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Abstract: This paper presents a formulation of bicriterion Steiner tree problem which 
is stated as a task of finding a Steiner tree with maximal capacity and minimal length. 
It is considered as a lexicographic multicriteria problem. This means that the 
bottleneck Steiner tree problem is solved first. After that, the next optimization 
problem is stated as a classical minisum Steiner tree problem under the constraint on 
capacity of the tree. The paper also presents some computational experiments with the 
multicriteria problem. 
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1. INTRODUCTION 

The Steiner tree problem (STP) is one of the most researched problems of 
combinatorial optimization [7, 12]. The problem is to find the Steiner tree with 
minimal length in the given weighted graph. This paper also considers the bottleneck 
Steiner tree problem (BSTP) that is to find the Steiner tree with maximal capacity in 
the weighted graph. Although the BSTP appears to be a relatively simple problem, it is 
rarely treated in the literature and one of the first reports concerning it is given in [9]. 

Scientific interest for application of multicriteria optimization to 
combinatorial problems has been increased in the last few years [4]. Some applications 
of multicriteria optimization to the shortest path problem [1], the shortest spanning 
tree [5], traveling salesman problem (TSP) [10], and some other problems [4] are 
reported in the literature. 

A specific multicriteria Steiner tree problem is formulated in the paper. A 
weighted graph in which two values, capacity and length, are assigned to each edge is 
considered. The objective is twofold: (i) to maximize the capacity and (ii) to minimize 
the length. The problem is to find a Steiner tree with both maximal capacity and 
minimal length. 

The paper is organized into four sections. After the introduction, both classical 
Steiner tree problem and bottleneck Steiner tree problem are described in the next 
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section. In section 3 the formulation of the multicriteria Steiner tree problem and an 
algorithm for its solving are presented. In section 4 some experimental results are 
given. 

2. STEINER TREE PROBLEM 

2.1.Classical Steiner tree problem 

Let ( , , )=G N L C  be an undirected weighted simple graph where N is a finite 

set of vertices, L is an edge set and C is a mapping function : +→ RC L  which assigns a 
positive number ijc  to each edge of the graph. The value ijc  is called the length of the 

edge . Given a subset T of the vertices in G called terminal vertices. 

Steiner tree is a subgraph  of G such that  contains all vertices in T, 
 and  is a tree. Length of Steiner tree is the sum of lengths of all edges of 

which it consists. Steiner tree problem is to find a Steiner tree with minimal length. It 
belongs to the class of so called minisum optimization problems. 

{ , },i j

L

{ , }∈i j L

'G
' ( , ')=G S L ⊆S N

' ⊆L

The main difference between Steiner tree and spanning tree is that, unlike the 
spanning tree, Steiner tree doesn't need to contain all vertices of the initial graph. It 
must contain all terminal vertices and an arbitrary number of other vertices which are 
needed to connect the terminal vertices into a tree. Also, unlike the shortest spanning 
tree which is an easy problem, STP is NP-hard problem. 

STP is one of the most researched NP-complete problems. Very well known 
exact algorithms for combinatorial optimization like branch and bound, branch and 
cut, etc. [11] have been used for its solving. There are also a great number of heuristics 
which are adapted for the problem such as: simulated annealing, tabu search, genetic 
algorithms, etc. [6]. A simple but effective heuristic for solving the classical Steiner tree 
problem is the following. 

 

Heuristic (H1) 

1. Find the shortest paths between all pairs of terminal vertices. Only vertices 
and edges which belong to those paths will be considered in the following 
steps. 

2. Find the shortest spanning tree on the remaining graph. 
3. "Cut the tails" from the tree, i.e. iteratively remove all vertices (and incident 

edges) whose degree is equal 1, unless it is a terminal vertex. 
 

2.2. Bottleneck Steiner tree problem 

Let ( , , )=G N L Q  be an undirected weighted simple graph where N is a finite 

set of vertices, L is an edge set and Q is a mapping function : +→ R

ij

Q L  which assigns a 
positive number  to each edge of the graph. The value ijq q  is called the capacity of 

the edge . The capacity of a Steiner tree is defined as to be the minimal 

capacity of edges it consists of. Bottleneck or maximin Steiner tree problem is to find a 
Steiner tree with maximal capacity. 

{ ,i j}, { , }∈i j L
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For solving the bottleneck STP we suggest an original exact algorithm which 
is based on the same idea as the Prime algorithm. The algorithm is simple, polynomial 
and guaranties the optimal solution. It uses the concept of vertices labeling and 
iterative adding of edges to the current tree. The choice of the edge which is to be added 
is based on its capacity and the condition that the edge connects one of the labeled 
vertices to another one which is not labeled. The algorithm is the following: 
 
Algorithm (A1) 

1. Set all vertices unlabeled. 
2. Select one of the vertices from T and label it. 
3. In the set of unlabeled vertices find a vertex that is connected to some labeled 

vertex by the edge of maximum capacity and label it. 
4. If all vertices from T are labeled, go to 5; otherwise, go back to 3. 
5. From the set of all labeled vertices obtained in the previous steps, eliminate all 

vertices which don't belong to T and have vertex degree equal 1. 
 
Algorithm correctness proof: 

Let us denote by  a Steiner tree obtained by algorithm (A1) 

and by M the capacity of the tree i.e. 

( ) ( )( ,= ST STST N L

min{

)

( )|{ , } }.= ∈ij STi j L

)

M q

( ) ( )( ,= 1 11 ST STN L

 Let us suppose that there 

is another Steiner tree  with capacity ST ( )min{ |{ , } }.= ∈ 11 ij STM q i j L  

What we need to prove is that ≤1M M . Two cases can occur: 
1. . It is obvious that ⊆ 1ST ST ≤1M M . 
2. ⊆ 1ST ST

1ST

. Consequently, there exists a vertex i which belongs to both ST 

and  and edges { ,  which belongs to ST (and not to ) and { ,  
which belongs to  (and not to ST) (see Figure 1). According to Step 3 of 
algorithm (A1),  for each { ,

}i j
1

,ijq

1ST }i k
ST

≤ikq (} )∈ STi j L  (otherwise, the vertex k should 

be labeled in Step 3). Consequently, ≤ ≤1 ikM q M . 

 
 

i

ST ST1

j k  

Figure 1.  

Efficiency of this algorithm remains the same as Prime's, i.e.  [2]. ( )2O n
 

Example 1: Given an instance of rectilinear graph where vertices 1, 5 and 9 are 
terminal and capacity assigned to each edge (Figure 2(a)). 
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Figure 2: Illustration of the algorithm (A1) 

At the beginning, we label only vertex 1. Then, following edges are added 
iteratively according to algorithm A1: (1,2), (2,4), (4,5), (4,7), (5, 8), (8,9). Now all 
terminal vertices are in the tree (Figure 2(b)). We can freely remove vertices 7 and 4 
from the Steiner tree because they don't influence the solution. The capacity of the 
Steiner tree is 2 (Figure 2(c)). 

3. MULTICRITERIA STEINER TREE PROBLEM 

Given an undirected weighted simple graph ( , , , )=G N L C Q  where N, L, C and 
Q are described in the previous section, we define the bicriterion Steiner tree problem 
as a task of finding a Steiner tree with maximal capacity and minimal length. In many 
cases the process of finding Steiner tree with maximal capacity may give multiple 
solutions. Under the circumstances it seems appropriate to use the lexicographic 
method which provides finding the minimal length while keeping the optimal capacity 
of the tree. The logic inflicts an idea for more precise formulation of the bicriterion 
Steiner tree problem as a lexicographic optimization problem. It means that the 
bottleneck Steiner tree problem should be solved first. The optimal solution will 
determine the maximal capacity of the tree. After that, the next optimization problem 
to be solved will be classical minisum Steiner tree problem but under the constraint on 
the capacity of the tree. 

Based on the previous considerations the following algorithm for solving the 
bicriterion Steiner tree problem is proposed: 
 
Algorithm (A2) 

1. Solve the bottleneck Steiner tree problem with the algorithm (A1) and find out 
the maximal capacity M of the tree. 

2. Remove from the initial graph all edges with capacity less than M. 
3. "Cut the tails" from the graph as mentioned in step 3 of the heuristic (H1) and 

step 5 of the algorithm (A1). (Those edges certainly will not influence the 
solution and this will simplify the next step.) 

4. Solve the classical Steiner tree problem on the remaining graph using any 
suitable algorithm or heuristic. 
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The complexity of Algorithm A2 depends on step 4, i.e. if we chose a heuristic, 
the algorithm may remain polynomial, but if an exact algorithm is chosen, the whole 
Algorithm A2 becomes exponential. However, even in case we chose an exact algorithm, 
the reduction of edges performed in steps 2 and 3 decreases the graph dimension and 
consequently may significantly decrease the complexity of the whole algorithm. 
 
Example 2: For the same instance as in Example 1, the lengths are assigned to each 
edge (Figure 3(a)). 
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Figure 3: Illustration of the algorithm (A2) 

First we remove all edges that have capacity less than 2 (see the previous 
example) (Figure 2(b)). After the "cutting" of vertices 3 and 6 the graph in Figure 3(c) 
will remain. After solving classical STP, final solution is shown in Figure 3(d). This 
Steiner tree keeps the optimal capacity 2 and under that constraint has a minimal 
length 124. 

It is interesting to notice the following variations of the presented bicriterion 
Steiner tree problem: 
 

• The same formulation can also be applied to another bicriterion Steiner tree 
problem where the capacity remains the first criterion while the second one is 
defined by the number of edges in the tree (which should be minimized). That 
is a special case of the previous formulation where all edge lengths have the 
same value (e.g. = 1ijc ). Therefore, the same algorithm (A2) can be used for 

this problem, too. 
• The relaxed lexicographic method which allows trading between multiple 

criteria can also be applied. By introducing parameter α  given by the decision 
maker and by changing step 2 of Algorithm (A2) where only edges with 
capacity less then α−M  should be removed, one can improve the length of 
the Steiner tree by decreasing its capacity. By changing parameter α  all 
efficient (dominant) solutions can be obtained. 
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4. NUMERICAL EXPERIENCES 

For the purpose of making numerical experiments, the computer program that 
implements the algorithm (A2) has been developed. As it has been mentioned, the first 
step of the procedure was implemented through the algorithm (A1). The step 4 of 
algorithm (A2) is performed by heuristic (H1). As a consequence, the whole procedure 
has a polynomial complexity. Therefore, no further code optimizations were done. 

Hence the second problem (classical Steiner tree problem) remains NP hard, it 
was interesting to empirically research the level of graph reduction after Step 3 of 
algorithm (A2). Three parameters were observed: (a) level of vertices reduction 

( )− = − 11 100n
n

N %  where n is a vertices number of starting graph and n  is vertices 

number after reduction, (b) level of edges reduction 

1

( )− = − 11 100m
m

M %  where m is an 

edges number of starting graph and  is edges number of remaining graph and (c) 
maximal capacity M of Steiner tree. All results were obtained as the average of 50 
solved instances.  

1m

Instances were generated randomly. For that purpose, two random parameters 
were used: (a) graph density parameter p which presents probability that edge { ,  
exists and (b) range of probably chosen edge capacities R (i.e. 

}i j
rand( , )= 1ijq R ). 

 

Table 1. 
, , :n t R  , ,= = =10 3 4n t R  , ,= = =10 3 4000n t R  

p  −N  −M  M  −N  −M  M  

0.1 35 37.9 1.52 39.4 46.0 907 
0.3 32 46.5 2.34 41.0 59.0 1580 
0.5 20 50.2 2.76 37.2 71.8 2413 
0.7 25 67 3.46 31.6 74.2 2709 
0.9 22 70.7 3.66 32.8 81.2 3057 

, , :n t R  , ,= = =100 10 4n t R  , ,= = =100 10 4000n t R  

p  −N  −M  M  −N  −M  M  

0.1 9.4 55.7 3.16 27.1 74.4 2827 
0.3 0.5 75.2 4.0 23.0 90.6 3580 
0.5 0 75.0 4.0 19.7 93.9 3732 
0.7 0 74.9 4.0 24.0 96.0 3818 
0.9 0 74.9 4.0 27.3 97.2 3871 

 

, , :n t R  , ,= = =316 17 4n t R  , ,= = =316 17 4000n t R  

p  −N  −M  M  −N  −M  M  

0.1 0 75.2 4.0 21.6 90.3 3571 
0.3 0 75.0 4.0 18.9 96.8 3861 
0.5 0 75.0 4.0 16.4 97.8 3906 
0.7 0 75.0 4.0 16.3 98.5 3936 
0.9 0 75.0 4.0 16.0 98.8 3948 
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Different instances were generated varying 4 parameters: N − number of 
vertices, p − graph density, R − range of edge capacities and T − number of terminal 
vertices. Experiments have been done with the following values: { , , },∈ 10 100 316n  

{ . , . , . , . , . }, { , , }∈ ∈0 1 0 3 0 5 0 7 0 9 4 40 4000p R  and { },  ∈    2
nt n . Some of the obtained 

results are presented in Tables 1-3. 
In the first set of experiments p and N were varied for all planned values. 

Values for R were 4 and 4000 and T was  n . The results are presented in Table 1. 
The first thing that can be concluded is that ST capacity is related to both size 

and density of the graph. As they grow, the capacity gets better and consequently the 
graph reduction increases. Secondly, smaller instances have greater vertices reduction 
then the bigger ones, but reduction of edges dramatically increases with the graph 
dimension. It is interesting to notice that edges reduction was ''stacked'' on one quarter 
of initial edges number for instances with = 4R  (which is the consequence of the 
uniform distribution of edge capacities) and is much better for instances with 

= 4000R . It directly depends on the ST capacity. 
That observation initiated new set of experiments with value of R between 

these ''extreme'' ones. We chose = 40R . Next we wanted to determine how the number 
of terminal vertices influence graph reduction. The results of these experiments are 
given in the Table 2. 

 

Table 2. 
, , :n t R  , ,= = =10 3 40n t R  , ,= = =10 5 4000n t R  

p  −N  −M  M  −N  −M  M  

0.1 43.0 49.9 9.9 25.6 31.9 759 
0.3 33.8 46.2 14.4 19.4 40.0 1410 
0.5 34.2 69.2 24.8 17.0 54.2 2134 
0.7 29.8 75.0 28.9 17.0 68.0 2700 
0.9 33.8 82.1 32.8 19.0 77.9 3019 

, , :n t R  , ,= = =100 10 40n t R  , ,= = =100 50 4000n t R  

p  −N  −M  M  −N  −M  M  

0.1 21.5 70.0 27.8 3.9 55.6 2197 
0.3 16.7 88.7 36.2 5.2 85.3 3396 
0.5 15.4 93.1 38.1 3.8 91.2 3641 
0.7 11.2 94.5 38.7 3.9 93.6 3743 
0.9 10.6 95.4 39.1 4.9 95.4 3815 

 

, , :n t R  , ,= = =316 17 40n t R  , ,= = =316 158 4000n t R  

p  −N  −M  M  −N  −M  M  

0.1 13.9 88.0 35.9 1.7 82.3 3287 
0.3 8.5 95.1 39.0 1.9 94.1 3764 
0.5 7.4 96.9 39.7 1.8 96.6 3862 
0.7 2.3 97.4 40.0 1.8 97.6 3903 
0.9 0.6 97.4 40.0 1.8 98.1 3924 
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For instances where = 40R  the vertices reduction stayed between the values 
it had in previous instances. ST capacity reached its maximal value (for 

) and therefore the number of edges was reduced to ,= =316 0 7n p . 1
40

 of its initial 

number. Unlike the instances with = 4R  where the maximum was reached with 
 and small density, here the maximum was reached with = 100n = 316n  and greater 

density. 
Concerning the number of terminal vertices, the conclusion is that its 

influence on graph reduction is not too big, especially to edges number. 
At last, we wanted to check all these trends on greater instances. We tried 

with , but only 5 instances per result were made (because of time 
consumption). The results are presented in Table 3. In addition, here we present 
average values for  and m which are described above. 

= 1000n

,1n m1

 
Table 3. 

, , :n t R  , ,= = =1000 31 4000n t R  

p  1n  −N  1m  m  −N  M  

0.1 891.6 21.9 2168 49988 95.7 3823 
0.3 928.2 8.2 2307 149806 98.5 3937 
0.5 893.4 10.7 1938 249569 99.2 3968 
0.7 893.8 10.7 1854 349672 99.5 3979 
0.9 814.0 18.6 1622 449502 99.6 3985 

 
It is obvious that the ST capacity increases with the graph size in both number 

of vertices and number of edges. Column  of Table 3 clearly shows the decreasing 
number of remaining edges although the number of edges in initial graph (column m 
Table 3) grows. 

1m

The conclusion is that graph reduction grows proportionally to graph size, but 
the level of reduction stays polynomial. On the other hand, the complexity of classical 
Steiner tree problem is NP, so the whole problem remains NP hard. Nevertheless, the 
graph reduction can move the border of solvable graph size further. 
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