
Yugoslav Journal of Operations Research
 12 (2002), Number 2, 237-246

SIMULATION OF MACHINE INTERFERENCE IN RANDOMLY
CHANGING ENVIRONMENTS

J. SZTRIK
Institute of Mathematics and Informatics

University of Debrecen, Debrecen, Hungary
jsztrik@math.klte.hu

O. MŒLLER
Department of Computer Science

University of Trier, Trier, Germany
moeller@stud.informatik.uni-trier.de

Abstract: The simulation tool lcpSim can be used to investigate special level crossing
problems of queuing systems of type HYPOk / HYPOr / 1 / /n embedded in different
Markovian environments (recently referred to as Markov modulated ones). Our
observed system consists of n heterogeneous machines (requests) and a server that
"repairs" the broken machines according to the most commonly used service disciplines,
such as FIFO, LIFO, PPS, HOL, Preemptive Priorities (Resume, Repeat), Transfer,
Polling, Nearest. We specify a maximum number of stopped machines for an operating
system and our aim is to give the main steady-state performance measures of the
system, such as, server utilization, machine utilization, mean waiting times, mean
response times, the probability of an operating system and the mean operating time of
the system. These values can be calculated by lcpSim level crossing problem Simulation
package for different random environment types and service disciplines.

Keywords: Machine interference, finite-source queuing, random environments, simulation,
reliability theory.

1. INTRODUCTION

Let us consider a system with parallel running machines and a server. Each
of the machines operates for a random time and then breaks down. When this happens,
a request is sent to the server. Thus we have got a queuing system of a finite-source
type originating from the so-called machine interference problem, that is why we use
its terminology. However, this system has often been used for mathematical modeling

n

 J. Sztrik, O. M–ller / Simulation of Machine Interference 238

of different problems encountered in computer and communication sciences, cf.
Dshalalow [4], Takagi [9]. Furthermore, we state a maximum number m of stopped
machines for an operating system. If more than m machines have broken down at a
certain point of time, then we consider the whole system as non-operating or "down".
Otherwise it is "up". In addition to the processes in the queuing system, one or more
Markov chains run in the background to provide the random environment of each
machine and the server. The machines are stochastically heterogeneous, that is, each
machine is characterized by its own operating and repair times. The th−j machine
runs through a fixed number jA of phases until it breaks down. Each phase is

exponentially distributed with a parameter
jk

(,)λ ji k , which is dependent on the state

of the machine's random environment and the phase, that is, it is hypoexponentially
distributed for a given state of the governing process. Similarly, the service process for
machine

i

j takes phases which are exponentially distributed with parameters jS

(,)µ j ji k . These are dependent on the state of the random environment of the server

and the phase, thus they are also hypoexponentially distributed. In particular, the
exponential, the Erlangian times without random environments can be obtained which
were used to test the proposed procedure. We are interested in the main steady-state
performance measures of the system, such as, server utilization, machine utilization,
mean waiting times or mean response times. Furthermore, the probability of an
operating system or the mean system operating time are also given, which is a special
kind of level crossing problem for stochastic processes and is often difficult to obtain.
It should be noted that such systems without random environments have been
investigated by many authors under different assumptions on the distribution of the
running and repair times and service rules, see for example, Takagi [9]. Systems
embedded in Markovian environments with exponentially distributed running and
repair times have been treated, among others, in Anisimov and Sztrik [1], Sztrik and
Bunday [7, 8] by using asymptotic methods, and in Gaver et.al. [5] by applying a
numerical approach.

Due to the large literature on performance evaluation of the computer and
communication systems, reliability aspects of complex systems, furthermore solution
methods of different queuing situations, see for example, Bolch et.al. [3], Dshalalow [4]
and Haverkort [6], in which the reader can find the relevant materials.

Such a special simulation tool is of a practical interest, since to the best
knowledge of the authors such finite-source queuing systems evolving in random
environments cannot be simulated by existing, too general tools. The results are new,
they are in the streamline of the first author's research. When dealing with such kind of
systems the usual approach is to construct an appropriate continuous-time Markov
chain. However, its state space will be extremely large, so the traditional methods
cannot be used directly. In these cases, for example, different approximation or
simulation techniques are applied.

In the present situation we prefer the latter one since for simpler systems we
have numerical results for validation. To obtain more realistic mathematical models
the failure and repair rates are assumed to vary in time. This can be implemented by
the inclusion of random environments which govern the changes of the rates. Actually,

 J. Sztrik, O. M–ller / Simulation of Machine Interference 239

it is supposed that these parameters depend on the state of the corresponding
continuous-time Markov chain.

Three different constellations of random environment types are possible in the
simulation. They differ in the number of Markov chains used.
1. One random environment: one for all sources and the server.
2. Two random environments: one for all sources and one for the server.
3. Several random environments: each source has its own and the server has its own.

2. THE SIMULATION TOOL

• System Requirements: The lcpSim simulation tool was developed for Linux and
Windows operating systems. The source code is written in C++ and may be compiled
with the GNU project C++ Compiler g++. The Qt library of Troll Tech AS [10] is
essential to run the programs, as it provides the classes for the graphical interface.
• Simulation model: The simulation uses the event-oriented model. These events
may be request arrivals, the start of a request service by a server or similar incidents.
whenever a new future event is produced, it is registered in the Future Event Set
(FES). All these events are handled in their temporary order.

Of course, we understand that these are only the basics, but our aim is to
introduce the tool only and not to give detailed programming tricks. The interested
readers can feel free to ask for information and to use the tool. Because of the page
limit, our intention is to show the main features of our software and to focus on its
flexibility in several practical situations by using different environments, running and
repair times as well as various service disciplines.

2.1. Screenshots

The following picture is a screenshot of lcpSim. It is a system with four
machines. One of them is currently working, the others have broken down. Machine 2
is being repaired at the moment, while machines 0 and 1 are still waiting to be served.

Figure 1: System layout and snapshot

 J. Sztrik, O. M–ller / Simulation of Machine Interference 240

2.2. Test Results

One random environment was used for all components with one state. This
model was used for testing the simulation by comparing the simulated outputs with the
numerical results treated and obtained in Alm‹si and Sztrik [2].

2.2.1. Input File

PREFERENCES
 SEED 12345 // SEED OF RANDOM NUMBER GENERATOR
 STATISTICS 0.0 // INTERVAL OF STATISTICAL OUTPUT
 DURATION 990000.0 // DURATION OF SIMULATION
 MAXIMUM_DOWN 2 // MAXIMUM NUMBER OF STOPPED MACHINES
 FOR OPERATING SYSTEM
 ENVIRONMENT ONE // ONE MARKOV CHAIN FOR ALL COMPONENTS

MARKOV_CHAIN // MARKOV CHAIN FOR THE WHOLE SYSTEM
 STATES 1 // NUMBER OF DIFFERENT STATES
 START 0 // STATE AT START OF SIMULATION
 GENERATOR 0 // GENERATOR MATRIX OF MARKOV CHAIN

SOURCES
 NUMBER 4 // NUMBER OF DIFFERENT SOURCES

SOURCE
 PHASES 1 // ARRIVAL PHASES OF SOURCE 0
 RATES 0.5 // ARRIVAL RATES OF SOURCE 0

SOURCE
 PHASES 1 // ARRIVAL PHASES OF SOURCE 1
 RATES 0.4 // ARRIVAL RATES OF SOURCE 1

SOURCE
 PHASES 1 // ARRIVAL PHASES OF SOURCE 2
 RATES 0.3 // ARRIVAL RATES OF SOURCE 2

SOURCE
 PHASES 1 // ARRIVAL PHASES OF SOURCE 3
 RATES 0.2 // ARRIVAL RATES OF SOURCE 3

SERVER
 PHASES 1 // SERVICE PHASES OF SERVER
 RATES 0.9
 0.7
 0.6
 0.5 // SERVICE RATES OF SERVER FOR SOURCES

 J. Sztrik, O. M–ller / Simulation of Machine Interference 241

2.2.2. Simulation Outputs

Here are the output results for the system above applying FIFO, PPS and
Polling disciplines. The results were collected from 3 output files, respectively.

 FIFO PPS Polling
 Machine 0
 - Utilization : 0.38126 0.43099 0.37759
 - Mean waiting time : 2.11547 1.53210 2.18945
 - Mean response time : 3.23125 2.63986 3.30003

 Machine 1
 - Utilization : 0.41511 0.42659 0.41491
 - Mean waiting time : 2.08879 1.94006 2.09878
 - Mean response time : 3.52168 3.36345 3.52739

 Machine 2
 - Utilization : 0.46913 0.45460 0.47123
 - Mean waiting time : 2.10896 2.34364 2.07313
 - Mean response time : 3.77447 4.00310 3.74011

 Machine 3
 - Utilization : 0.54697 0.50095 0.55228
 - Mean waiting time : 2.15858 2.98768 2.05381
 - Mean response time : 4.1543 4.97915 4.05398

 Server Utilization : 0.90351 0.90712 0902993

 Mean number
 of stopped machines : 2.18751 2.18685 2.18398

 System P (up) : 0.57217 0.57373 0.57349
 P (down) : 0.42782 0.42627 0.42651

 - Mean up time : 3.04898 2.95635 3.07433
 - Mean down time : 2.27981 2.19665 2.28635

2.2.3. Computational Results

The corresponding numerical results are

 FIFO PPS Polling
 Machine 0
 - Utilization : 0.3825 0.4293 0.3772
 - Mean response time : 3.2290 2.6584 3.3018

 Machine 1
 - Utilization : 0.4163 0.4234 0.4147
 - Mean response time : 3.5058 3.4047 3.5290

 J. Sztrik, O. M–ller / Simulation of Machine Interference 242

 Machine 2
 - Utilization : 0.4692 0.4518 0.4713
 - Mean response time : 3.7716 4.0450 3.7383

 Machine 3
 - Utilization : 0.5462 0.5001 0.5521
 - Mean response time : 4.1548 4.9985 4.0562

 Server Utilization : 0.9034 0.9064 0.9030

 Mean number of
 stopped machines : 2.1859 2.1954 2.1847

It has been realized that the simulation results are generally exact up to the
3rd digit, so we think that the tool operates well.

2.3. More Complex Systems

This is a very simple illustration of a system with random environments for
every single component. The two machines use Markov chains with different state
numbers, and they run through different numbers of phases before producing a
request. For Priority PS service discipline each machine gets a weight providing its
priority. The service depends on the index of machine, the current service phase and
the state of the server's Markov chain. For larger systems the input file has the same
structure.

2.3.1. Input File

PREFERENCES
 ENVIRONMENT EACH // MARKOV CHAINS FOR EVERY SINGLE
 // PROVIDING THE ENVIRONMENT

SOURCES
 NUMBER 2 // NUMBER OF DIFFERENT SOURCES

SOURCE // SOURCE 0
 MARKOV_CHAIN // MARKOV CHAIN 0 FOR SOURCE 0
 STATES 3 // NUMBER OF DIFFERENT STATES (0,1,2)
 START 1 // STATE AT START OF SIMULATION
 GENERATOR -0.8 0.2 0.6
 0.1 -0.4 0.3
 0.3 0.2 -0.5 // GENERATOR MATRIX OF MARKOV CHAIN
 // ROW i: PHASE TRANSITION RATES IN
 // STATE i; i = 0,1,2
 PHASES 2 // NUMBER OF ARRIVAL PHASES (0,1)
 RATES 0.1 0.8 1.2
 0.2 0.9 1.5 // ROW i: RATES IN PHASE i FOR
 // STATE 0,1,2; i = 0,1
 WEIGHT 2.0 // WEIGHT FOR PRIORITY PS SERVICE

SOURCE // SOURCE 1
 MARKOV_CHAIN // MARKOV CHAIN 1 FOR SOURCE 1
 STATES 2 // NUMBER OF DIFFERENT STATES (0,1)

 J. Sztrik, O. M–ller / Simulation of Machine Interference 243

 START 0 // STATE AT START OF SIMULATION
 GENERATOR -0.3 0.3
 0.7 -0.7 // GENERATOR MATRIX OF MARKOV CHAIN
 // ROW i: PHASE TRANSITION RATES IN
 // STATE i; i = 0,1
 PHASES 4 // NUMBER OF ARRIVAL PHASES (0,1,2,3)
 RATES 0.4 0.6
 0.1 0.2
 0.9 1.1
 2.0 2.2 // ROW i: ARRIVAL RATES IN PHASE i
 // FOR STATE 0,1; i = 0,1,2,3
 WEIGHT 0.5 // WEIGHT FOR PRIORITY PS SERVICE

SERVER // SERVER
 MARKOV_CHAIN // MARKOV CHAIN 2 FOR SERVER
 STATES 3 // NUMBER OF DIFFERENT STATES (0,1,2)
 START 2 // STATE AT START OF SIMULATION
 GENERATOR -0.5 0.2 0.3
 0.8 -1.6 0.8
 0.4 0.9 -1.3 // GENERATOR MATRIX OF MARKOV CHAIN
 // ROW i: PHASE TRANSITION RATES IN
 // STATE i; i = 0,1,2

 PHASES 2 // NUMBER OF SERVICE PHASES (0,1)
 RATES 0.9 1.0 1.1
 0.8 0.9 1.0

 0.7 0.9 1.2
 0.6 1.0 0.5 // ROW i IN BLOCK j: SERVICE RATES
 // FOR SOURCE j IN PHASE i FOR
 // STATE 0,1,2; i = 0,1; j = 0,1

2.3.2. Output Example

Here is an output example for the system mentioned above for FIFO service.
All parameters are listed at the beginning of the output.

 lcpSim Simulation Output
 Input File : /home/info04/janos/lcpSim/input/
 Example System
 Environment Type : Each
 Source Number : 2
 Service : FIFO
 Simulation Seed : 12345
 Breakdown Level : 0
 Statistics Interval : 0
 Simulation Duration : 30000
 Round Interval : 1

 Machine 0 - Utilization : 0.591184
 - Mean waiting time : 0.763134
 - Mean response time : 2.93532
 Machine 1 - Utilization : 0.71804
 - Mean waiting time : 0.578126
 - Mean response time : 4.61385

 J. Sztrik, O. M–ller / Simulation of Machine Interference 244

 Server - Utilization : 0.548961
 Mean number of stopped machines : 0.690545
 System - P (up) : 0.451015
 - P (down) : 0.548985
 - Mean up time : 3.11761
 - Mean down time : 3.79483

 30000 End of simulation

2.4. Operating Instructions

After lcpSim is started, the input file Default System is loaded from the Input
directory. It may be replaced by a different valid input file to save time. The window is
arranged in three parts: a menu bar, a graphical representation of the current
simulation state, and, finally, buttons to control the simulation. There are five menus
with the titles File, Action, Service, Options and Info, see Figure 1, and several
submenus, see Figure 2.

Figure 2: Menu system

The File menu

Input File: Read new input data. If you choose the file Standard Input Device, then the
input is read from the standard input device instead of a file.
Output File: Specify the output destination. If Standard Output Device is chosen, the
simulation output is written to the standard output device instead to a file.
Save Snapshot: Save a screenshot of the graphical representation of the system state.
The output file will be in the bmp format.

 J. Sztrik, O. M–ller / Simulation of Machine Interference 245

The Action menu

Start Simulation: Its activation starts the following procedures. At first some menu
points are deactivated, so that the input data cannot be changed during the simulation.
Then the simulation is initialized, especially the statistical values and the future event
set. For example, the production of new requests by the given sources is arranged.
Additionally, the buttons Continue and Stop are shown. The simulation process can be
interrupted in periodical intervals. At these moments, the simulation can be continued
or stopped by pressing these buttons. Only the Quit button is shown all the time.

The Service menu:

Here the service disciplines for the server are specified. The default discipline is FIFO.
FIFO: First In - First Out: the request that has arrived earlier is served earlier, too.
Non-Preemptive LCFS: Last Come - First Served: the request that has arrived at the
latest point of time is served first without preempting the one being under service.
Polling: Go round and round.
Non-Preemptive HOL: Head Of Line: smaller index - higher priority, non-preemptive
priority.
Preemptive Priority (Repeat): If a request with higher priority arrives, then the current
service is interrupted. The service of the preempted request must begin from the start
later on.
Preemptive Priority (Resume): If a request with higher priority arrives, then the
current service is interrupted. The service of the preempted request is resumed at this
point later.

Priority PS: An approximation of a Processor Sharing discipline with priorities. In
theory, each request in the queue gets an infinitely small time interval in each service
round. In the simulation a certain time (round interval) is specified and each request in
the queue gets a slice of this time according to its weight, which specifies its priority. If
a new request arrives, the time slice of the currently served request is newly adapted to
the new situation. In the case that the new time slice is already over, the request
service is interrupted and the next request is served.
Transfer: Go forward and backwards.
Nearest: Serves the nearest request in the queue from the current position.

The Options menu

In this menu additional input parameters are controlled.
More Info: Increases or decreases the amount of output information that is produced
during the simulation process.
Animation: Activates or deactivates the graphical representation of the current
simulation state.
Simulation Seed: Sets the seed of the random number generator for the next
simulation run.
Breakdown Level: Sets the maximum number of stopped machines for an operating
system (0: all machines must run).
Statistics Interval: Sets the time interval for simulation interruptions to show some
statistical values.

 J. Sztrik, O. M–ller / Simulation of Machine Interference 246

Simulation Duration: Sets the duration of a simulation run.
Round Interval: Sets the time interval for one round with Priority PS service discipline.

The Info menu

System Info: Shows information about the current system and the parameters which
were set. The same information is included as header of each output file.
Program Info: Shows some information about the program lcpSim.

Of course, at the beginning we have to make an Input file, which can be
modified later. There is a program inputGEn to do this job. It is an easy-to-use, user
friendly software, correcting possible incorrect data.

3. CONCLUSION

Main features of a simulation tool have been introduced whic was developed
for the investigation of the machine interference problem evolving in random
environment(s). Steady-state performance measures of the system have been obtained
under several service disciplines, assuming hypoexponentially distributed running and
service times. Some sample input and output files have been shown to make easier the
understanding of this user friendly and easy-to-use package.

Acknowledgement: Research is partially supported by Hungarian Scientific Research
Fund under grants OTKA-T30685/99, T034280/2000, German-Hungarian Bilateral
Intergovernmental Scientific Cooperation, No. 21-2000 and Hungarian Ministry of
Education FKFP 0191/2001

REFERENCES

[1] Anisimov, V.V., and Sztrik, J., "Asymptotic analysis of some controlled finite-source queuing
systems", Acta Cybernetica, 9 (1989) 27-38.

[2] Almasi, B., and Sztrik, J., "A queuing model for a non-homogeneous terminal system subject
to breakdowns", Computers and Mathematics with Applications, 25 (1993) 105-111.

[3] Bolch, G., Greiner, S., de Meer, H., and Trivedi, K.S., Queuing Networks and Markov Chains:
Modeling and Performance Evaluation with Computer Science Applications, John Wiley and
Sons, New York, 1998.

[4] Dshalalow, J.H., Frontiers in Queuing, Models and Applications in Science and
Engineering, CRC Press, Boca Raton, 1997.

[5] Gaver, D.P., Jacobs, P.A., and Latouche, G., "Finite birth-and-death models in randomly
changing environments", Advances in Applied Probability, 16 (1984) 715-731.

[6] Haverkort, B.R., Performance of Computer Communication Systems: A Model-Based
Approach, John Wiley and Sons, New York, 1998.

[7] Sztrik, J., and Bunday, B.D., "Machine interference problem with a random environment",
Eur. Journ. Oper. Res., 65 (1993) 259-269.

[8] Sztrik, J., and Bunday B.D., "Asymptotic analysis of the heterogeneous machine interference
problem with random environments", Applied Mathematical Modelling, 17 (1993) 105-110.

[9] Takagi, H., Queuing Analysis, A Foundation of Performance Evaluation, Vol. 2., Finite
Systems, North-Holland, Amsterdam, 1993.

[10] Troll Tech AS, The Qt Toolkit, http://www.troll.no/dl

