
Yugoslav Journal of Operations Research 
          12 (2002), Number 2, 215-226 

GENETIC ALGORITHMS AND SMOOTHING FILTERS IN 
SOLVING THE GEOPHYSICAL INVERSION PROBLEM 

Vesna [E[UM 
Department of Mathematics, Faculty of Mechanical Engineering 

University of Belgrade, Belgrade, Yugoslavia 

Du{an TO[I] 
Faculty of Mathematics 

University of Belgrade, Belgrade, Yugoslavia 

Abstract: The combination of genetic algorithms, smoothing filters and geophysical 
tomography is used in solving the geophysical inversion problem. This hybrid 
technique is developed to improve the results obtained by using genetic algorithms 
only. The application of smoothing filters can improve the performance of GA 
implementation for solving the geophysical inversion problem. Some test-examples and 
the obtained comparative results are presented. 
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1. INTRODUCTION 

Tomographic reconstruction techniques are used in different fields: 
geophysical exploration, medical imaging, astronomy etc. By using geophysical 
tomography, the characteristics of an underground region between two boreholes can 
be determined. The tomographic technique provides a means of estimating P-wave 
velocity in the region between two boreholes. In the time measuring procedure, wave 
transmitters are placed in one borehole and receivers in the other one in order to 
collect the first-arrival traveltime data. By using the first-arrival traveltime data, the 
distribution of wave velocities along a plan between two boreholes is calculated and 
displayed as a digital picture. Because of that, this problem is known as Image 
Reconstruction from Projections. The standard tomographic procedures for solving this 
problem are based on the decomposition of the cross-hole area into a number of cells 
and an assumption of straight raypaths. The details about the application of 
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geophysical tomography and basic notions related to this method can be found in: De 
Franco and Cavagna [4], Dines and Lytle [5], Ivanson [12], and Peterson et al. [17].  

1.1. Problem formulation 

The geophysical inversion problem is a problem of determining the 
characteristics of an underground region by using measurement data. The solution to 
this problem is often based on applying the tomographic reconstruction techniques.  

The examinated underground region, called the cross-hole region, is some 
rectangular area between two boreholes. The problem is to estimate the seismic 
velocities from first-arrival traveltimes in a cross-hole region using a straight-line ray 
model. To discretise the geophysical inversion problem, the usual tomographic 
procedure (Dines and Lytle [5], Peterson et al. [17]) is used. The cross-hole region is 
divided into a grid of cells (see Fig.1). Some constant, initial velocity  is assumed 
in every cell. Traveltime and velocity structure are interrelated in the relation 
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where kt  is the traveltime of the kth ray,  is the differential raypath length of the 
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th ray,  is the two-dimensional velocity function and  ( , )v x y kR  is the raypath 

trajectory of the kth ray (Dines and Lytle [5], Peterson et al. [17]). 
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Figure 1: Discrete model of the cross-hole region 
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It is convenient to denote the reciprocal value 1  with u x , so we 
deal with slowness instead of velocity. Then the equation (1) becomes 

/ ( , )v x y ( , )y

( , )= ∫
k

k
R

t u x y ds

)

 (2) 

When the cross-hole region is divided into a grid of cells ( ×m n , the equation (2) can 
be approximated as 

= =
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k ij ijk
i j

t u s  (3) 

where  is the unknown slowness in the ( , -cell, iju )i j ∆ ijks  is the length of a ray 

segment that intercepts the -cell, m is the number of the vertical cells and n is the 
number of the horizontal cells. It is understood that 

( , )i j
∆ = 0ijks  for those i and j values 

for which the associated cell is not intercepted by the ray kR . A detailed explanation 

about geophysical tomography can be seen in Dines and Lytle [5], Herman [10] and 
Ivanson [12]. 
 

1.2. Genetic algorithms 

Genetic algorithms are a kind of a mathematical simulation for Darwin's 
theory of evolution. The basic notions and description of genetic algorithms may be 
found in Goldberg [8]. The starting point is a formation of the initial population either 
using some particular method or at random. The elements of the initial population, 
individuals, are points from the searching space for a giving problem. Every individual 
is uniquely determined by its genetic material. The adaptation of every individual has 
to be found according to the fact how good a solution that individual is. To that end, 
the appropriated value of the fitness function is assigned to every individual. Using 
selection and the values of the fitness function, "the best fitted" individuals are being 
chosen, while a new population is formed using crossover and mutation. The rules of 
genetics and evolution imply a greater probability that the new population have a 
better genetic material. Iterating this procedure, from generation to generation, the 
genetic material of the population becomes better and the process should converge to 
the optimal solution of a given problem. If the specified number of generation is 
reached or some criteria of convergence are fulfilled, the procedure stops.  

More information about GA can be found in: Beasley et al. [2], Beasley et al. 
[3], Goldberg [8], Ribeiro-Filho at al. [20], Srinivas and Patnaik [23]. 

1.3. Smoothing filters 

The application of the appropriated smoothing filters can improve the 
performance of the used iterative reconstruction algorithm (Herman [10], Herman and 
Lent[11]) and form smooth areas in regions of the image. That implies better-defined 
boundaries in a reconstructed image (Balanis and Bentley [1]). The possibility of 
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achieving these improvements makes the combination of filters and the iterative 
reconstruction algorithm attractive (Herman [10], Herman and Lent[11]). Usually, the 
smoothing filter is implemented between the iterative steps of the reconstruction 
algorithm (Balanis and Bentley [1]). All cells in the image go throw filter. For every cell 
the window of the filter is formed consisting of that particular "center" cell and its 
neighboring cells. Some often-used shapes of window can be seen at Fig. 2. The value of 
the center cell is replaced with a new value and it is calculated using the values of cells 
within the window of that center cell. The new values become actual after all cells in 
the image have been passed through the filter. (More details are exposed in section 3.1, 
3.2 and 3.3.) 

 

            

            

            

            

            

      

 

      

 
Figure 2:  Square-shaped window and cross-shaped window 

2. SOLVING THE GEOPHYSICAL INVERSION PROBLEM 
USING GENETIC ALGORITHMS 

This section contains a short review of solving the geophysical inversion 
problem with the use of genetic algorithms. Detailed explanation is presented in [e{um 
et al [24]. 

The encoding mechanism is a very important issue for the structure of a 
genetic algorithm. The genes representing coded numerical value of velocity in a cell of 
cross-hole region have the same fixed length. In the described implementation that 
length is 5 bits (this information has to be given in advance). The value of velocity is 
obtained by  

min= + ⋅v v dv tmp , (4) 

where  is the velocity partition, dv

(max min ) /= − 2nbitdv v v  (5) 

min v  is the minimum velocity,  is the maximum velocity, tm  is the value of the 
binary string that represents velocity over a cell and nbi  is given in advance. 

max v p
t
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The objective function is  
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where  is the measured traveltime,  is the computed traveltime and k is the 

number of transmitters/receivers. The computed traveltimes are calculated from (3) 
and measured traveltimes are obtained after the measurement in a borehole. The 
objective function (6) arises as a measure of differences between the computed and 
measured traveltimes. The goal is to minimize this function. So, we have here a typical 
optimization problem and a genetic algorithm could be applied. 

T
ijt C

ijt

The following genetic operators are used: rank-based selection, one-point 
crossover and mutation. The crossover rate is .=  0 85crossp  and the mutation rate is 

in segment [0.001, 0.03], depending on the number of cells in the cross-hole region. 
 The population size is 150 individuals and the maximum number of 

generations is 5000.  
The proposed method is tested on synthetic examples, where the dimensions of 

the cross-hole regions are 100m×100m and 80m×60m. This gave promising results and 
provided quite good performances. (More details about the application of genetic 
algorithms can be found in: Beasley at al. [2], Beasley at al. [3] and Goldberg [8].) 

3. SOLVING THE GEOPHYSICAL INVERSION 
PROBLEM USING SMOOTHING FILTERS 

AND GENETIC ALGORITHMS 

This section describes a new hybrid technique - the combination of smoothing 
filters and genetic algorithms. The purpose of developing this technique was to improve 
the results obtained using genetic algorithm only. 

Experiences in researching filters and their application in geophysical 
tomography (Balanis and Bentley[1]) showed that the following filters gave relatively 
good results: 

− minimum variance partitioning-averaging, MVP-AVG 
− minimum variance partitioning-median filtering, MVP-MED 
− selective smoothing 
 
 

3.1. MVP-AVG 

Instead of using all neighboring cells in the window (see Fig 2.), it is suggested 
to select a group of neighbors in the window (Balanis and Bentley [1]), in order to 
obtain better results. The selection for a group of neighbors can be done with MVP 
technique (Hall[9]). 
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For a given set of numbers, MVP technique finds the partition of set with 
minimum variance. The set of number is divided into several groups (usually two or 
three). To reduce the number of possible partitions, the numbers from a given set were 
previously sorted increasingly. For n numbers, there are −1n  partitions and every 
partition has a fixed (in advance) number of groups. Each partition is processed in the 
following way: 

 

− for every partition's group, finding its mean  , ,...,= 1im i  number_of_ groups 

− calculating 

, ,..., -
= ∈
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Finally, the minimum  in minS ( ) −
=

1
1

n
l lS  is found and the partition that is 

joined with the value is the minimum variance partitioning for that set of 
numbers. This way provides an objective mechanism for determining the neighborhood 
for a given center cell. Then, a new value of the center cell can be determined in 
various ways. 

minS

 

Example. Suppose that the following values are in the cells: 2,5,3,9,7 and  the number 
of groups is 2. After the sorting, we have: 2,3,5,7,9. The partitions are: 
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Applying the formula (7), we get:  , . , . , .= = = =1 2 3 420 8 5 7 01 14 75S S S S

:{ , , }{ , }3 2 3 5 7 9S

. The minimum 

is S3 and the selected partition is . 

One approach is to replace the value of the center cell with the average value 
of group that contains the center cell. This technique is called MVP-AVG.  

More information about MVP technique, averaging technique and MVP-AVG 
can be found in: Balanis and Bentley [1], Rosenfeld [21], Radcliff et al. [19], 
Schowengerdt [22] and Hall [9]. 

3.2. MVP-MED 

After determining the neighborhood for a given center cell using MVP 
technique, as described in 3.1, this technique replaces the value of the center cell with 
the median value of the group that contains the center cell (Balanis and Bentley [1], 
Ekstrom [7], Rosenfeld [21]). 

 

Example: Let us consider the square-shaped window from Fig 2. The center cell will 
take on the fifth highest value of the cells within the window. 
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3.3. Selective smoothing 

 New value of the center cell is formed by that cell and those neighboring cells 
with values that satisfy the condition, implied by the threshold level. If the difference 
between the value u  of the center cell and the value  of the neighboring cell is less 

or equal to the threshold level, that neighboring cell will be included in calculating a 
new value of the center cell (Radcliff and Balanis [18], Herman [10], Balanis and 
Bentley [1]). 

1 iu

 

Example: Let us consider the square-shaped window from Fig. 2 with dimension 3×3 
which is the neighborhood of the center cell . The new value of that center cell can 

be obtained from 
1u
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, ,1 2w w w  are smoothing weights (choosen in advance), t is threshold level. 

The successful application of this filter and the achievement satisfactory 
results are conditioned by the choice of the optimal values for w1,w2,w3 and t (Radcliff 
and Balanis [18]). 

 
3.4. Genetic algorithms and filters 

The filters described in the previous section are implemented in the GA 
application for solving the geophysical inversion problem to improve the reconstruction 
of profile. Applying the appropriated filter between every iteration in the 
reconstruction algorithm (i.e. GA generation) can improve the convergency of that 
algorithm, if the system of equations (3) is consistent. Otherwise, this approach does 
not give good results (Balanis and Bentley [1]). In that case, the improvement can be 
obtained by using filter after a certain number of iterations, when the picture reaches 
some development (Balanis and Bentley [1]). 

A lot of numerical experiments are made with a different number of 
generations and different filters. In the following variants of the hybrid technique, the 
optimal number of generations (obtained by experiments) and optimal filters are used.  

a) 4000 GA generations were applied to the test-profile; then such partialy 
reconstructed profile is subjected to 100 passings through filter after every  
next GA generation; 

b) after every 100 GA generations, a partialy reconstructed profile is subjected to 
filtering for 10 times; 
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c) 3000 GA generations were applied to the test-profile; then such partialy 
reconstructed profile is subjected to 1 passing through filter after every next 
GA generation; 

d) after applying 5000 GA generations to the test-profile, the  reconstructed 
profile (obtained by running of the pure GA) is subjected to filtering. 
Two-group MVP is used. 
Some conclusions about the parameters (presented below) in selective 

smoothing are accepted, as suggested in Radcliff and Balanis [18]. The investigated 
region may have one or more anomalies where values differ from background's values 
(see Fig 3.). For profiles that have high values in the anomaly's cells and low values in 
the background's cells, 1/6 of the difference between the highest value and the lowest 
value in the profile is assigned to the variable t. Reversely, for profiles that have low 
values in the anomaly's cells and high values in the background's cells, 2/5 of the 
difference between the highest value and the lowest value in the profile is assigned to 
the variable t. The values  and  are chosen to satisfy the relation w w  

 for every profile. 

,1 2w w 3w = =1 2

= 32w

 

Figure 3: A hypothetical 'L' shaped anomaly in the background between two boreholes 

The implementation of MVP-AVG filtering technique, described in section 3.1. 
in the hybrid algorithm, can be described with Pascal pseudo-code: 

(* MVP-AVG variant(a)  *) 
begin 
if  (current_generation > 4000)  then 
           begin 
           for  filt := 1  to  100  do 
 begin 
 for  i :=1 to  m  do 
 for  j :=1  to  n  do 
 begin 
 sort in asceding order cells in window that contains cell (i,j);  
 apply MVP-AVG filter to the window of cell (i,j); 
 new value of cell (i,j) put in mat(i,j); 
 end; 
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 replace old values of cells with the new ones from matrix mat; 
 end 
            end 
end. 

 
The other variants ((b), (c) and (d)) of MVP-AVG filter as well as MVP-MED 

filters and selective smoothings are implemented analoguously. 

4. RESULTS 

4.1. Test-examples 

Syntetic test-examples, where the examinated profile consists of part by part 
constant regions, are generated (see Fig. 4). The number of cells is 30 (6×5). In every 
borehole there are 10 transmitters/receivers. The distance between boreholes is 5.0m 
and the borehole's depth is 6.0m. The threshold level .= 0 1t , because in these test-
examples high values are in the anomaly's cells and low values are in the background's 
cells. 

 

               
               
               
               
               
     

 

     

 

     
 

Figure4: Profiles of test-instances ,1 2P P  and 3P  where the values in anomaly's cells 

are 0.7 and the values in background's cells are 0.1 

The testing has been done using PC compatible computer AMD 80486 at 
120MHz with 8 MB of memory. Since genetic operators are nondeterministic, every 
test example was running 10 times and we have computed the average value. 

 
4.2. Numerical results 

Table 1 contains results obtained by the following methods: 
• ART (Algebraic Reconstruction Technique)(see Dines and Lytle [4]) and 

different versions of ART i.e. M-ART (Modified-ART), DT-ART (Distance 
Transposed-ART), DTM-ART (Distance Transposed Modified-ART) and 
MDT-ART (Modified Distance Transposed-ART). These results are taken 
from Balanis and Bentley [1]. A detailed explanation about these 
techniques can be found in Balanis and Bentley [1]. 
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• GA ([e{um et al [24]). 
 

The measure of error δ2 given by relation: 
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is used, where  is the true slowness,  is the computed slowness and  is the 

total number of cells in the profile. 
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Table 1. 

 1P  2P  3P  

( )δ2 GA  0.02901 0.03221 0.17492 

( )δ2 ART  0.13300 0.20100 0.22300 

( )δ −2 DT ART  0.08300 0.15600 0.81200 

( )δ −2 M ART  0.08100 0.16500 0.17600 

( )δ −2 MDT ART  0.08300 0.14800 0.17300 

( )δ −2 DTM ART  0.09200 0.14600 0.17900 

 
The variants (a), (b), (c) and (d) of the implemented filters and the GA com-

binations are described in section 3.4, while the obtained results are given in Table 2. 
 

Table 2. 

 1P  2P  3P  

( ( ))δ −2 MVP AVG a  0.03009 0.01686 0.16008 

( ( ))δ −2 MVP AVG b  0.03053 0.22923 0.31102 

( ( ))δ −2 MVP AVG c  0.03356 0.23989 0.35823 

( ( ))δ −2 MVP MED a  0.05073 0.07503 0.41323 

( ( ))δ −2 MVP MED b  0.02984 0.05272 0.38797 

( ( ))δ −2 MVP MED c  0.03607 0.16241 0.24384 

( ( ))δ2 selective smooth. a  0.02640 0.04177 0.24936 

( ( ))δ2 selective smooth. b  0.03008 0.12567 0.37428 

( ( ))δ2 selective smooth. c  0.02778 0.09194 0.26610 

( / ( ))δ −2 GA MVP AVG d  0.00657 0.00933 0.14037 

( / ( ))δ −2 GA MVP MED d  0.00730 0.00000 0.14715 

( / ( ))δ2 selective smooth. GA d  0.02746 0.02992 0.16970 
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Table 3 contains results of the application of the most successful ART 
modification, MDT-ART and filters (Balanis and Bentley [1]). 

Table 3. 

 1P  2P  3P  

( / )δ − −2 MDT ART MVP AVG  0.050 0.187 0.195 

( / )δ − −2 MDT ART MVP MED  0.062 0.182 0.155 

( / )δ −2 selective smooth.MDT ART  0.076 0.142 0.170 

 
From the comparison of the results obtained using GA with the results 

obtained using ART (see Table 1) we can conclude that GA give better results (in case 
of 1P  and 2P ) and almost the same result (in case of 3P ). 

The comparison of the results obtained using the combination of GA and 
filters with the results obtained using the combination of ART and filters (from Table 
2. and Table 3) shows that the combination of GA and filters  gives better 
results for all three test-examples. 

(variant( ))d

The values presented in Tables 1-3 confirm that the combination of GA and 
filters improves results obtained using GA only. 

5. CONCLUSION 

Generally, GAs are very suitable for hybridizing with other methods. In this 
paper the new hybrid method (GA and filters) for solving the geophysical inversion 
problem is presented. The intention was to develop the technique that would improve 
the results obtained by using genetic algorithms only. The applying of smoothing filters 
can improve the performances of a main iterative reconstruction algorithm as well as 
the quality of reconstructed picture. The applying of new programming techniques, in 
this case, is not requested. The chosen GA structure provided relatively good results. 
We used the following filters: MVP-AVG, MVP-MED and selective smoothing. All of 
them showed good features in combination with GA. 
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