Armijo's algorithm and 

additionally, satisfying (9) and (10) belongs to M, that is, the second-order necessary 
conditions are satisfied at x . 

Proof:Proof:Proof:Proof: Let us suppose that ∉kx M  for , , ,...= 0 1 2k .  From the choice of  α=k kt   by 

relations (2), (3), (4), (5), (6A) and (6B) we have that ( ) ( ),≤ 0
k kx k xf t f  i.e. the sequence  

{ ( )}ϕ kx  is decreasing; hence  { } .⊂kx L  Due to the assumption A1, the sequence { }kx  

has a point of accumulation x . 
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For the trajectory (8) we have: 
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'

''
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x k k k k k k k

x k k
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f x h x h x d

f H x h x h x x h x h x s

f x d

f H x d d x s

 

From (6A) it follows that the assumption A2 holds. Let us examine the 

assumption A3. Assuming  ' ( ) =0 0
kxf , we have two cases: 

a) if ( )kH x  is positive semidefinite, by applying (9) to the relation (11), we obtain 
'' ( ) ;<0 0
kxf  

b) if ( )kH x  is not positive semidefinite, by applying (10) to the relation (11), we 

obtain 

'' ( ) .<0 0
kxf  

Following Amaya's proof of theorem 3.1 in [ ]1  we conclude that  .∈x M  

3. CONCLUSION 

Because of general assumptions on the objective function ϕ , the modified 
algorithm can be used for solving a wide class of unconstrained optimization problems. 
Also, the choice of forcing functions ( )σ1 t  and ( )σ2 t , with the property 

( ) , ( ) , ,δ σ δ δ σ δ δ δ δ δ≤ ≤ ≤ ≤ < < < < < <1 1 1 2 2 2 1 1 2 20 1 0 1t t t t t t is wide. 

Finally, this modified algorithm can be used for solving constrained 
optimization problems (see [ ]2 ) when constraints are adequately considered. 
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