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Abstract: The Just-In-Time (JIT) philosophy has received a great deal of attention. 
Several actions such as improving quality, reducing setup cost and shortening lead time 
have been recognized as effective ways to achieve the underlying goal of JIT. This 
paper considers the partial backorders, lot size reorder point inventory system with an 
imperfect production process. The objective is to simultaneously optimize the lot size, 
reorder point, process quality, setup cost and lead time, constrained on a service level. 
We assume the explicit distributional form of lead time demand is unknown but the 
mean and standard deviation are given. The minimax distribution free approach is 
utilized to solve the problem and a numerical example is provided to illustrate the 
results. 
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1. INTRODUCTION 

In the classical production/inventory models, such as the economic order 
quantity (EOQ) model, the setup/ordering cost and lead time are assumed to be fixed, 
so does quality of production process (products). In other words, these factors (setup 
cost, lead time, and quality) are treated as givens (Silver [17]) and not subject to 
control. However, among the modern production/inventory management, the Japanese 
successful experience of using Just-In-Time (JIT) production has evidenced that the 
above factors can be controlled through various efforts. Also, accompanying the growth 
of JIT philosophy, considerable papers discussing the issues related to changing the 
givens have been presented.  
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Concerning lead time reduction, Liao and Shyu [8] first presented a 
probabilistic inventory model in which the order quantity is predetermined and lead 
time is a unique variable. Ben-Daya and Raouf [1] extended [8] by considering both lead 
time and order quantity as decision variables. Ouyang et al. [11] generalized [1] by 
allowing shortages with partial backorders. Moon and Choi [9] and Hariga and Ben-
Daya [4] respectively modified [11] to include the reorder point as one of the decision 
variables. Recently, Ouyang et al. [10] further combined the concepts of setup cost and 
lead time reductions, and they extended [9] by simultaneously optimizing the lot size, 
reorder point, setup cost and lead time. Note that the framework of setup cost 
reduction is initially presented by Porteus [13], and several authors have studied this 
issue on various production/inventory systems (see, e.g. Keller and Noori [6], Paknejad 
et al. [12], Sarker and Coates [15]).  

In the above mentioned models with controllable lead time [1, 4, 8-11], the 
quality-related issues are neglected; in other words, quality of production process 
(products) is implicitly assumed to be fixed at an optimal level and no quality cost is 
considered. However, in a real production environment, it can often be observed that 
there are defective items being produced. The results are extra costs incurred, no 
matter the defective items are rejected, repaired, reworked, or reached to the customer, 
refunded. Improving quality has been highly emphasized in modern production/ 
inventory management systems. In addition to the setup cost reduction, Porteus [14] is 
also the first to explicitly elaborate on a significant relationship between quality 
imperfection and lot size. Specifically, Porteus extended the classical EOQ model to 
include an imperfect production process, and based on the modified model, he studied 
the effects of quality improvement by further introducing the investing options. 
Besides, there are some authors modified [14] with various settings (see, e.g. Keller and 
Noori [7], Hong and Hayya [5]).   

From the above literature review, it can be found that there is no shortage of 
inventory models presented for controlling setup cost, lead time or quality, but little 
work has been done on controlling them simultaneously. In this paper, building upon 
Ouyang et al.'s [10] modified lot size reorder point (continuous review ) inventory 
model, we extend it to include the possible relationship between quality and lot size and 
an investing option of quality improvement. Furthermore, instead of having the stock 
out cost term in the objective function, we employ a service level constraint to control 
the stock out occasion. Our goal is to minimize the total related cost by simultaneously 
optimizing the lot size, reorder point, process quality, setup cost and lead time, subject 
to a service level constraint. We work on a case where the distributional form of lead 
time demand is unknown but the first and second moments are known and finite. The 
minimax distribution free approach, originally proposed by Scarf [16] and disseminated 
by Gallego and Moon [2], is utilized to solve the problem. Also, we develop an algorithm 
of finding the optimal solution and provide a numerical example to illustrate the 
results. Finally, the concluding remarks are made.  

( , )Q r
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2. NOTATIONS AND ASSUMPTIONS 

    First of all, the following notations and assumptions are employed 
throughout this paper so as to develop the proposed models. 
Notations: 
Q  

 

= lot size 

r  = reorder point 
L = replenishment lead time 
D  

 
= annual demand rate 

h = annual inventory holding cost per unit 
s  = cost of replacing a defective unit 
θ  = annual fractional cost of capital investment 
β  = fraction of the shortage that will be backordered, β≤ ≤0 1  

τ  = proportion of demands which are not met from stock, /τ < 1 2  
X  = lead time demand which has a distribution function (d.f.)  with finite 

mean 
F

DL  and standard deviation σ L , where σ  denotes the standard 
deviation of the demand per unit time 

A   = setup cost per order 

0A  = original level of setup cost  

( )AI A  = capital investment required to reduce the setup cost from original level 0A  

to target level ,A  < ≤ 00 A A  

δ  = percentage decrease in setup cost A  per dollar increase in investment 
( )AI A  

η  = probability of the production process that can go 'out-of-control' 

η0  = original probability of the production process that can go 'out-of-control' 

( )η ηI  = capital investment required to reduce the 'out-of-control' probability from 

original level η0  to target level η , η η< ≤ 00  

∆  = percentage decrease in η  per dollar increase in investment ( )η ηI  

 
Assumptions: 
1. The reorder point, =r expected demand during lead time +  safety stock ( , and 

⋅ (standard deviation of lead time demand), i.e., 

)SS

=SS k σ= +L k Lr D , where  is 
the safety factor.  

k

2. The lead time  has  mutually independent components. The th component 
has a minimum duration  and normal duration , and a crashing cost per unit 

time 

L n i

iu iv

ic . Furthermore, for convenience, we rearrange ic  such that ≤ ≤ …1 2c c  

≤ nc . Then, it is clear that the reduction of lead time should first occur on 

component 1 (because it has the minimum unit crashing cost), and then 
component 2, etc.  
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3. If we let  and  be the length of lead time with components 1 2  

crashed to their minimum duration, then  can be expressed as  

, ; and the lead time crashing cost 

=
= ∑0

1

n

j
j

L

= =
= −∑ ∑

1 1

n i

i j j
j j

v

v

n

iL

=

, ,...,i

( )

iL

( )−L v uj , , ,…1 2i R L  per  

cycle for a given , is given by  [ ,L L ]−1i iL∈

( ) ( ) ( )
−

−
=

= − + −∑
1

1
1

i

i i j j j
j

R L c L L c v u  and ( ) =0 0R L .  

4. The setup cost can be varied through investment. The capital investment, , 

in reducing setup cost is described by a logarithmic function of the setup cost 

( )AI A

A , 
and 

( ) ln( )= 0
A

A
I A b

A
 for < ≤ 00 A A , where 

δ
=

1
b .  

5. The relationship between quality and lot size is formulated as follows. While 
producing a lot, the process can go 'out-of-control' with a small probability η  each 
time another unit is produced. The process is assumed to be in control before 
beginning production of the lot. Once 'out-of-control', the process produces 
defective units and continues to do so until the entire lot is produced. (This 
assumption is in line with Porteus [14] and is supported by Hall [3].) 

6. The production process can be improved through investment. The capital 
investment, ( )η ηI , in improving process quality by means of reducing the 'out-of-

control' probability η  (note that the lower the value of η  the higher the process 
quality) is a logarithmic function of η ; that is,   

( ) ln( )η
ηη
η

= 0I B  for η η< ≤ 00 , where =
∆
1

B .  

 
3. MODEL FORMULATION 

Recently, Ouyang et al. [10] explored the setup cost and lead time reductions 
problem on the lot size reorder point inventory system, where shortages are allowed 
with partial backorders. Symbolically, they formulated an inventory model as follows: 

min ( , , , ) ln ( ) ( )

[ ( )] ( ) ( )

θ β

π π β

+

+

  = + + + − + − − 


   

+ + − − +

0

0

1
2

1

A D Q
EAC Q r A L b A h r DL E X r

A Q
D D

E X r R L
Q Q

  

subject to 

< ≤ 00 A A , (1) 
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where π  is shortage cost per unit short, π0  is marginal profit per unit, and  

is the expected shortage per replenishment cycle. 

( )+−E X r

In model (1) the possible relationship between quality and lot size is ignored 
and no quality improvement planning is considered. These two issues are taken into 
account here. Firstly, by assumption 5, we note that the expected number of defective 

items in a run of size  is approximated to  (for more details, see [14]). Suppose 
the cost of replacing a defective unit is 

Q /η2 2Q
s . Thus, the expected annual defective cost 

would be /η 2sDQ . Besides, when process quality is no longer considered to be a fixed 
parameter but a decision variable, the control of quality level is accomplished by 
varying the capital investment allocated to improve quality level (assumption 6). On 
the other hand, the stock out cost term is included in model (1). However, the stock out 
cost often includes intangible components such as loss of goodwill and potential delay 
to the other parts of the inventory system, so it is difficult to explicitly express the 
stock out cost. Therefore, we would like to replace the stock out cost term in the 
objective function by a service level constraint. 

With the above modifications, our concerning problem can be formulated as: 

min ( , , , , ) ln ln

( ) ( ) ( )

ηη θ θ
η

ηβ +

  = + +  
   

 + + − + − − + +  

0 0

1
2 2

A AD
EAC Q r A L b B

A Q

Q D
h r DL E X r R L

Q
sDQ

 

subject to 

( ) τ
+−

≤
E X r

Q
, 

η η< ≤ 00 , 

< ≤ 00 A A ,   (2) 

where τ  ( /  is the proportion of demands which are not met from stock, and hence )< 1 2
τ−1  is the service level. 

 
 
4. SOLUTION BY MINIMAX DISTRIBUTION FREE 

APPROACH 

Information about the distributional form of lead time demand might be 
limited in practice. Therefore, in contrast to the traditional approach that the lead time 
demand  follows a special form of distribution, we assume the d.f.  of  
belonging to the class  of d.f.'s with finite mean 

X F X
F DL  and standard deviation σ L . 

In this case, the exact value of the expected shortage per replenishment cycle 

 can not be obtained. We then utilize the minimax distribution free approach 
to solve the problem. The minimax principle for this problem is to find the least 

( −E X r)+
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favorable d.f.  in F  for each  F ( , , , , )ηQ r A L  and then to minimize the total expected 
annual cost over , , ,ηQ r A

, ,

 and . That is, our problem is to solve L

)max (
∈F F

EAC Q r L

( ) τ
+− r

Q
≤

η< ≤

< ≤

0

0A

( )+− rE X

σ= +L k L

( ) σ+− ≤
1
2

Lr k

σk L= +L

η θ

1

EAC

( Q

η< ≤

< ≤

( )⋅

min , ,η A  

subject to 

E X
, 

η0 , 

0 A .                     (3)                       

We note that to find the least favorable d.f. in  for (3) is equivalent to 

finding the worst case for 

F

 in model (2). This task can be achieved by 

utilizing the relationship r D  (assumption 1) and Lemma 1 in Gallego and 
Moon [2]. That is, we have  

( )+ 21E X k  , for any ∈F F .   (4) −

    Then by substituting ( )σ + −21 2L k k / ) for ( +−E X r  in model (2) and 
considering the safety factor  as a decision variable instead of the reorder point  

(because 

k r

r D ), the problem (3) is reduced to  

( )
min ( , , , , ) ln ln

( ) ( )

ηθ σ
η

ηβ σ

    = + + + +    
    

+ − + − + +

0 0

2

2

1 1
2 2

w A AD Q
Q k A L b B h k L

A Q

D sDQ
h L k k R L

Q

 

Subject to 

)σ τ+ − ≤21 2L k k ,  

η 00 , 

00 A A .   (5) 

where wEAC  is the least upper bound of ( )⋅EAC . 

In order to solve this nonlinear programming problem, we temporarily ignore 
the restrictions η η< ≤ 00  and < ≤ 00 A A , and solve the nonlinear programming 

problem with a single constraint. By adding a nonnegative slack variable, , to the 

left-hand side of service level constraint 

2M

( )σ τ+ − ≤21L k k 2 Q , we transfer this 

inequality into equality and formulate the Lagrangean function as follows:   
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( )

( )
( )

( , , , , , , ) ( , , , , )

ln( ) ln( )

( ) ( )

,

η λ η λ σ τ

ηθ θ σ
η

ηβ σ

λ σ τ

 = + + − + −  
 = + + + + 
 

+ − + − + +

 + + − + −  

2 2

0 0

2

2 2

1 2

2
1

1 1
2 2

1 2

w wEAC Q k A L M EAC Q k A L L k k M Q

A AD Q
b B h k L

A Q
D sDQ

h L k k R L
Q

L k k M Q

  (6) 

where λ  is a Lagrange multiplier. 

It can be verified that  is not a convex function of ( , , , , , , )η λwEAC Q k A L M

( , , , , , , )η λQ k A L M . However, for fixed ( , , , , , )η λQ k A M ,  is 
concave in  because 

( , , , , , , )η λwEAC Q k A L M
[ ,∈L L ]−1i iL

( )

/

/

( , , , , , , )

[ ( ) ] .

η λ σ

σ β

−

−

∂
= −

∂

λ− + − − + <

2
3 2

2

2 3 2

1
4

1
1 1

8

wEAC Q k A L M
hk L

L

k k L h 2 0

  (7) 

Therefore, for fixed ( , , , , , )η λQ k A M , the minimum  will occur 
at the end points of the interval [ ,

( , , , , , , )η λwEAC Q k A L M
]−1i iL L . 

On the other hand, we take the first partial derivatives of 

 with respect to ( , , , , , , )η λwEAC Q k A L M , , , ,η λQ k A  and , and then set the results 

equal to zero, respectively. We obtain:  

M

( , , , , , , ) ( )η λ η λτ∂
= − + − + − =

∂ 2 2 2 0
2 2

wEAC Q k A L M AD h DR L sD
Q Q Q

,    (8) 

( , , , , , , )η λ λσ β
  ∂   = −  −  − + =  ∂   +  

2

1 2
1 1 1

2 1

wEAC Q k A L M k
h L

k hk
0 ,   (9) 

( , , , , , , )η λ θ
η η

∂
= − + =

∂
0

2

wEAC Q k A L M B sDQ
,  (10)               

( , , , , , , )η λ θ∂
= − + =

∂
0

wEAC Q k A L M b D
A A Q

,  (11) 

( , , , , , , )η λ
λ

∂
=

∂

wEAC Q k A L M ( )σ τ+ − + − =2 21L k k M Q2 0 ,  (12) 

( , , , , , , )η λ λ∂
= =

∂
2

wEAC Q k A L M
M

M
0 .  (13) 
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From Eq. (13), we find that λ = 0  or = 0M . However, if λ = 0 , then Eq. (9) 

will result in 
β
β

+
= − <

−+ 2

1
0

11

k

k

[ ,

, which is infeasible since  is a safety factor and the 

value of  should be nonnegative. Thus, it is clear that the slack variable . 
Therefore, for given 

k

k = 0M
]−∈ 1i iL L L , the optimal solution of ( , , , )ηQ k A  that minimizes 

the total expected annual cost  and satisfies the constraint ( , )Q k, , ,η A LwEAC

( )σ τ2 Q+ − ≤21 kL k  will occur at the point when this inequality is held at equality. 

Simplifying Eqs. (8), (9), (10), (11) and (12), respectively, we get 

 
[ ( )]

η λτ
+

=
+ −

2
4

D A R L
Q

h sD
,   (14) 

( )( )λ β = + + + +  
21

1 1
2

h k k k ,   (15) 

θη =
2 B
sDQ

,   (16) 

θ
=

bQ
A

D
,   (17) 

τ
σ

+ − =2 2
1

Q
k k

L
.   (18) 

Furthermore, solving Eqs. (14)-(18) simultaneously for the relative decision 

variables (denoted by , ,*Q *k *η , *A  and *λ ), we obtain  

* ( ) [ ( )] ( )[( / ) (
( )

θ θ τβ σ τ
τβ

− + − + − +
=

−

2 21 2 2 2
1 2

b B b B h h L DR L
Q

h
)]

,  (19) 

*
*

*
σ τ

στ
= −

4

L Q
k

LQ
,  (20) 

*
*

θη =
2 B

sDQ
,  (21) 

*
* θ

=
bQ

A
D

,  (22) 

*
*

σλ β
τ

   = +    
   

2

2 2

h L

Q
.  (23) 

    The following proposition shows that, for fixed [ , ]−∈ 1i iL L L , when the 

restrictions η η< ≤ 00  and 0 < ≤ 0A A  are ignored, the point  is the local * * * *( , , , )ηQ k A
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optimal solution, which satisfies the constraint ( )σ τ+ − ≤21L k k

)L

2 Q  and minimizes 

the total expected annual cost .  ( , , , ,ηwEAC Q k A

η η< ≤ 00 < ≤ 0A A

)* * * *( , , ,ηQ k A

η η< ≤ 00 < ≤ 00 A A

θ
*η *A

* * *( , , ,ηQ k A* )

* * *, )Q k A

) ][(
( )
τβ η

τβ η
− +

− +

2 2
0

0

1 2

1 2

h sD h

h s

* * *( , , )ηQ k

{( ) [ (

( )

τβ

τβ

+ − +

−

01 2 2

1 2

h D A

h

* *( , )Q k

 
Proposition 1. When the restrictions  and 0  are ignored, for 

given , the point  satisfies the second order sufficient 

condition (SOSC) for the minimizing problem with a single constraint.   

[ , ]−∈ 1i iL L L

 
Proof: See Appendix. 
 
We now consider the restrictions  and . Firstly, from Eqs. (21) and 

(22), we note that *η  and *A  are positive as the problem parameters , b, B, s, and D  

are positive. Then, we discuss the following four cases where  and  may occur.  

(i) If *η η< 0  and * < 0A A

]−1i iL

, then  is an interior optimal solution for a 

given . [ ,L L∈

(ii) If *η η≥ 0  and * < 0A A , then it is unrealistic to invest in improving process quality. 

In this case, the optimal quality level is the original quality level, i.e., *η η= 0 , and 

the corresponding optimal ( ,  can be determined by solving Eqs. (14), (15), 

(17) and (18), which results in    

* ( ) [ ( / ) ( )]θ θ σ τ+ + +
=

2 2b b L DR L
Q

D
,  (24) 

    and  and *k *A  are as those given in Eqs. (20) and (22), respectively. 

(iii) If *η η< 0  and * ≥ 0A A , then it is unrealistic to invest in setup cost reduction. In 

this case, the optimal setup cost is the original setup cost level, i.e., * = 0A A , and 

the corresponding optimal  can be determined by solving Eqs. (14), (15), 

(16) and (18), which results in   

      
}*

( ) )] ( / )θ σ τ θ+ −
=

2 2 2B R L h L
Q

B
,  (25)     

and  and *k *η  are as those given in Eqs. (20) and (21), respectively. 

(iv) If *η η≥ 0  and * ≥ 0A A , then we should not make any investment to change the 

current setup cost and process quality. In this case, the optimal * = 0A A  and 
*η η= 0 , and the optimal  can be determined by solving Eqs. (14), (15) and 

(18), which results in      
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                * [ ( )] ( /
( )

)σ τ
τβ η

+ +
=

− +

2
0

0

2
1 2

D A R L h L
h sD

2
Q   (26) 

and  is the same as that given in Eq. (20). *k
 

By the above discussions, we now develop an algorithm to find the optimal 
values for lot size, reorder point, process quality, setup cost and lead time.  
 

Algorithm. 

Step 1. For each , utilize (19) to determine , and then substitute 

 into (20), (21) and (22), respectively, to evaluate , 

, , , , ,= …0 1 2iL i n *
iQ

*
i

*
iQ k *ηi  and *

iA . 

Step 2.  Compare *ηi  and η0 , and *
iA  and 0A , respectively.  

(i) If *ηi <η0  and *
iA < 0A , then the solution found in Step 1 is optimal for the 

given . Go to Step 4. iL

(ii) If *ηi ≥ η0  and *
iA < 0A , then for this given , let iL *ηi η= 0  and utilize (24) 

to determine the new Q , then substitute it into (20) and (22) respectively, 

to update  and 

*
i

*
ik *

iA . If the new *
iA < 0A , then the optimal solution is 

obtained, go to Step 4; otherwise, go to Step 3. 

(iii) If *ηi <η0  and *
iA ≥ 0A , then for this given , let iL * =iA 0A  and utilize (25) 

to determine the new , then substitute it into (20) and (21), respectively, 

to update  and 

*
iQ

**
ik ηi . If the new *ηi <η0 , then the optimal solution is 

obtained, go to Step 4; otherwise, go to Step 3. 

(iv) If *ηi ≥ η0  and *
iA ≥ 0A , go to Step 3.  

Step 3.  For this given , let iL *η =i η0  and * =iA 0A , and utilize (26) to determine the 

new Q , then substitute it into (20) to evaluate the corresponding optimal . *
i

*
ik

Step 4. Utilize the objective function of model (5) to calculate the corresponding       

total expected annual cost . * * * *( , , , , )ηw
i i i i iEAC Q k A L

Step 5.  Find .  * * * *
, , , ,
min ( , , , , )η

= …0 1 2

w
i i i i i

i n
EAC Q k A L

If ( , , , , )η =w
w w w w wEAC Q k A L * * * *

, , , ,
min ( , , , , )η

= …0 1 2

w
i i i i i

i n
EAC Q k A L ,  

then ( , , , , )ηw w w w wQ k A L  is the optimal solution.  

 
Once  and  are obtained, the optimal reorder point wk wL σ= +w w wL k Lwr D  follows. 
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 5. NUMERICAL EXAMPLE 

In order to illustrate the above solution procedure, let us consider an 
inventory system with the data used in Ouyang et al. [10] (the stock out costs are 
excluded): = 600D  units per year, =0A $200 per order, =h $20 per unit per year, 

.θ = 0 1  per dollar per year, , = 5800b σ = 7  units per week, and the lead time has three 
components with data shown in Table 1. Besides, we take .η =0 0 0002 , =s $75 per 

defective unit and = 400B . Also, suppose the distributional form of the lead time 
demand is unknown. 

 
Table 1: Lead time data 

 Lead time Normal Minimum Unit 
component Duration duration crashing cost 

i iv (days) iu (days) ic ($/day) 

1 20 6 0.4 
2 20 6 1.2 
3 16 9 5.0 

 

We solve the cases when the backorder proportion β = 1  (i.e., complete 
backorders), and the allowable proportion of demands which are not met from stock 

. %τ = 1 5 ,  and  (i.e., the desired service level %1 . %0 5 . %τ− =1 98 5 99,  and ). 
Applying the algorithm developed earlier, the computed results are tabulated in Table 
2. 

% . %99 5

 
Table 2: The computed results of algorithm (  in weeks) iL

Service level 
τ−1  i iL  *

iQ  *
ir  *

ik  *ηi  *
iA  * * * *( , , , , )ηw

i i i i iEAC Q k A L  

 0 8 147 134 2.130 0.0000121 142 3245.25 

98.5 % 1 6 134 104 2.019 0.0000133 129 3036.68 

 2 4 122 71 1.779 0.0000146 118 2860.21 

 3 3 125 52 1.467 0.0000143 121 2898.02 

 0 8 172 148 2.797 0.0000104 166 3670.78 

99 % 1 6 154 115 2.685 0.0000115 149 3390.89 

 2 4 138 80 2.444 0.0000129 133 3124.51 

 3 3 136 60 2.116 0.0000131 132 3098.94 

 0 8 225 178 4.335 0.0000079 200 4672.30 

99.5 % 1 6 203 141 4.170 0.0000088 196 4230.69 

 2 4 175 101 3.932 0.0000101 169 3765.61 

 3 3 165 78 3.598 0.0000108 160 3601.21 
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From Table 2, the optimal operating policy for each desired service level can be 

found easily by comparing * * * *( , , , , )ηw
i i i i iEAC Q k A L , , , ,= 0 1 2 3i . We summarize the 

result in Table 3. 
 

Table 3: The optimal operating policy for various service level ( in weeks)  wL

Service level τ−1  ( , , , , )ηw w w w wQ r A L  ( , , , ,ηw
w w w w wEAC Q r A L )  

98.5 % (122, 71, 0.0000146, 118, 4) 2860.21 

99.0 % (136, 60, 0.0000131, 132, 3) 3098.94 

99.5 % (165, 78, 0.0000108, 160, 3) 3601.21 

   

Moreover, in order to illustrate the effects of investing in quality improvement 
and setup cost reduction, in addition to the result of the presented model, we list the 
optimal operating policies for the cases where process quality or/and setup cost are 
treated as fixed constant in Table 4. ( β = 1  and . %τ = 1 5 )  

 
Table 4: The optimal operating policies for various situations (  in weeks) iL

Decision variables wQ  wr  ηw  wA  wL  ( )⋅wEAC  Savings% 

( , , , , )ηQ r A L   122 71 0.0000146 118 4 2860.21 14.88 

( , , , )ηQ r L  136 68 0.0000131 200 4 2929.75 12.81 

( , , , )Q r A L  98 78 0.0002 94 4 3208.80 4.50 

( , , )Q r L  118 72 0.0002 200 4 3360.11 - 

 
Notes:  (i)   Savings % is based on the total expected annual cost of the  model.  ( , , )Q r L

(ii) The parameter that has value underlined is fixed and given in the 
corresponding model. 

 

The results of Table 4 show that no matter quality improvement and setup 
cost reduction are performed, alone or jointly, the savings of total expected annual cost 
are realized. Also, the largest % (14.88 %) savings occurs when quality improvement 
and setup cost reduction are performed simultaneously.  

6. CONCLUDING REMARKS 

In this paper, we first extend Ouyang et al.'s [10] model to include the possible 
relationship between quality and lot size. Then we investigate the joint effects of 
quality improvement and setup cost reduction on the model, where a service level 
constraint is added to replace the stock out cost term in the objective function. The 
model, for which the distributional form of lead time demand is unknown but the mean 
and standard deviation are given, is formulated and solved by the minimax distribution 
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free approach. We develop an algorithm to find the optimal values for the lot size, 
reorder point, process quality, setup cost and lead time. A numerical example is 
provided to illustrate the results derived.  

The issues of quality improvement, setup cost and lead time reductions 
studied here belong to the 'changing the givens' approach. This approach may further 
invoke some possible research topics and can be applied to other production/inventory 
models.  

 
 

REFERENCES 

[1] Ben-Daya, M., and Raouf, A., "Inventory models involving lead time as decision variable", 
Journal of the Operational Research Society, 45 (1994) 579-582. 

[2] Gallego, G., and Moon, I., "The distribution free newsboy problem: review and extensions" 
Journal of the Operational Research Society, 44 (1993) 825-834. 

[3] Hall, R., Zero Inventories, Dow Hones-Irwin, Illinois, 1983. 
[4] Hariga, M., and Ben-Daya, M., "Some stochastic inventory models with deterministic variable 

lead time", European Journal of Operational Research, 113 (1999) 42-51. 
[5] Hong, J.D., and Hayya, J.C., "Joint investment in quality improvement and setup reduction", 

Computers & Operations Research, 22 (1995) 567-574. 
[6] Keller, G., and Noori, H., "Justifying new technology acquisition through its impact on the 

cost of running an inventory policy", IIE Transitions, 20 (1988) 284-291. 
[7] Keller, G., and Noori, H., "Impact of investing in quality improvement on the lot size model", 

OMEGA International Journal of Management Sciences, 15 (1988) 595-601. 
[8] Liao, C.J., and Shyu, C.H., "An analytical determination of lead time with normal demand", 

International Journal of Operations and Production Management, 11 (1991) 72-78. 
[9] Moon. I., and Choi, S., "A note on lead time and distributional assumptions in continuous 

review inventory models", Computers & Operations Research, 25 (1998) 1007-1012. 
[10] Ouyang, L.Y., Chen, C.K., and Chang, H.C., "Lead time and ordering cost reductions in 

continuous review inventory systems with partial backorders", Journal of the Operational 
Research Society, 50 (1999) 1272-1279. 

[11] Ouyang, L.Y., Yeh, N.C., and Wu, K.S., "Mixture inventory model with backorders and lost 
sales for variable lead time", Journal of the Operational Research Society, 47 (1996) 829-832. 

[12] Paknejad, M.J., Nasri, F., and Affisco, J.F., "Defective units in a continuous review (s,Q) 
system", International Journal of Production Research, 33 (1995) 2767-2777. 

[13] Porteus, E.L., "Investing in reduced setups in the EOQ model", Management Science, 31 
(1985) 998-1010. 

[14] Porteus, E.L., "Optimal lot sizing, process quality improvement and setup cost reduction", 
Operations Research, 34 (1986) 137-144. 

[15] Sarker, B.R., and Coates, E.R., "Manufacturing setup cost reduction under variable lead times 
and finite opportunities for investment", International Journal of Production Economics, 49 
(1997) 237-247. 

[16] Scarf, H., "A min max solution of an inventory problem", Mathematical Theory of Inventory 
and Production, Stanford University Press, Stanford, California, 1958. 

[17] Silver, E., "Changing the givens in modelling inventory problems: the example of just-in-time 
systems", International Journal of Production Economics, 26 (1992) 347-351. 

[18] Taha, H.M., Operations Research An Introduction, Prentice Hall, New Jersey, 1997. 

 



 H.-C. Chang / Changing the Values of Parameters on Lot Size Reorder Point Model 82

APPENDIX 

Proof of Proposition 1: We note that the solution point  is obtained at * * * *( , , , )ηQ k A

( )σ τ+ − =21L k k 2 Q  (since the slack variable = 0M ). Therefore, in what follows, 

we show that  satisfies the SOSC for the minimizing problem with a 

single equality constraint.  

* *( , ,ηQ k * *, )A

For a given value of L, we first obtain the bordered Hessian matrix  as 
follows:  

H

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

λ λ λ η λ

λ η

λ η

η λ
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,  (A.1) 

where 

( ) ( , , , , , )η λ⋅ ≡w wEAC EAC Q k A L , 

( ) ( )∂ ⋅
= +

∂

2

2 3 3
2 2wEAC AD D

R L
Q Q Q

,   

( ) ( )∂ ⋅ ∂ ⋅
= =

∂ ∂ ∂ ∂

2 2
0

w wEAC EAC
Q k k Q

,       

( ) ( )
η η

∂ ⋅ ∂ ⋅
= =
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2 2

2

w wEAC EAC sD
Q Q

,   

( ) ( )∂ ⋅ ∂ ⋅
= =

∂ ∂ ∂ ∂

2 2

2

w wEAC EAC D
Q A A Q Q

− ,   

( ) ( ) τ
λ λ

∂ ⋅ ∂ ⋅
=

∂ ∂ ∂ ∂
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Q Q

= − ,                 

/
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( ) ( )
η η
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wEAC

. 

For a given value of , since there are four variables L ( , , , )ηQ r A  and one 
constraint, therefore, we need to check the sign of the last three principal minor 

determinants of  at point . If the sign of them are all negative, then 

this solution point satisfies the SOSC for the minimizing problem (see, for example, 
Taha [18], p.767). 

H * * * *, , )η A( ,Q k

Now we proceed by checking the sign of the last three principal minor 

determinants of  at point . H * * * *( , , , )ηQ k A

* *
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* /
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H L
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  (A.2) 
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*
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From (A.2), (A.3) and (A.4), since the sign of 33H , 44H  and | |55H  are all 

negative, hence, it can be concluded that  satisfies the SOSC for the 

minimizing problem with a constraint.  

* * * *( , , , )ηQ k A


