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Abstract: In this paper we present a modification of the second-order step-size
algorithm. This modification is based on the so called "forcing functions". It is proved
that this modified algorithm is well-defined. It is also proved that every point of
accumulation of the sequence generated by this algorithm is a second-order point of the
nonlinear programming problem. Two different convergence proofs are given having in
mind two interpretations of the presented algorithm.
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1. INTRODUCTION

We are concerned with the following problem of the unconstrained
optimization:

min{@(x)| xe D} L

where ¢: D c R" - R is a twicecontinuously differentiable function on an open set D.

We consider iterative algorithms to find an optimal solution to problem (1)
generating sequences of points {x;} of the following form:

Xp41 =X + 4 Sp + Prdy, k=0,1,..., (2)
skadk #0, <V(p(xk),sk> <0, 3)

and the steps ¢y, and f3;, are defined by a particular step-size algorithm.
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Before we present the modified algorithm, we shall define the original second-
order step-size algorithm.

The original Mc Cormick-Armijo's second order step-size algorithm [4] defines
oy, in the following way: oy, >0 is a number satisfying

oy = 2_i(k) ,
where i(k) is the smallest integer from i=0,1,..., such that

‘ -i(k)
Xpt1 =Xp + 27l(k)8k +2 2 dk eD

and
P(k) = (pi1) 2 Y[—<V<p(xk),sk>— %(H (xk)dk,dk>]zfi<k> :

where 0<y<1 is a preassigned constant, H(x) - the Hessian matrix of the function
¢ at x,s;,d; -direction vectors satisfying relations (3).
We begin with the definition which we need in the following text.

Definition (See[5]). A mapping 6 :[0,0) ->[0,) is a forcing function if for any
sequence {t3,} [0,0)

lim o(t;)=0 implies lim ¢, =0
k—eo k—eo

and o(t)>0 for ¢t>0.

(The concept of the forcing function was introduced first by Elkin in [3].)

2. A MODIFICATION OF THE SECOND-ORDER STEP-SIZE

ALGORITHM
The modified algorithm defines ¢}, in the following way: o, >0 is a number
satisfying
a=q¢"", ¢>1,

where i(k) is the smallest integer from :=0,1,..., such that

—i(k)
sp+q 2 dpeD (4)

—i(k
Xp+1 =X +q )

and

P(xp) — @(xp41) 2 g0 [ol (—(Vo(xy).5)) + 09 (—%(H(xk)dk,dk»] (5)
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where 07 :[0,00) >[0,0) and oy :[0,00) —[0,0) are the forcing functions such that
81t <o (t)<8it, Sot<oy(t)<yt 0<8; <8 <1, 0<d5<d,<1 and s, d, are the
direction vectors satisfying (3) and (H(x;,)dy.d},) <0.

In order to have a finite value i(k), it is sufficient that s, and d; satisfy (3)
and, in addition, that

(Vo(xp),s;)<0 whenever Vo(x;)#0 (6A)

and
(H(xp)dy,.dp)<0 whenever Ve(x)=0. (6B)

Now we shall prove the first convergence theorem.

Theorem 1. Let ¢:Dc R" — R be a twicecontinuously differentiable function on the
open set D. Let the sequence {x;} be defined by relations (2), (3), (4),(5),(6A) and (6B). Let
xbe a point of accumulation of {x,}and K; a set of indices such that x;, >x for
ke K;.
Assume that:
the sequences {s;} and {d}} are uniformly bounded;
2. —(Vo(xp).s1) 2 1p(IVo(xp) ), ke Ky, where py,:[0,00) —>[0,00), ke K are forcing

functions;
3. there exists a value >0 such that

_<H(xk)dk,dk> > ﬁ<H(xk)e}emn,ezni“>,

where e;"" is an eigenvector of H(x;) associated with its minimum eigenvalue.

Then x is a stationary point, that is
Vo(x)=0
and H(x)is a positive semidefinite matrix with at least one eigenvalue equal to zero.

Proof: There are two cases to consider.
a) The integers {i(k)} for ke K; are uniformly bounded from above by some

value L.
Because of the descent property it follows that all points of the accumulation
have the same function value and

02)(xg)—@@)= Y, [@(xp) - @(x341)]2
ke K,

>y q_i(k)[01(—<V(P(xk)73k>)+0'2(
ke K,

—%<H(xk)dkadk>):| 2

>gls ¥ |:_<V(P(xk)>3k>_%<H(xk)dksdk>:|> (6 = max{5;,03})
ke K,
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2¢715 3, [ukul Vo)l +§ﬁ<H<xk>e;;““,ez“i“ >].
ke K,

Since ¢(x) is finite and since each term in the brackets is greater than, or
equal to zero for each ke Kj, it follows that u,(Vo(x;))—>0=|Ve(x,)||—0
(according to the definition of forcing functions) =Ve@(x)=0 and that
(H(X)min»Cmin) =0 , where &, is some accumulation point of {ef"™} for ke Kj.

b) Thereisasubset K, c K; such that kh_r)r:o i(k) =co.

Because of the definition of i(k), then either

—i(k)+1
sp+q 2 dpeD

X+ q—i(k)+1

or
—i(k)+1
Sp+q 2 dk < (7)

P(xp) — @ xp +q O

<q i [01 (~(Vo(ay),5;)) + 05 (—%(H(xk)dkadk ) ]]

If the former condition held infinitely often, then because

—i(k)+1
sp+q 2 dp—oX, kekK,,

Xy + q—i(k)+1
it would follow that x is on the boundary of D. Since D is an open set, x¢ D, it

contradicts the theorem hypothesis. Therefore, without the loss of generality (7) can be
considered to hold for all ke K.

Since ¢e C?, and since the sequences {sp}and {d,}are assumed to be
uniformly bounded, the left -hand side of inequality (7) can be written as

) —i(k)+1
O Vo)) —a 2 (Volx).dy) -

1 ‘ —i(k)+1 ‘ —i(k)+1 )
~3 Hp)| g PMsy+q 2 dy g s+ 2 dy )-o(@ P <

< g ib+1 [61 (~(Vo(ay),s,) + 03 (—%](H (xk)dksdk>:| <
i I3 = 1
<q i [—61 (Vo(ar),sp) 6 '§<H(xk)dk’dk>:|'

Combining terms and incorporating a term where appropriate into o(q’i(k)ﬂ)
yields (using the fact that —(Ve(xy,),s;)20):
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o(g7 Wy > B (L14.51)(Vo(xy ), 55, ) — (=55 + 1>%<H<xk)dk,dk>] :

Using the theorem hypothesis 3 we obtain

o(q~ P > ¢TI (<14.8)) (Vo)1) + (-5 +1>§<H(xk)ez“i“,e;‘:““>].

—i(k)+1

Dividing by ¢ yields

—i(k)+1 _ a ‘ ‘
% > (~1+81)(Ve(xy).55) + (=03 + 1)§<H(xk)e;’em“ ,e}é’m> >
5; _S +1 min _min
2 (1= 8)m (I Vo) )+ —2— B-(H(xp)ef™ ef™).

Since each term is, according to the assumptions, greater than or equal to
zero, taking the limit as £ — e for ke Ky yields

Hr(IVo(xp) ) = 0= Vo(xg) | > 0= Vo(x) =0
and

(Hxpep™ ef™) = (H(®erin, Gnin) = 0.

To prove the second convergence theorem we shall follow Y. Amaya [1].
Namely, we are going to show that the trajectory

f(t,xp)=xp, +1t2s, +t d), (8)

proposed by the presented algorithm (i.e. satisfying the relations (2), (3), (4), (5), (6A)
and (6B)) and

<V(p(xk),sk> <0

9
(Vo(xy),dy) <0
and
(H(xp)dp,dp) =0
if H(x) is positive semidefinite, and
\Y% ,85)<0
(Vo(xr).si) (10)

(Vo(xy),dy) <0
and
(H(xp)dy,dp,) <0
if H(x;) is not positive semidefinite, has the properties set out in Amaya's paper.

Firstly, we shall briefly present Amaya's algorithm [1].
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Let ¢:D c R" — R be a twicecontinuously differentiable function on the open

set D (i.e. pe C?) which we want to minimize, and h:R*xD — R" is a function such
that, for all xe D, h(0,x) = x. We suppose that for every xe D, h(t,x) is C? for ¢ >0.
Given xe D, the function A(t,k) describes a trajectory in D c R" originating

at x. The minimizing algorithm defines a sequence {x;} in the following way:

if xpe M,

Xk
= 11
Thetl {h(tk,xk) it x,e M, (1

where M ={xe D|Vo(x)=0and (H(x)p,p)=>0, pe R"}.
For xe D, we define the (? - class function f,:R* — R" by

f(t)=olh(t,x)], te R".

This function is shown to satisfy
£, (0)=(Vo(x,),h(0,x,))  and
Fu (0 = (H@p)R(0, %), h(0,5) + (Vop(ac) F0,4))),

where % and i denote respectively the first and second derivatives of & with respect
tot.
The following assumptions are made:
Al. L={xe D|o(x)<¢(xy)} is bounded;
A2. £.(0)<0 forall xe M;

A38. if x¢ M and f,(0)=0, then f,(0)<0.

Amaya in Theorem 3.1 in [1] proves the convergence of a subsequence of

points of {x;} defined by (11) to xe M, provided that ¢e C? and that assumptions Al,

A2, A3 hold.
Now we can present the second convergence theorem for the modified Mc
Cormick-Armijo's algoritm.

Theorem 2. Under assumptions Al, A2 and A3 every point of accumulation x of the
sequence {x;} generated by the modified McCormick-Armijo's algorithm and
additionally, satisfying (9) and (10) belongs to M, that is, the second-order necessary
conditions are satisfied at x .

Proof: Let us suppose that x, ¢ M for £=0,1,2,.... From the choice of ¢, =¢; by
relations (2), (3), (4), (5), (6A) and (6B) we have that f (¢;)<f; (0), i.e. the sequence
{o(xp)} is decreasing; hence {x,} < L. Due to the assumption Al, the sequence {x;}

has a point of accumulation x .
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For the trajectory (8) we have:

fry 0 =(Vo(x).(0,x)),  h(0.3;) = dy.

a0 = (H@g)R(O,53),h(0,3) + (Vo). 0, 2p))), h(0,2) =3y, e
fe, 0)=(Vo(x).dy).

F, (0) = (H ()i ) + (V053 ).5%,)-

From (6A) it follows that the assumption A2 holds. Let us examine the

assumption A3. Assuming f,;k (0)=0, we have two cases:

a)

b)

if H(x;) is positive semidefinite, by applying (9) to the relation (11), we obtain
fe, (0)<0;

if H(xp) is not positive semidefinite, by applying (10) to the relation (11), we
obtain

f4,(0)<0.

Following Amaya's proof of theorem 3.1 in [1] we conclude that xe M.

3. CONCLUSION

Because of general assumptions on the objective function ¢, the modified

algorithm can be used for solving a wide class of unconstrained optimization problems.
Also, the choice of forcing functions o7(f) and o0y(f), with the property

81t <01(t) < 8yt, St <09(t) < Bot, 0<8; <8; <1, 0< 8y <y <11is wide.

Finally, this modified algorithm can be used for solving constrained

optimization problems (see [2]) when constraints are adequately considered.
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