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Abstract: We consider an example network where we compute the bounds on cell loss 
rates. The stochastic bounds for these loss rates using simple arguments lead to models 
easier to solve. We proved, using stochastic orders, that the loss rates of these easier 
models are really the bounds of our original model. For ill-balanced configurations 
these models give good estimates of loss rates. 

Keywords: Discrete time Markov chains, tochastic bounds, ATM switch, loss rates. 

1. INTRODUCTION 

ATM (Asynchronous Transfer Mode) technology is intended to support a wide 
variety of services and applications and to satisfy a range of Quality-of-Service (QoS). 
The QoS is measured by a set of parameters intended to characterize the performance 
of the network. These performances depend generally on the switch performances. We 
are interested in computing the cell loss rates in a multistage ATM switch. Loss rates 
are very important because they may be part of the contract on the quality of service 
between the user and the network provider. Using a numerical method to compute loss 
rates is very difficult because of the size of the model. So, we propose a stochastic 
method to compute upper and lower bounds on the loss rates. To do this, we propose 
two simple systems which are easier to evaluate and which provide upper and lower 
bounds on the considered performance measure. We prove that the loss rates on the 
easier systems are really bounds on the original system. We make this proof, using 
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stochastic method based on stochastic ordering and stochastic comparisons [8, 2]. The 
switch, we considered is decomposed into several queues with feed-forward routing. All 
queues are finite and the external arrivals always take place at the first stage. The 
variability of the input processes provokes losses in the queues. The topology of this 
switch leads us to use a decomposition to find loss rates stage by stage. To compute the 
loss rate in the first stage, several solutions can be considered according to the arrival 
process. If we assume i.i.d. batch arrivals of Markov modulated batch arrivals (MMBP), 
we can easily build a Markov chain of one buffer. Let B  be the size of the buffer, iff we 
consider i.i.d. batch process, the chain has + 1B  states. For a MMBP with  states for 
the modulation, the size of the chain is 

n
*( )+ 1n B . Thus, the numerical computation is 

always possible. If we restrict ourselves to less general processes, analytical solutions 
may also be obtained (see Beylot's PhD thesis for some results on Clos networks [1]). 
However, the second stage is much more difficult to analyze. Indeed, it is quite 
impossible to know exactly the arrival process into a buffer in the second stage even if 
we assume a simple i.i.d. batch arrival process at the first stage. The output process of 
the first stage is usually unknown due to the loss at the first stage and the 
superposition of such processes is unknown even if we assume independence. It may be 
possible that under some restricted assumptions, some asymptotic results may be 
established. We do not try to prove such a result here, but we hope that we will be able 
to combine asymptotic results and bounds in the near future. 

The paper is organized as follows. Section 2 presents modelization of ATM 
switch by Stochastic Automata Network. In Section 3, we propose two models which 
provide stochastic bounds for the loss rates, while in Section 4, we present numerical 
results which show that for ill-balanced loads the results may be quite good. 

2. MODELIZATION BY STOCHASTIC AUTOMATA 
NETWORKS 

2.1. Stochastic Automata Networks 

Markovian Models give tools to modelize sequential small systems. But 
Markovian models for parallel systems are not solved efficiently. Stochastic Automata 
Networks (SAN) have been introduced to allow us to modelize complex parallel 
systems. The SAN approach identifies in the system, the jobs that can be executed 
independetly except in specific points named synchronized points. In SAN, each job is 
represented by an automation. The size of the Markov chain of the system is the 
product of the size of each automation. An external event which communicates with a 
job is modelized by a transition from one state of the automation to another. This event 
can be a local event or a synchronized event. 

• Local event assigns one job, so one automation. The rate of this transition can 
be fixed if it just depends on the corresponding automation or functional if the 
transition rate depends on the states of the other automata. 

• Synchronized event assigns the states of several jobs. It represents state 
change of several automata simultaneously. 
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It has been proved in [6] that, if the states are in lexicographic order, then the 
generator matrix Q  of the Markov chain associated to a continuous-time SAN is given 
by: 

, ,
= = ==
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The transition matrix of the Markov chain associated to a discrete-time SAN is 
given by: 

, ,
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where 
•  and  are the tensor product and sum, respectively. (See Appendix for 

details.) 
⊗ ⊕

• N  is the total number of automata in the network and  is the number of 
synchronizations. 

S

•  is the transition matrix of the local transition. So it is the transition matrix 

of automaton i  without synchronizations. 
iF

•  is the transition matrix of automaton  due to synchronization ,i jS i j . 

• ,i jR  is a matrix representing the normalization associated to the 

synchronization j  on the automaton i . 
The main advantage of this methodology is its ability to represent the Markov 

chain associated to the SAN model by a compact formula. This point is particularly 
important since it allows us to deal with systems which may have very large state 
spaces. 

In the following section, we show how we modelize our system with the SAN 
methodology. 

 
2.2. Modelization 

We show in this section how we modelize an ATM switch using SAN. In order 
to simplify this modelization, we consider a switch with two stages as shown in Fig. 1. 

Each queue is modelized by an automaton. Therefore, there are three queues 
in the system: two in the first stage and one in the second stage. The routing 
probabilities from the first stage to the second one are β1  and β2 . The size of Markov 

chain is ( ) ( ) (+ × + × +0 1 21 1 )1B B B . The system behaviour will be described through 

four synchronizations and one function. First, let us define these synchronizations and 
the function. The description of each synchronization is given as follows: 

•  is a synchronization which indicates that there is no service in queue 1 and 

no service in queue 2. 
0S

•  is a synchronization which indicates that there is a service in queue 1 and 

no service in queue 2. 
1S
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•  is a synchronization which indicates that there is no service in queue 1 

(buffer empty) and there is a service in queue 2. 
2S

•  is a synchronization which indicates that there is a service in both queue 

1 and queue 2. 
12S

 
 
 

 

Figure 1: Switch with two stages 

 
Let  be the function for geometric arrival process in the first stage where: f

 

•  is the probability that there is no customer arrival with ( )0f ( ) ( )( )= − −0 1 1f p q

q
q

 
•  is the probability that there is one customer arrival with 

 
( )1f
( ) ( ) ( )= − + −1 1 1f p q p

•  is the probability that there are two customer arrivals with . ( )2f ( ) =2f p
 

We show in Figures 2, 3 and 4, the different automata. Fig. 2 shows the 
automaton corresponding to buffer 1 in the first stage. The automaton corresponding 
to buffer 2 in the first stage is given by Fig. 3. The Fig. 4 shows the automaton 
corresponding to buffer in the second stage. 

3. MODELS, STOCHASTIC BOUNDS AND PROOFS 

3.1. Stochastic Ordering 

In this section, we give only the basic definitions and theorems of the strong 
(sample-path) ordering that will be used in this paper. We refer to the book of Stoyan 
[8] for an excellent survey of stochastic bounding technique applied in queuing theory. 

First, let us give the definition of the sample path stochastic comparison of two 
random variables  and Y  defined on a totally ordered space , (a subset of X S R  or 
N ), since it is the most intuitive one.  
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Figure 2: Automaton 1 

Definition 1.  is said to be less than  in the sense of the sample-path (strong) 
ordering  if and only if 

X
Y

Y
( ≤stX )

SProb( ) Prob( )≤ ⇔ > ≤ > ∀ ∈stX Y x a Y a a . 

In other terms, we compare the probability distribution functions of  and 
: it is more probable for Y  to take larger values than for . Moreover,  

means that  and  have the same distribution. 

X
=Y X stX Y

X Y
The state representation vectors of complex systems are generally 

multidimensional, thus the state spaces may not be totally ordered. In such cases, we 
must first choose the order relation on this space that must be reflexive and transitive 
but not necessarily anti-symmetric. In the sequel, we denote by  the pre-order or the 
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partial order relation on the state space. The stochastic order associated with this 
vector ordering will be then denoted by st

, ,

. 

y S

The generic definition of a stochastic order is given by means of a class of 
functions. The strong stochastic ordering is associated with the increasing functions. 
We now give the generic definition in the general case: the random variables are 
defined on a space , endowed with a relation order  (pre-order or partial order): S

 
Definition 2. 

( ) ( )⇔ ≤stX Y Ef X Ef Y  

for every function  -increasing, whenever the expectation exists. : →f S R
f  is -increasing if and only if ( ) ( )∀ ∈ → ≤x x y f x f y . 

 

 

Figure 3: Automaton 2 
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We state only the sample-path properties of the strong stochastic ordering that 
will be applied to demonstrate the existence of stochastic comparison. 
 

stX Y , if and only if there exist random variables ,X Y  defined on the same space, 

such that 
• =stX X  and =stY Y  

• X Y  almost surely (Prob( ) )= 1X Y . 

In this work, we find bounding systems on a reduced state space, thus the 
state space of the considered system and the bounding ones are not same. Therefore we 
compare them on a common state space. To do this, we first project the underlying 
spaces into this common one, and then compare the images on this space. This type of 
comparison is called comparison of images or comparison of state functions [2]. In the 
sequel, since our main goal is comparing Markov chains, we assume that the considered 
state spaces are discrete. 

 

Figure 4: Automaton 3 
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Definition 3. Let X (resp. Y) be a random variable which takes values on a discrete, 
countable space E (resp. F), and G be a discrete, countable state space endowed with a 
pre-order ; :α →E G  (resp. :β →F G ) be a many-to-one mapping. The image of X on 
G is less in the sense of st  than the image of Y on G if and only if 

( ) ( )α βstX Y . 

The comparison of the images may be defined more intuitively by representing the 
projection applications by matrices. Let ,α βM M  denote the matrices representing the 

underlying mappings, and the probability vectors ,p q  represent respectively the 

random variables . If ,X Y

[ , ],α ∈M i j i E    and   
( )α =

∈ = 


1 if 1
0 otherwise

i
j G  

then 
( ) ( ) α βα β ⇔st stX Y pM qM . (1) 

Let us now assume that the state space comparison  be { , then the comparison 
of images (equation 1) is defined by partial sums: 

G ,..., }1 n

: ... [ ] [ , ] [ ] [ , ]α β
= = = =

∀ × ≤ ×∑ ∑ ∑ ∑
1 1

1
n n n n

k i j k i j
i n p j M j k q j M j k . 

Obviously, the stochastic comparison of random variables is extended to the 
comparison of stochastic processes. There are two definitions, one of them corresponds 
to the comparison of one-dimensional increasing functionals, while the other is the 
comparison of the multidimensional functionals. We give both definitions in the context 
of Markov chains, nevertheless they are more general. Let { (  and 

 be two Markov chains with discrete state space  (time parameter space 

may be discrete T  or continuous 

), }∈X t t T

{ ( ), }∈Y t t T S
+= N += RT ). 

 
Definition 4.  is said to be less than { ({ ( ), }∈X t t T ), }∈Y t t T  with respect to st  

 if and only if ({ ( )} { (stX t Y )})t

( ) ( ) ∀ ∈stX t Y t t T  

which is equivalent to 

( ( )) ( ( ))≤ ∀Ef X t Ef Y t t T∈  

for every -increasing functional f, whenever the expectations exist. 
 

3.2. Sochastic Models 

We consider here a network with several input buffers (see Fig. 5). In this 
section, we focus on the application of stochastic bounds to the second stage of the 
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network. We assume that the arrivals follow an i.i.d. batch process. But, our 
methodology also applies to a Markov modulated batch arrival process and to the other 
stages of the network. We will show how to handle such cases in the conclusions. 

 

 

Figure 5: Exact model 

Let  be the number of input buffers. Obviously, m ( ( ), ( ), ( ),..., ( )), ≥0 1 2 0mN t N t N t N t t  

is a discrete-time Markov chain. We now define two systems which are easier to 
evaluate and which provide upper and lower bounds on the considered performance 
measure (i.e. the cell loss rate at buffer 0). These systems have a smaller size, then it is 
not possible to compare directly the steady-state distribution on the same state space. 
This is a major difference with Truffet's approach which is based on the comparison of 
the same space with distributions which are obtained analytically . We first define the 
state space of comparison ε , and the pre-order  defined on this space. 

We will use a limited representation for the input buffers in the space ε , while 
we represent explicitly the evolution in buffer 0. Let ( , , ,..., ) ε= ∈0 1 2 ms N X X X , where 

• 0N  is the exact number of cells at buffer 0. 

• for the buffers of the first stage i.e., ≤ ≤i m1 : 
− , if there are some cells at buffer , = 1iX i

− , if there are no cells. = 0iX

Since { , }∈0 0 0N B  and , the comparison state space is { , }∈ ≤ ≤0 1 1iX i m { }ε = ×00 B  

 where  is the cartesian product. We now define the pre-order  on { , }0 1 { , }× × 0 1 ×
ε : Let ( ,= 0 1,..., m)x x x x , ( , ,..., ) ε= ∈0 1 my y y y . 

≤ = =
 = = ≤ ≤

0 0 1 1 if    and  and

  if  , 0
m m

i i

x y x y x y x y

x y x y i m
 

It may be worthy to remark that this pre-order is chosen in order to compare the cell 
loss rates at buffer 0 (Eq. 5). Intuitively, when we compare the systems with the same 
capacity for buffer 0 if , ε∈x y  are two states such that x y , then the number of loss 
cells at state x  will be less or equal to the number of lost cells at state . y
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We compare the images of the considered systems on the state space ε  in the 
sense of the stochastic order st . The basic definitions and theorems for stochastic 

bounds are given in the Appendix, and more detailed information can be found in [2, 8, 
9]. First, we define the following many-to-one mappings in order to project the state 

spaces of the compared systems into ε . Let  be the state space of the system which 

provides the lower bound, while  be the state space of the one associated to the 
upper bound 

infS
supS

inf sup: : :ϕ ε α ε β→ →S S S ε→ . 

Remember that the considered system can be modeled by a discrete-time Markov chain 
with rather general assumptions on the arrivals, and will be denoted by { ( )}ts t

sup) }ts t

. Let 

bounding systems be discrete-time chains denoted by { (  and . The 

comparison of discrete-time Markov chains is defined as the conservation of the 
stochastic order on the initial distributions at each step (see Def. 5 in the Appendix). 
Then one must demonstrate the following stochastic order relations between the 
images of the chains: 

inf) }ts t { (

inf sup( ( )) ( ( )) ( ( ))ϕ α β ∀ ≥ 0st sts t s t s t t  (2) 

We now give an outline of the proof, using a sample-path approach (see Appendix): 
1. In the first step we prove the existence of realizations verifying the following 

inequalities: 

inf sup( ( )) ( ( )) ( ( ))ϕ α β ∀ ≥ 0s t s t s t t   

Because of the pre-order , one must build the realizations such that: 
for the lower bound: 
• for all input buffers, ≤ ≤i m1 : 

if , then ( ) = 0iX t inf ( ) ,= ∀ ≥0 0iX t t . 

This condition means that when no arrival may occur from buffer  to buffer 
0 in the original system, then no arrivals may occur in the lower bounding 
system 

i

• and . inf( ) ( ),≥ ∀0 0 0N t N t t ≥

for the upper bound: 
• for all input buffers, ≤ ≤i m1 : 

if , then ( ) = 1iX t sup ( ) ,= ∀ ≥1 0iX t t . 

This condition means that when an arrival may occur from buffer  to buffer 
0 in the upper bounding system, then an arrival may occur in the original one. 

i

• and . sup( ) ( ),≤ ∀0 0 0N t N t t ≥

2. Then, the stochastic ordering st  between the images (Eq. 2) follows from the first 

step as a consequence of the sample-path property (Eq. 1). Moreover, if there are 
steady-state distributions of the chains, then 
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inf sup( ) ( ) (ϕ α βΠ Π Πst st )  (3) 

where  denotes the steady-state distribution. Π
3. The last step consists of the proof of the inequalities between the rewards on the 

steady-state distributions of the chains: 

inf sup≤ ≤R R R  (4) 

First we rewrite the reward function on the steady-state distribution defining cell 
loss rate (Eq. 5): 

( ) ( )π
∈

= ∑
s S

R s f s   where  ( ) [ , ](( ) )+ +

=
= − +∑ 0

1
1

m

j
f s p j s n j B− 0  (5) 

Remember that the arrival probabilities [ , ]p j s  for a state ( , , ,..., )= 0 1 2 ms n x x x , are 

computed from the values of , ≤ ≤1ix i m . Then it is easy to see that if ≤1 2s s , then 

, so  is a -increasing function. ( ) ( )≤1 2f s f s ( )f s

Since the stochastic order has been proved between steady-state distributions (3), 
and the pre-order is chosen such that the functions defining the performance 
measure are -increasing, then the inequalities (Eq. 4) are a direct consequence of 
the stochastic order st  (see definition with class of functions in the Appendix). 

 
3.3. Lower Bound 

We now propose systems providing lower bounds by considering the same 
topology for the network with smaller input buffers (see Fig. 6). Remember that the 
bounding system must be easer to evaluate than the original one. So, one must consider 
sufficiently small capacities to get a tractable numerical solution. Hence 

inf ,≤ ≤ ≤1i iB B i m   and  inf =0 0B B  

Obviously, at least one of these inequalities must be strict. 
 
We only give the demonstration of the first step. 

• If , since the external arrivals to the input buffers are the 

same, we have: 

inf ( ) ( )≤0iN N 0i

≥inf ( ) ( ),≤ ≤ ≤ ∀1 0i iN t N t i m t  

Then the first condition is established: 

if  ,  then  ( ) = 0iX t inf ( ) ,= ∀ ≥0 0iX t t  

• We now consider the evolution of the cell number at buffer 0. A cell arrival to 
this buffer may occur if a service has been completed in the input buffers. As a 
result of the former step, one may build realizations of compared systems such 
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that, if there is an arrival in the bounding system, then there is also an arrival 

in the original one. Therefore if , we may have inf ( ) ( )≤0 00N N 0

>inf ( ) ( )≤ ∀0 0 0N t N t t . 

 

 

Figure 6: Model for lower bound 

We do not prove the other steps. Since the stochastic order relation between 
the images of the steady-state distributions exists and the pre-order  is chosen such 
that the reward functions on these distributions are -increasing, we have the 
inequality (Eq. 4). 

 
3.4. Upper bound 

We simplify the original system by deleting some of the input buffers and 
replacing them by sources (see Fig. 7). An equivalent view is that these buffers are 
never empty. The resolution of the bounding system will be easier since we do not 
consider the evolution of the cell numbers at these input buffers. Let  be the set of 
the deleted input buffers, then 

E

( ) ,= ∀ ≥ ∈1 0jX t t j E . 

The buffer capacities for the other buffers are not changed: 

sup = iiB B ,  if  ∈ Ei   and  inf =0 0B B . 

Again, we only prove here the first step for the upper bound. 
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Figure 7: Model for upper bound 

• Obviously, the cell numbers at the input buffers which are not deleted change 

in the same manner. Then if , we have: sup( ) ( )≤0i iN N 0

sup( ) ( ),≤ ∀ > ∈0i iN t N t t i E  

Then the first condition is established for all input buffers, ≤ ≤i m1 : 

If    then  ( ) = 1iX t sup ( ) = ∀ ≥1 0iX t t  

• Now we consider the evolution at buffer 0. Since, if one cell arrival may occur 
in the original system, then it may also occur in the upper bounding one, then 

if , we may have: sup( ) ( )≤0 00N N 0

sup( ) ( )≤ ∀ >0 0 0N t N t t . 

So we prove stochastic comparison between the images of the considered 
Markov chains. Since the same stochastic order relation exists between the steady-state 
distributions and the reward functions are -increasing, we have the inequality (Eq. 
4). 

4. NUMERICAL COMPUTATIONS 

We apply this method to several topologies, several batch distributions of 
arrivals and several routing probabilities. We present here some typical results. We 
consider a system with 4 input buffers with the same size. Two cases are presented: 
buffers of size 10 and 20. The exact model is associated to a Markov chain of size 

. ( )+ 51B
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The upper bound is obtained with a model of two input buffers and two 

sources. Thus the chain size is only ( . To compute the lower bounds, we keep 
two buffers unchanged and we change the size of the two others to only 2 cells. This 

leads to a chain of size . Clearly the upper bound is much easier to compute 
than the lower bound. 

)

)

+ 31B

( + 39 1B

 

 

Figure 8: Buffer of size 10, .= 0 01q  and .= 0 1q  

The best results are obtained when the flows of arrivals from the input buffers 
are unbalanced. For instance, in Figure 8 and 9, we present the bounds for buffer of 
sizes 10 and 20. We assume that the external arrivals batch is the superposition of 2 
independent Bernoulli processes with probability p . So, the load in queues of the first 
stage is 2 p . The probabilities βi  are defined as ( . , . , , )− −0 60 4 q q q q . 

 

 

Figure 9: Buffer of size 20, .= 0 01q  and .= 0 05q  

The second example is a system with buffers of size 20. The lower bound is 
computed using the following sizes for the 4 input buffers (20, 10, 1, 1). More accurate 
lower bounds may be found with more computation time. 
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We can compute several bounds using our results. For the upper bounds the 
number of buffers replaced by sources is arbitrary. For the lower bounds, all buffers 
may be shortened. Clearly, this gives a hierarchy of bounds with a tradeoff between 
accuracy and computation times. 

Furthermore, even if we keep the state space constant, the lower bounds can 
be obtained by several strategies. For instance, we may consider a model with two 
buffers of size A  or a model with a buffer of size / −3 1A  and a buffer of size 2. These 
two configurations have roughly the same number of states. A natural question is to 
find some heuristics to change the buffer size and provide good lower bounds with 
approximately the same number of states as the model for upper bounds. These 
heuristics will probably be based on the output process intensity. 

5. CONCLUSION 

In this work, we present a method to estimate the cell loss rates in a second 
stage buffer of an ATM switch. Obviously, the considered system is a discrete time 
Markov chain, the lower numerical resolution is only tractable for very little buffer 
sizes. We propose to build bounding models of smaller sizes which are comparable in 
the sample-path stochastic ordering sense with the exact model. 

Our model could be used to analyze rewards which are not decreasing 
functions of the steady-state distribution such as the losses or the delay. And it may be 
applied to all systems where the routing allows the decomposition and the analysis 
stage by stage for networks with independent flows of cells as feed-forward networks. 
Indeed, the same argument gives upper bound for the third stage (see Fig. 10). Some 
buffers are replaced by deterministic sources of cells with rate equal to 1. Then, these 
output processes follow the independent Bernoulli routing and are superposed with the 
other output processes which join at the third stage queue. 

 
 

 

Figure 10: Upper bound for the third stage 

Similarly, this method can be applied to networks with Markov modulated 
batch processes for the external arrivals. Deterministic sources will replace buffers to 



 J.-M. Fourneau, L. Mokdad, N. Pekergin / Computing the Bounds on the Loss Rates 182

obtain the upper bound, while the model for lower bound will include the modulating 
chain to describe the external arrivals. Some interconnection networks exhibit 
dependence between the flows of cells after some stage. For instance, in the third stage 
of Clos networks, input processes are correlated because arrival processes into queues 
of the second stage are negatively correlated. It may be possible that upper bound be 
obtained using our technique even with such a negative correlation of input processes. 
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APPENDIX 1 

Definition 1. Let [= ij ]A a  be a matrix of order ×n n , and [ ]= ijB b  a matrix of order 

×p p . The tensor product of A and B is a matrix C of order ×np np  such that C may be 

decomposed into  blocks of size 2n p . 

 
 = ⊗ =  
  

11 1

1

n

n n

a B a B
C A B

a B a Bn

]

 

 
Definition 2. Let [= ijA a  be a matrix of order ×n n , and [ ]= ijB b  a matrix of order 

×p p . The tensor sum of A and B is a matrix D defined by: 

= ⊕ = ⊗ + ⊗p nD A B A I I B  

where pI  and  represent the identity matrix of order nI ×p p  and ×n  respectively. n

 
Example: 
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+  
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APPENDIX 2 

Let  be preorder (reflexive, transitive but not necessarily anti-symmetric) on 
a discrete, countable space ε . We consider two random variables  and  defined 
respectively on discrete, countable spaces  and , and their probability measures 
are given respectively by the probability vectors 

X Y
E F

p  and  where q
[ ] Prob( ), ∀= = ∈p i X i i E  (resp. [ ] Prob( ),= = ∀ ∈q i Y i i F ). 

We define two many-to-one mappings :α ε→E  and :β ε→F  to project the 
states of  and  into E F ε . First, we give the following proposition for the comparison 
of the images of  and  on the space X Y ε  in the sense of st  ( ( ) ( ))α βX Yst : 

 
Proposition 1. The following propositions are equivalent 

• ( ) ( )α βstX Y  

• definitions with class of functions: 

| ( ) | ( )
( ) [ ] ( ) [ ]

ε α ε β∈ ∈ = ∈ ∈ =
≤ ∀∑ ∑ ∑ ∑

s n E n s s m F m s
f s p n f s q m f -increasing 

f  is -increasing if , , ( ) ( )ε∀ ∈ → ≤x y x y f x f y  

• definition with increasing sets: 

| ( ) | ( )
[ ] [ ]

α β∈ ∈Γ ∈ ∈Γ
≤∑ ∑

n E n m F m
p n q m  for all increasing sets Γ  

Γ  is an increasing set if , ,ε∀ ∈x y x y  and ∈ Γ → ∈ Γx y  

• sample-path property: 
There exist random variables  and Y  defined respectively on E and F, 

having the same probability measure as X and Y such that: 
X

( ) ( )α βX Y  almost surely 

We now give the definition of the stochastic ordering between the images of 
discrete-time Markov chains. 

 
Definition 5. Let { (  (resp { ( ) be discrete-time Markov chains in E (resp. F), 

we say the image of { (  on 

)}iX i

)X i

)}iY i

({ (}i ( ))} )ε α iX i  is less than the image of the { ( , on )}iY i

({ ( ( ))} )ε β iY i  in the sense of st  if  

( ( )) ( ( )) ( ( )) ( ( ))α β α β→ ∀0 0st stX Y X i Y i > 0i . 

 


