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Abstract: Linear program under changes in the system matrix coefficients has proved 
to be more complex than changes of the coefficients in objective functions and right 
hand sides. The most of the previous studies deals with problems where only one 
coefficient, a row (column), or few rows (columns) are linear functions of a parameter. 
This work considers a more general case, where all the coefficients are polynomial (in 
the particular case linear) functions of the parameter ∈ ⊆t T R . For such problems, 
assuming that some non-singularity conditions hold and an optimal base matrix is 
known for some particular value t  of the parameter, corresponding explicit optimal 

basic solution in the neighbourhood of t  is determined by solving an augmented LP 
problem with real system matrix coefficients. Parametric LP can be utilized for 
example to model the production problem where, technology, resources, costs and 
similar categories vary with time.  

Keywords: Linear parametric programming, parameter-dependent constraint matrix. 

1. INTRODUCTION 

For the parametric linear programming problems with arbitrary matrix 
parameterization results of  rather theoretical character exist (Finkelstein 1965 [12], 
Dantzig 1967 [7], Klatte 1979 [26], Schubert and Zimmermann 1985 [37], Pateva 1991 
[32]). Parametric linear programs, where the matrix coefficients are polynomial 
functions of a scalar parameter were investigated in Jodin and Goldstein 1965 [23], 
Dragan 1966 [9], Weicknmeir 1978 [39], Kon-Popovska 1992 [27], while linear 
parameterization was investigated in Satty 1959 [35], Valiaho 1979 [38], Freund 1985 
[14]. More work, both theoretical and practical, has been done on the easier problems 
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in which only some particular coefficients of the constraints matrix (one coefficient 
only, or one or more selected rows/columns) are linear functions of a scalar parameter, 
see e.g. Courtillot 1961 [6], Maurion 1965 [30], Kaska 1967 [24], Gal 1968 [15], 1973 
[16], Dinkelbach 1969 [8], Kim 1971 [25], Finkelstein and Gumenok 1975 [13], Dück 
1979 [10].  

In the most of the cited papers, an optimal base approach that starts with an 
existing and known regular base of the problem, optimal for the parameter =t t  was 
utilized. Simple formulas expressing inversion of the parameterized matrix (see section 
3), simplex procedure over the field of rational functions Satty 1959 [35], Weickenmeier 
1978 [39], decomposition procedure over the field of polynomials (theory of λ −  
matrices) Kon-Popovska 1992 [27] or Taylor series Freund 1985 [14] near some fixed 
value =t t  were developed or utilized.  

More recent approaches, beside theoretical investigations concerning 
sensitivity, stability and parametric analysis of general optimisation problems, where 
linear problems can be viewed as a special case (see e.g. Bank 1982 [3], Fiacco 1983 
[11], Levitin 1994 [29]), include tolerance approach (see e.g. Wendel 1984 [40], Ravi and 
Wendell 1989 [34]) and interior point approach (see e.g. Adler and Monteiro 1992 [2], 
Jansen et al. 1992 [22], Berkelaar at al 1997 [5], Greenberg 1997 [21]). For further 
overall references in the field see Dinkelbach [8], Gal 1984[17], 1995 [18], Bank 1982 
[3], Gal and Greenberg 1997 [19]). 

This paper deals with a class of scalar parametric linear programs with 
polynomial (in particular linear) change of the system matrix coefficients. Assuming 
that some non-singularity conditions hold and that for some particular value t  of the 
parameter ∈ ⊆t T R  a regular (optimal) basic matrix exists and is known, 

corresponding explicit (optimal) solution in the neighborhood of the t  is determined by 
solving an augmented LP problem with real system matrix coefficients.  

2. PROBLEM DEFINITION 

Consider a linear program in standard form: 

P:  , (2.1) max { : , }= = ≥z cx Ax b x o

where   ( ,..., ),= 1 nA a a ( ,..., ) ,= ∈1
T m

j mja a Rja ,..., ,= 1j n  ≤m n  is a given full rank 

matrix of real coefficients, ( ,..., )= ∈1
n

nc c Rc ,  are vectors of 

objective function and right-hand side coefficients respectively and 

( ,..1b ., )= mb b ∈ mT R

( ,..., )= ∈1
T n

nx x Rx  

is a solution vector. Let coefficients of the matrix A and the right-hand side b be 
polynomials of parameter : ∈ ⊆t T R

P(t):   (2.2) max { : ( ) , },
= =

= = ≥ ≥ ≥∑ ∑
0 0

 ,  0 1
q p

k k
k k

k k
z t t p qcx A x b x 0

where , and , 

 

( ,..., ) , ,...,= ∈ =1  0T m
k k mkb b R kb

,..., )mjk
Ta a ,∈ mR ,...,= 1

p ( ,..., ), ,...,= =1  0k nk
k k qA a a

(= 1jk
jka j n

( )=

. We are looking for the corresponding solutions: 

( ),=x x t z z t  of the new problem, as functions of the parameter t . 
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Let  be regular matrix at the particular ( ) ( ( ),..., ( ))= 1j jmt tB a a t = ∈t t T  and 

in its neighborhood, (detB( t ) ≠ ) i.e. basis for 0 ( )P t , where { ,..., } { ,..., }β = ⊂1 1mj j n  

and { ,..., } \α βn= 1  are the corresponding sets of basic and non-basic indices. Than, the 

corresponding explicit primal basic solution at t  is given by , 

,  the vector  by  and the objective function 

by . At 

( ) ( ) ( )β
−= 1t tx B b

t

t

( ) ≡ 0t

( ) ( )β=z t tcx

αx ( )= ∈ mRy ,..1 ., my y ( )β β=ty c ( )−1B

t )

− ≥

, basis  is primal feasible if , y is dual feasible 

solution if 

(tB ( ) ≥ 0β tx

( )β A ty c 0 , optimal if  both the primal and dual solutions are feasible at 

t  and non-degenerate optimal if ( )β ( )− + tx > 0ty A c .  

 
2.1. Preliminary remarks 

Our task is to determine the explicit form of the basic solution 

 in the neighborhood of ( ) ( ) ( )β
−=t t1x B b t = ∈Tt t , where an optimal base 

( ) ( ( ),...,= 1jt tB a ( ))jma t  exists and is known, by solving the system . 

Determination of the dual feasible solution  i.e. 

( ) ( )=t tB x b

( ( ))( ) ( )β β
−= 1t ty c B ( )β β

−1T Tt ty B= Tc , 

and transformation of the column vectors, ( ) ( ), α−= ∈j j

( )

(t)j 1y B t ta  can be done by 

using the same method for solving the systems ( )β β= Tt t cT TB y  and 

( ) ( ), α=j jt tB y a

( ) ( )β=z t tcx

∈j  respectively. Determination of the (optimal) solution as explicit 
functions of t suffice that if needed, other values i.e. (optimal) objective function 

, its k-derivative  and reduced costs  etc. could 

be obtained. Critical optimality region of the solution (see e.g. Dinclebah [8], Gal [18], 

Freund [14]) having explicit expressions for , , 

( ) ( )β=kz t tcxk

( )β tx ( )β ty y

c−

c

A )()( ttβ

A

y

−)() t(tβ , ( ), α∈ j jty  

and det B , could be found using the methods of polynomial roots determination.  ( )t
Having these remarks in mind, it suffices to show how to solve B x .  ( ) ( )=t tb

3. REVIEW OF KNOWN RESULTS 

At first we review several solutions for problem where parameterization is 
simpler. For further references and proofs see e.g. Sherman and Morrison 1950 [36], 
Kaska 1973 [24], Gal 1968 [15], 1973 [16], Dinkelbach 1969 [8], Finkelstein 1977 [13], 
Willner 1967 [41], Arana 1977 [1], Freund 1985 [14].  

ž 
3.1. Linear rank 1 matrix parameterization (A - uvt)  

Here A is a regular ×m n -matrix and , ( ,..., )= 1
T

mu uu ( ,..., )= 1 nu uv  are 

vectors of real coefficients. If B is base of matrix A and βv  vector of corresponding 

coefficients, the following is true: for every ∈t T , where matrix ( )β− tB uv  is non-

singular, its inverse matrix is given by  
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( ) ( )

( )
( )

β β
β

β β

β

β

− − −
− −

− −

−
−

−

− = − = −
− −

= −
−

1 1 1
1 1

1 1

1
1

1

1 1

1

t t
t

t t

t

tr t

B uv B B uv
B uv B I B

v B u v B u

B uv
I B

B uv

−1

    (3.1) 

and corresponding basic solution by ( ) ( )β
β

β

−

−= −
−

1

11

t
t

t

B uv
x I

v B u
x . 

Special cases of liner matrix parameterization can be achieved by various 
choices of vectors u and/or v.  

Let be -element, ijb ,i j ( )−1 jB j -column and ( )  -row of matrix . 

Than: 

−1
iB i −1B

a) and ( ,...., ,..., )= 0 1 0 T
iu ( ,...., ,..., )′= 0 jav 0

b

 give one element parameterization  

... ...
.

( ... ... )

. .
... ....

 
 
 
 ′− =
 
 
 
  

0  0   0
      .       .
0   0  t

             .
0  0  0

ijaB x ,  

where 
'

'
( ) ( )

( )
− −

− −= −
−

1 1
1 1

1

i j
ij

ji ij

t
t

b a t

B a B
B B  (Sherman-Morrison formula) 

b) and ( ,...., ,..., )= 0 1 0 T
iu ( ,.... ,..., )′ ′ ′= 1 j na a av  give one row parameterization  

... ...
.

( ... ... )

. .
... ...

 
 
 
 ′ ′ ′− = 
 
 
  

1

0    0  0
        .      .

   t

              .
0    0  0

i ij ina a aB x b ,  

where 
( )

( )
( )

β

β

− −
− −

−= −
−

1 1
1 1

11

i

i

t
t

t

B v B
B B

v B
. 

c)    and  give one column parameterization ( ,.... ,..., )′ ′ ′= 1
T

j na a au ( ,.... ,..., )= 0 1 0jv

... ...

.

( ... ... )

. .

... ...

 ′
 
 
 

′− = 
 
 
 ′  

10     0

       .      .

0     0  t

             .

0   0

j

ij

mj

a

a

a

B x b ,  
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where 
( )

( )
( )

− −
− −

−= −
−

1 1
1 1

11
j

j

u t
t

t

B B
B B

B u
  

(Bodewig transformation of Sherman-Morisson formula). 
 

3.2. Linear rank r parameterization (A - UVt)  

Here A is a regular ×m -matrix and n

...
. ... .

...

 
 =  
  

11 1

1 

      
 

T
m

r rm

u u

u u
U , 

...
. ... .

...

 
 =  
  

11 1

1 

      
 

n

r rn

v v

v v
V  are 

matrices of rank  of real coefficients. If B is  base matrix of A and r βV  is the matrix of 

corresponding columns of matrix V, following is true: for every ∈t T , were matrix 
( )β− tB UV  is non-singular its inverse matrix is given by  

expressions  
( ) (β β

−

− −

− = + −

−

1

1 1(

t tV U I V

U I V B

)

( ) )β β

− − −

− −

1 1 1

1 1

t

t t

B U V B

U V B .

β
− −

= +

1 1B B

I B

B U

Here ( β )− −− 1 tI V B U

m

1 is a matrix of order r, so result can be practically useful for 

. For the special case  and �r =U u =V v   the expression reduces to (3.1). 
 

3.3. Linear parameterization (A0 - A1t)  

Here  and  are 0A 1A ×m n -matrices and we suppose that for some t  matrix 

 is regular.  ( −0 1tA A )
  

Theorem 1. (According Freund [14, theorem 1, part iii and theorem 2]) Let  ( )−0 1 tB B  

be an optimal basis and βx  optimal basic solution at =t  for the problem max cx 

where , x>0. Than, except eventually for finite number of values 

,  is an optimal basis and 

t

( )− =0 1tB B x b

T ( −0 1tB B∈ ⊆t K ) ( ) ( ( - ) ( ) ββ
∞

−

=
= −∑ 1

0
0

i

i
t t t 1x B

( )

iB x  an 

optimal basic solution of the problem max cx where − =0 1tB B x b , x>0 for all values 

of  near t t . 
 
 

4. LINEAR PARAMETERIZATION 

First we consider linear parameterization of the matrix A, with constant right-
hand side b i.e. case  and = 1q = 0p  of the problem (2.2). The following definition and 
lemma will be used. 

 

Definition 1. (According to Wilkinson [42]): The rank p ≤ m of the m-vector b with 
respect to the -matrix A is the minimum value p for which vectors ×m m

, ,..., ,−1p pA bb Ab A b  are linearly dependent, or equivalently, the minimal polynomial 
of the m-vector b with respect to the ×m m -matrix A is the polynomial with rank p for 

which the corresponding relation holds  ( )−
−+ + + + ="1
1 1 0 0p p

pc c cA A A I b .  
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Lemma 1. (According Wilkinson [42]) If b is m-vector of rank p with respect to the 

mxm-matrix A, than each vector  is linear combination of the vectors 

. 

, +1p pA b A b,...

) =

, ,..., −1pb Ab A b
 
The main result for linear parameterization is as follows: 
 
Theorem 2. In linearly parameterized system of equations 

( (+0 1 )t tB B x b ,                 (4.1) 

let be  and    matrices, B  is non-singular and 0B 1B ×m m 0 b  is m-vector of rank m 

with respect to the matrix ( )−1
1 0B B . Than, for all ,∈ ≠ 0tt T  for which 

, the solution vector det( )+0 1t ≠ 0B B ( )x t  is determined by  

...( )
...

−
−+ + +

=
+ + +

1
0 1

1
 

1

m
m

m
m

t t
t

q t q t
1x x x

x ,  (4.2)  

where , ,..., −0 1 1mx x x  are m-column vectors and ,...,1 mq q  are scalars obtained by solving 

the following real linear system given in matrix form 

−

− − −

    
    −     
    
    
    =    
    
    
    −     
    −     

" "
" "

…
" #"

00

11 0

1

1

1 0

1 1

0 1 2 1 1 1

0

0

0

m

m

m m m m

q

q

xB b
xB B b

B
x

B B b
B b

.    (4.3) 

Proof: Solution  of the system ( )tx ( ) ( )+ =0 1t tB B x b

( )
 is in general -vector, each of 

whose coefficients is rational functions of the form 

m

/ ( )p t q t , where ( )p t  and  are 

polynomials of the greatest degree 

( )q t

−1 mm  and  respectively. , i.e.     -1t b( ) )0 1B(= +tx B

adj( )( )
det( )

+
=

+
0 1

0 1

t
t

t

B B
x b

B B
.   (4.4) 

By dividing numerator and denominator with value det=0 0q B  (assuming 0B  

is non-singular), we get (4.2). By corresponding substitution we can rewrite relation 
(4.1) in the form: 

...( )
...

−
−+ + +

+ =
+ + +

1
0 1 1

0 1
11

m
m

m
m

t t
t

q t q t

x x x
B B b . 
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For every , for which denominator ∈t T ...+ + + ≠1
m

mq t q t

... )−
−+ + =1
1 1tx b

1 , this relation can be 

expressed in the form , or as 

 linear systems 

0

)t( )( ( ...+ + + + +0 1 0 1 1
m m

m mt t q t qB B x x

+ 1m

( )

( )

=

+ − =

+ −

0 0

1 0 0 1 1
2 2

1 1 0 2 2

 

                                                             

                                                    

                         .           .  

t q

t q

B x b

B x B x b 0

B x B x b 0

( ) − −
− − −

−

+ −

=

t

t

− =

1 1
1 2 0 1 1

1 1

                                     .                       .  

                                    

                                                

m m
m m m

m m
m m

t q t

t q t

B x B x b

B x b 0

 (4.5) 

After dividing by  we get the system compactly written in matrix form 

(4.3) considered in the theorem. System (4.1) is equivalent to (4.2), (4.3) if the matrix of 
the last one is non-singular. This holds by the statements of the theorem and can be 
seen easily by the following assumptions: Columns of the first  blocks 0 1  of 
the system are linearly independent by the assumption that  is non-singular. So, by 

solving first m systems regarding 

, ≠ 0t t

m

0

, ,..., −1m
B

, , ,...,= −0 1 1j j mx  we get: 

( )

( ) ( )

−

− − −

− − − − −

−
− −

=

= −

= −

=

1
0 0

1 1 1
1 0 0 1 0

1 1 1 1 1 2
2 2 0 1 0 1 0 0 1 0

1
1 1 0

 

 

 +   

  .            .                    .                     .                             .                  

 m m

q

q q

q

1

x B b

x B b B B B b

x B b B B B b B B B b

x B b ( ) ... ( ) ( )− − − − − −
−− + + −1 1 1 1 1

2 0 1 0 0 1 0 1 m m
mq B B B b B B B b1

)

= 0

−1 mb

 (4.6) 

The matrix in (4.3) is non-singular if the columns of the last -block of 
the system are linearly independent on  the previous ones. By replacing  in the 

last equation  of (4.5) and after rearrangement we get: 

( + 1m

−mx 1

− −1 1  m m
m mt q tB x b

( ) ... ( ) ( ) ( ) ( )− − − −
−− + + − = − −1 1 1 1
1 1 0 1 1 0 1 01 1m m m

m mq q qb B B b B B b B B . (4.7) 

The matrix on the left-hand side is non-singular due to proposition that b is of 

rank m with respect to the matrix ( −1
1 0B B ).  ♦ 

 

Remark 1.  The dimension of the new system is (( ) )− + + = +1 1m m q mq mmq m
2m

, but it 
is almost in lower block triangular form, with at most  non-zero elements. More 
over, decomposition in fact needs to be done (due to special structure and replications) 
only on matrix  and  spikes in last  columns of (4.3). 0B m m  

Further we can relax somehow the conditions of the theorem.  
 

Remark 2. Non-singularity of the matrix  is not necessary condition that 

statement of the theorem holds. It suffices that for any 

0B

= ∈t t T  matrix ′ = +0 0 1 tB B B  

is non-singular. By using transformation τ = −t t , we get ( τ+ +0 1 1 )tB B B x = b  i.e. 
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( τ′ + =0 1 )B B x b . Particularly if is non-singular we can use transformation 1B /τ = 1 t  

and , for , that gives ( )/= ty x ≠ 0t τ + =0 1B B y b .  

mq

( )−− 1
1 0B B

( (−+ −1m mq qI B

, ,...,1 2 mq q q

( )−− 1
1 0B B

(− −− 1 0 ) (− + −1 1 1mB B1 0B

,1 2q q

0 1B B

,...,0

,...,q

( .+ + ) ( =t) + +0 1
q

q tb b

qB B ×m m

=
0B

j

.

.

α

 
 
 
 
 
 +  
 
 
 
 
   

0

1

 

.

.














0

1

pα α














1 2  mq

p

0
b 0

0

b

b
b0
b

b

0

1 0

1

 

 .    

 .    .   
 .    

     

          
          

q

q

B

B B

B

          

  .      

  ..      
 ...    

 ...    

...     .
       q

B B

B B

B

 

Collorary 1. Scalars  are coefficients of the characteristic equations of the 

matrix 

, ,...,1 2q q

.  

By rearrangement of the equation (4.7) it follows immediately that relation 

 holds if scalars 

 are chosen to be coefficients in characteristic equations of the matrix 

. It is obvios from (4.4). ♦ 

) .... ) )−+ + =1
1 1 0

mq B B b 0

From the expressions in (4.6) it follows that ( ), ,...,= −0i t i m

( )tx

1

p
pt

x  are defined if 

coefficients  are known. So optimal basic solution  could be obtained 

also by using some known method for determination of the characteristic equation of 
the matrices (see e.g. Krilov's method in [42]). 

m

5. POLYNOMIAL PARAMETERISATION 

Theorem 3.  In polynomial parameterization of the system of equations  

.. ...+ +t tB x b , (5.1) 

let be   -matrices,   non-singular and for any mq constants α1, α2,..., 
αmq ∈R, not all αj , , ,...,1 2 mq  zero, vector 

.
...

. .

 
 
 
 
 
 + + 
 
 
 
 
   

0

1

p

b 0

b

b

0

0 0

  

be linearly independenton the column vecrors of the block matrix 

 
 
 
 
 
 
 
 
 
 
 
 
  

0

1

  

 . 
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Than, for every  for which de,∈ ≠ 0t T t t( ... )+ + + ≠0 1 0q
qt tB B B , the solution vector 

 is determined by  ( )tx

( )
( )...

( )
...

− +
− ++ + +

=
+ + +

1
0 1 1

11

m q p
m q p

mq
mq

t t
t

q t q t

x x x
x ,   (5.2)  

where  are m-column vectors and ( ), ,..., − +0 1 1m q px x x ,...,1 mqq q  are scalars obtained by 

solving the real system given in matrix form: 
 
                      for ≤p q            
       0   1        2      1   − +mq q p mq  

−
− −
−

0

1 0 0

1 0 1

1

0

                                        

                                   

 .      .                          

.      .    ..                            .

  .    ...             q

B

B B b

B b b

b
B B

−

−

−
−

1

0

1

       .        .

       ...              .     .      
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Proof: The Solution  of the system ( )tx ( ... ) ( ) ...+ + + = + + +0 1 0 1
q p

q pt t t tB B B x b b b t  

is in general m-vector, each of whose coefficients are rational functions of the form 
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( ) / ( )p t q t , where ( )p t  and ( )q t

)+

 are polynomials of  degree at most  and 
 respectively i.e.  

mq
( )−1m q +

( ) = +0 1
qt t tB

.

...

+

+
q( )

( q

B

B
t tb

B B
x

B B

( ...+ + )q p
q pb t

x x

( − +q m
q t

( .+ +11 q tb mqt

, ≠ 0t t

+ p

( ...+ +B B ) =q
q x 0 tb

B

p

( ... ( ... )−+ + + +1
0 1

p
q pt tx B B b b b ,     

adj( .. )
... )

det )

+ +
= +

+ +
0 1

0 1
0 1

(
q

p
pq

t t
t

t t
b b . (5.4) + +

Dividing the numerator and denominator by det=0 0q B  (assuming  is non-

singular) we get (5.2) that gives 
0B

...
) ( ...

...

− +
− ++ + +

+ = + + +
+ + +

0 1
0 1 0 1

11

mq q p
mq q p

mq
mq

t t
t t t

q t q t

x
B B B b b . 

For every  for which denominator ∈t T ...+ + + ≠1
mq

mqq t q t

... )( ..

1 , this relation can be 

expressed in the form: . )− ++ + + + +0 1t tB x x + =0 1 q m q ptB B x  

, and assuming .. + mqq ≤p q , as + + 1mq p  linear systems similar to 

(4.5). 

0

q q p

)

 
After dividing by  we get system compactly written in matrix form (5.3) given in 

the theorem. (Similarly it is valid for ≥p q ). System (5.1) is equivalent to (5.2) (5.3) if 
the matrix of the last one is non-singular and this holds by statements of the theorem. 
This can be seen easily by following: columns of the first ( )− +1m q

≥

p  blocks of the 
system are linearly independent by assumption  being non-singular, while by 

conditions in the theorem last mq columns a linearly independent regarding columns of 
the first  blocks. (The same holds for the assumption 

0B

( )−1m q p q ). ♦ 
  

6. CONCLUSIONS 

We proposed an equivalent real system for solving  the problem 

 which gives practical way to find explicit solution. 

Similar transformation can be extended for the case of other functions 
parameterization. Also, instead of optimal base approach result can be used in interior 
point approach where matrix  means active sub-matrix of matrix  
corresponding to optimal partition (see e.g. [20]). 

) ( ...+ +0 t t b

( )t ( )tA

p
p
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