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Abstract: The standard way to solve the static economic dispatch problem with 
transmission losses is the penalty factor method. The problem is solved iteratively by a 
Lagrange multiplier method or by dynamic programming, using values obtained at one 
iteration to compute penalty factors for the next until stability is attained. A new 
iterative method is proposed for the case where transmission losses are represented by 
a quadratic formula (i.e., by the traditional B-coefficients). A separable approximation 
is made at each iteration, which is much closer to the initial problem than the penalty 
factor approximation. Consequently, lower cost solutions may be obtained in some 
cases, and convergence is faster. 
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1. INTRODUCTION 

Due to the enormous costs involved, optimizing the use of equipment for 
power generation and transmission is a lasting concern. Given several thermal or hydro 
units, often with different characteristics, one must decide how to distribute the load 
considered between them. This problem, called economic dispatch, has been much 
studied, both in the static and dynamic cases. It is discussed at length in the book of 
Wood and Wollenberg [6] Power generation, operation and control, an enlarged second 
edition of which has recently appeared. 

The standard way to solve the static case with transmission losses is the 
penalty factor method. The problem is solved iteratively by a Lagrangian multiplier 
method or by dynamic programming, using values obtained at one iteration to compute 
penalty factors for the next until stability is attained. 
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The purpose of this paper is to propose a new iterative method for the case 
where transmission losses are represented by a quadratic formula (i.e. by the 
traditional B-coefficients). A separable approximation is made at each iteration, which 
is much closer to the initial problem than the penalty factor approximation. Moreover, 
the problem considered at each iteration can be solved by dynamic programming. 
Convergence is faster than in the scheme, of to Liang and Glover [4], which also uses 
dynamic programming. 

The paper is organized as follows: a mathematical formulation of the problem 
is given in the next section. Previous solution methods are reviewed in Section 3. The 
particular case of a separable loss function is studied in Section 4, and illustrated by an 
example of Wood and Wollenberg [6]. The new method is described in full in Section 5 
and applied to examples from [6] and [4]. Conclusions are drawn in Section 6. 

2. FORMULATION 

Consider N  thermal units committed to serve a load of RP , at minimum cost. 

Assume that production of each unit is bounded below and above. Assume further that 
transmission losses in the network are incurred and can be represented by a quadratic 
formula (with the so-called B-coefficients). This problem can be stated mathematically 
as  
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where 
• iP  is the output of unit (in MW), i

•  is the input of unit , or its cost rate (in ), ( )i iF P i $/h
• RP  is the required load (in MW), 

• LP  is the transmission losses (in MW). 

Moreover, 
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Derivation of this formula for losses is explained in [6]. Neglecting 
transmission losses, i.e., setting = 0LP  in (2), problem (1) - (3) can be solved by a 

Lagrange multiplier method [6] or by dynamic programming [1, 4, 6]. 
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3. PREVIOUS SOLUTION METHODS 

When transmission losses are considered, the standard solution method is the 
penalty factor approach. Consider the Lagrange function, with a multiplier λ  for (2): 

minimize ( ) ( )λ
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i i R L i
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Neglecting bounds on the iP , the first order conditions are equation (2) above and  
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are the incremental losses and 
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are the penalty factors iPF  for units ,...,= 1i N . Equations (2) and (6) are called 

coordination equations. 
If bounds on the iP  are taken into account the first order conditions become 
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An iterative method to solve (1)-(3) is the following [6]: 
 

1. Solve the coordination equations with unit penalty factors (i.e. neglecting losses) to 

get an initial solution , ,...,0 0 0
1 2 NP P P . Set the iteration counter = 1k . 

2. Compute penalty factors with values of the last iteration, i.e., 
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3. Solve the coordination equations to get a solution ( ) ( ) ( ), ,...,1 2
k k k

NP P P . (This can be 

done in various ways, e.g. a search technique for the optimal λ , a Newton-Raphson 
search, etc, see [6]). 
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4. Compute  the current difference between the production and load plus losses, i.e., 

( ) ( ) ( ) ( )δ
= = = =

= − − − −∑ ∑ ∑ ∑ 0 0
1 1 1 1

N N N N
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R ij ii i j i
i i j i

0
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If δ ε≤  (a given tolerance), stop. Otherwise, increase  by 1 and return to step 2. k
While no formal proof of convergence for this method seems to have been 

published, and values of δ  may oscillate, a local and possibly global optimum is usually 
reached in a fairly small number of iterations. 

Modification to the iterative method just described to allow solution by 
dynamic programming are proposed in [4]. In Step 1 the initial solution is found by the 
recursion 
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where iR  is the set of integers in [ ,,min ,maxi i ]P P

i

 the range of production for unit i , 

assuming that approximation to 1 MW and D  is chosen among the range of possible 

productions for the  first units, i.e., it is integer and  i
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In Step 3, each cost function  is multiplied by the penalty factor iF −1k
iP , the load RP  

is augmented by the losses as estimated and the problem is again solved by the dynamic 
programming recursion (10). 

The Lagrange function for this step is 
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and the first order condition , as the losses are fixed, 

,min

,min ,max
( )

,max

,

( ,

.

λ

λ

λ−=

=

 
≥ = 
  = ∈ 
 − − ≤ = 

 

∑
∑ 11

0
1

  if  
1

  if  
1 2   if  

i iN
i

i i iN
k ii

ij ij i i
j

P P
dF

P P P
dP

B P B P P

),  (13) 

and are the same as (9) except that the values of iP  are fixed in the penalty factors. 
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4. SEPARABLE LOSSES 

Economic dispatch with transmission losses can be optimized by dynamic 
programming without using penalty factors. The easiest case is when losses are 
separable in the iP . Assume also that they are quadratic, a particular case considered 

in [6]. Then the power iP  produced by unit will be equal to the power ′iP  going to the 

load and the losses. Thus 

′ = − − − 2
0 1 2i i i i i i iP P b b P b P  (14) 

where  and  are the known coefficients of the loss function. Hence  ,0 1i ib b 2ib
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One can associate to ′iP  a cost function ( )′ ′i iF P  equal to the cost necessary for unit  to 

contribute 

i

′iP  to the load, i.e.,  where (i iF P ) iP  is obtained from ′iP  by (14). The 

correspondence between  and  is illustrated on Figure 1. ′iF iF

 

 

Figure 1: Input-Output functions  and ( )i iF P ( )′i iF P  

The range of values of ′iP , deduced from that of iP  is, assuming integer 

values, or, in other words an approximation of 1 MW: 
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where  and  are respectively the smallest integer not smaller than and the 

largest integer not larger than  (

  a   a

a ,miniP  and ,maxiP  are assumed to be integer as well). 

The dynamic programming recursion is  

* *( ) min { ( ) ( )}−
′∈

′ ′ ′= − +1
i i

i i i i i i i
P R

F D F D P F P′ ′

]

 (17) 

where ,min ,max[ ,′ ′=i i iR P P , the range of effective production of unit i  (i.e. that which is 
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the range of demand which can be satisfied by the first  units. This recursion is used 

to find the optimal policy 

i
* *, ,...,′ ′ ′1 2

*
NP P P , from which the powers * * *, ,...,1 2 NP P P  to be 

produced by each unit are obtained by (15). The cost of this policy is 
* *( ) (=′ = ∑ 1

N )N R iiF P F Pi . 

Observe that the method proposed gives a globally optimal solution (up to the 
approximations in the values of the iP ), even if the cost functions  and/or ( )i iF P iP  are 

non-convex. In contrast, the classical penalty function method may stop at a local 
optimum in this case. 

 
Example 1. (Wood and Wollenberg [6], p 36). This problem involves three units with 
input/output functions and production ranges: 
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= 850RP MW  and losses are given by  

. . .= + +2 2
1 20 00003 0 00009 0 00012L

2
3P P P P . 

Solution. The following solution is obtained by applying dynamic programming to the 
transformed problem: . , . , .= = =1 2 3434 668 300 106 131 061P P P  with losses equal to 

15.8350. Note that the same losses are obtained by the penalty factor approach in 4 
iterations ([6]). 
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5. SEPARABLE QUADRATIC APPROXIMATION 

An iterative method using a separable quadratic approximation of the loss 
function is easily obtained by fixing at each iteration one value jP  in each quadratic 

term involving two such values iP  and jP . Such an approximation is much more 

precise than the one obtained by fixing both values in all such terms, discussed above. 
Then the algorithm of the previous section is as follows: 

 

(a) Obtain an initial solution ( ) ( ) ( ), ,...,0 0 0
1 2 NP P P

i ij j

 by solving the problem after 

deleting all quadratic terms P B P  with ≠i j  in the loss function (or, which 

is better, by some heuristics, see below). Set the iteration counter . = 1k
(b) Compute the following separable quadratic approximation of the loss function 
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(c) Solve the problem with the approximate loss function (19) to obtain a solution 
( ) ( ) ( ), ,...,1 2
k k k

NP P P  (for this purpose, use DP explained in the previous section). 

(d) Compute the approximate and exact losses using ( ) ( ) ( ), ,...,1 2
k k k

NP P P  in (19) and 

(4). If these values differ in absolute value by less than ε , stop. Otherwise 
increase  by 1 and return to (b). k

 
A better initial approximation to the loss function may be obtained by computing a 
feasible initial solution by heuristics such as following: 

 
(h1) Set ,min=i iP P  for ; ,...,= 1i N

(h2) Compute δ =−
= ∑ 1

N
R iiP P

P
N

; 

(h3) If ,maxδ+ >i iP P P  for some , set i ,max=i iP P  delete that index value, and 

reduce N  by 1. Return to (h2); 
(h4) Set δ+iP P  for all remaining .  i

 
The aim of this heuristics is to obtain quickly a feasible solution in which the 

productions above the minimum ones of the various units are as close as possible. 
Therefore, it first attempts to give an equal load to each unit. If some upper bound is 
not satisfied the largest possible load is assigned to the corresponding unit. The 
procedure is iterated with the total unassigned load. More sophisticated heuristics 
could take cost functions into account, but this does not appear to be necessary. 
 
Example 2. (Wood and Wollenberg [6], p 117-120)). The fuel cost curves for the three 
units in the six-bus network considered are given by 
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with a total load to be supplied = 210RP  and unit dispatch limits  
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The coefficients . , ( . , . , . ), ( , , )= = − − =00 04 04 0 07660 0 00342 0 01890 1 2 3iB B i  and the B  

matrix is 

 . 
. . .
. . .
. . .

− 
 =  
 − 

0 0006760 0 0000953 0 0000507
0 0000953 0 0005210 0 0000901
0 0000507 0 0000901 0 0002940

B

Solution. The optimal solution is obtained in 3 iterations: 
 

It.  F   1P   2P   3P    +R LP P   Error 

  1    3146.28  70.3011  76.1023    71.1801    217.583   0.48846 
  2    3165.09  71.5868  73.9075    73.5692    219.063   0.01805 
  3    3164.86  71.5625  73.9348    73.5485    219.046   0.00021 

 
Example 3. (Liang and Glover [4]). The operating costs of the generators are 
represented by the following polynomials of third order: 

, ,+ + + =2 3
0 1 2 3 1 2 3i i ia a P a P a P i ,  

where coefficients as well as minP  and maxP  are listed below: 

 
Unit  0a  1a  2a  3a  minP  maxP  

1  11.200 5.10238 −0.00264290 0.00000333333 100 500 
2  −632.000 13.01000  −0.03057140 0.00003333333 100 500 
3  147.144 4.28997 0.00030845 −0.00000017677 200 1000 

 
The load is = 1400RP  and the losses are given by  

. . .= + +2 2
1 20 000075 0 000015 0 000045L

2
3P P P P . 

The B -matrix is 

. . .

. . .

. . .

 
 =  
  

0 0000750 0 000005 0 0000075
0 0000050 0 000015 0 0000100
0 0000075 0 000010 0 0000450

B . 
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Solution. If an initial solution is obtained by neglecting the off-diagonal elements of 
matrix B , the optimal solution is obtained in four iterations: 
 

It.  F  1P  2P  3P  +R LP P  Error 

1   6592.20 359.704 406.478 665.957 1432.14 10.46985 
2   6642.32 360.266 406.927 676.145 1443.34 0.075683 
3   6642.68 361.361 406.969 675.079 1443.41 0.001587 
4   6642.69 360.293 406.967 676.158 1443.42 0.000366 

 
Another way to derive an initial solution is also developed above, in Section 5. In this 
example, the initial solution obtained is .= =1 2 433 333P P ; .=3 533 333P . The optimal 

solution is then reached in only two iterations: 
 

It.  F  1P  2P  3P  +R LP P  Error 

1   6641.60 363.129 407.547 672.448 1443.12 0.229736 
2   6642.68 359.222 406.959 677.244 1443.42 0.000977 

 
Example 4. In the previous examples convex programming problems are solved, since 
both the objective function  and the transmission losses TF LP  are convex. Note that 

convexity of the LP  function follows from the positive definiteness of the B  matrix 

(i.e., the main minors of B  are positive in Examples 1, 2 and 3 above). In this example, 
we change elements  and  from Example 3, i.e., we now have 12b 21b .= = 012 21 00005b b

. )

. 

Then the minor of the second order is negative (det . .= ⋅ − 200015 0 05 0<0 000075 00 000  

and thus, there are more than one local minima. Since the penalty factor method is 
derived from the first order conditions, it is a local optimization method, and may not 
reach the global optimum.  

 

Solution. With our separable approximation dynamic programming method, the 
following locally optimal solution is obtained in six iterations: 

 

It.     F 1P  2P  3P  +R LP P  Error 

1    6699.85 375.187 100.875 999.538 1475.60 8.50537 
2    6657.20 419.456 98.993 946.974 1465.42 0.259155 
3    6684.72 348.296 401.648 703.157 1453.10 3.97778 
4    6703.30 328.416 403.299 725.495 1457.21 0.324585 
5    6701.74 327.425 404.014 725.391 1456.83 0.009888 
6    6701.69 327.437 403.992 725.391 1456.82 0.000122 

 

We then ran the penalty factor method to see what solution it gives for this non-convex 
example. For that purpose we used software attached to the book [6]. The solution 
obtained is as follows: ( , , ) .=1 2 3 6940 35F P P P ; . ,=1 428 6P  . ,=2 100 0P  , .=3 1 000 0,P  

.λ = 4 6765 . Therefore, the objective function value and the total losses are 6940.35 and 
128.6 respectively (compare those values with 6701.69 and 56.82 obtained by our 
approach).  
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We also tried a modification of the penalty factor method: instead of adjusting 
λ  in the inner loop  (as suggested in [6] for Step 3 in the algorithm given in Section 3), 
we simply find the closest solution that satisfies the range constraints (3) as well. In 
other words, within Step 3, we iteratively project the current solution ( ,..., )1 nP P  onto 

the hyperplane defined by (2) and the hypercube (3) until a feasible solution is reached. 
Note that both methods are equivalent if the point obtained after solving the 
coordination equations is feasible. The result, obtained in 5 iterations, is: 

. Again, this solution is worse than the dynamic 

programming one. 

( . , . , . ) .=219 21 243 79 1000 00 6812 31F

6. CONCLUSION 

A new method for static termal power units economic dispatch problem with 
transmission losses is proposed. It uses a separable quadratic approximation to the loss 
function, and refines it iteratively. Convergence is quicker than with previous methods. 
Moreover, it may lend to better locally optimal solutions than those methods in case of 
non-convexity of the loss function. 
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