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Abstract: The Fermat-Weber problem is one of the most widely studied problems in 
classical location theory. In his previous work, Brimberg (1995) attempts to resolve a 
conjecture posed by Chandrasekaran and Tamir (1989) on a convergence property of 
the Weiszfeld algorithm, a well-known iterative procedure used to solve this problem. 
More recently, C‹novas, MarÐn and Caflavate (2002) provide counterexamples that 
appear to reopen the question. However, they do not attempt to reconcile their 
counterexamples with the previous work. We now show that in the light of these 
counterexamples, the proof is readily modified and the conjecture of Chandrasekaran 
and Tamir reclosed. 
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1. INTRODUCTION 

The Fermat-Weber problem, also referred to as the continuous single facility 
location problem, requires finding a point in space that minimizes the sum of weighted 
Euclidean distances to  given (or fixed) points. This problem is a cornerstone of 
classical location theory, and forms the basis of many other more advanced models. For 
an entertaining account of its long history, the reader is referred to Wesolowsky [8]; 
also see Love, Morris and Wesolowsky [7]. 

m

One aspect of the Fermat-Weber problem that has puzzled researchers for 
some time relates to the convergence of the Weiszfeld algorithm. It is well known that 

the sequence of points, {  generated by the algorithm converges to the ; , ,...},= 0 1qx q
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optimal solution provided that no iterate coincides with one of the fixed points. In such 
an eventuality, the iteration functions are undefined, and the algorithm will terminate 
prematurely. The question then relates to the nature of the set of "bad" starting points 

{ }0x  that will result in the early termination of the algorithm. Indeed this question is 
of theoretical interest only, since in practice an iterate is rarely observed to land exactly 
on a fixed point (that is, within the numerical precision of the computations). 
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In the seminal convergence proof by Kuhn [6], it is concluded that whenever 

the fixed points are noncollinear, { }0x  will be a denumerable set. This is based on the 
premise that the system ( ) = ia

ia

T x

}0

 has a finite number of roots, where T x  is the 

vector of iteration functions and  denotes any one of the fixed points. However, 

Chandrasekaran and Tamir [5] demonstrate with counterexamples that this premise is 
incorrect; that is, the set of "bad" starting points may not be denumerable for the 
noncollinear case as originally believed. In each of the counterexamples, the fixed 

points are contained in an affine subspace of . These authors then conjecture that a 

sufficient condition for {

( )

n

x  to be denumerable is that the convex hull of the fixed 
points be of full dimension ' . 'n

Brimberg [1] attempts to resolve the open question of Chandrasekaran and 
Tamir by an analysis of the Jacobian matrix of the iteration functions. The analysis 
concludes that having a convex hull of full dimension is both a necessary and sufficient 

condition for { }0x  to be denumerable. Now, most recently, this result is being refuted 
by C‹novas et al. [4]. These authors provide counterexamples, but do not attempt to 
examine or rectify the work in [1]. 

The purpose of this note is to reconsider the analysis in [1] in light of the new 
counterexamples [4]. We show that some modifications are required to the original 
work, but the main conclusion remains intact. Fortunately, the question posed by 
Chandrasekaran and Tamir may be reclosed. 

2. ANALYSIS 

The Fermat-Weber location problem is defined as follows: 

min ( ) ( , )
=

= ∑
1

m

i i
i

W x w d x a  

where 

,..., )1
T

i i ina a a  is the known position of the  fixed point, thi ,...,= 1i m ; 

,..., )1
T

nx  is the unknown position of the new facility; 

0  is a weighting constant for fixed point (customer) , ,..., ;= 1i i m  and 

) || |= −x y |  is the Euclidean distance between any two points . , ∈ nx y

Recall that the iteration function in the Weiszfeld procedure for the  
coordinate is given by: 

tht
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where  

/ ( , )( ) , ,...,
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Letting , we define the following mapping of  to : ( ) ( ( ),..., ( ))= 1
T

nf x f x f x n n

( ), { ,..., }
( )

, ,...,
∉

=  = =

1if

if  for any  1
m

i i

f x x a a
T x

a x a i
 (3) 

Weiszfeld's algorithm is then given by the simple one-point iterative scheme: 

( ), , , ,..+ = =1 0 1 2q qx T x q . .  (4) 

It is well known that the mapping T  is continuous everywhere, and infinitely 
differentiable everywhere except at the fixed points . Furthermore, if an iterate 

coincides with a fixed point (

ia

,=q
ix a  for some  and i q ), the vector  is undefined 

due to division by zero in the components, and we see that the algorithm terminates at 

that fixed point . Otherwise, the algorithm is guaranteed to 

converge to the optimal solution. (See the global convergence proof of Kuhn [6] and a 
generalization to 

( )f x

( ( ,+ ∀ ≥ 1q rx T r)= =i ia a )

pl  norms by Brimberg and Love [3]). 

Let us now further examine the set of (bad) starting points that result in 
termination of the algorithm at some  after a finite number of iterations. From (2) it 

follows that for any 

ia

},\ { ,..., ( ) , ,..., ,α∈ < <1 0 1 1n
m i =x a a x i m

., }m

 and . Hence 

 must be a point in the interior of the convex hull of the set of fixed points 
(denoted by 

( )α
=

=∑
1

1
m

i
i

x

( )T x
{ ,..1ch a a ). This leads immediately to the following result. 

 
Property 1. Suppose each  is an extreme point of ia { ,..., }1 mch a a . Then 

{ | ( ) , \ { ,..., }, { ,..., }}= ∈ ∈1 1n
i mx T x a x a a i m   

is the null set. 
 

It follows in this case that the set of "bad" starting points, defined as 

{ | { ,..., }, ( ) }= ∉ =0 0
1  for some  and finite q

m iS x x a a T x a i q , 

is also empty. Since, for example, m  can be less than + 1n , this clearly demonstrates 
that having { ,..., }1 mch a a  of full dimension is not a necessary condition for  to be S
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denumerable as originally claimed in [1]. C‹novas et al. [4] illustrate this property in 
their counterexample 1. 

 
What if one or more of the fixed points are in the interior of the convex hull? 

C‹novas et al. [4] show using their counterexample 2 that  may still be empty when S
{ ,..., }1 mch a a

( , , ),1 0 0a a

 is not of full dimension. It will be helpful to examine counterexample 2 in 

further detail. There are four fixed points in the horizontal plane: 
.  As before let ( , , ), ( , , ), ( , , )= = = − − =1 2 3 40 1 0 1 1 0 0 0 0a a = = =1 2 4 1w w w , but 

generalize the problem by allowing =3 kw , where . Then setting T x  is 

equivalent to the system: 

> 1k ( ) = 4a

( , )
( , )

= =3 3

1 1

d x a w
k

d x a w
 (5) 

( , )
( , )

= =3 3

2 2

d x a w
k

d x a w
  (6) 

It is readily shown that the points satisfying (5) form a sphere centered at 

, ,
 +
 

− − 

2

2 2
1 1

0
1 1

k

k k
 with radius 

 
 −2

5

1

k

k  ; while the points satisfying (6) form a sphere of 

the same radius centered at , ,
 +
 

− − 

2

2 2
1 1

0
1 1

k

k k
. Thus, if < <k1 , the two spheres 

intersect along a circle; if 

10

= 10k , the intersection of the two spheres degenerates to a 

single point, , ,=  
2 2

0
3 3

P 
 ; finally, if > 10k , the intersection is the null set. 

Since P  is outside { ,..., }1 mch a a , the equation ( ) =T x P  has no solution. It 

follows that  is nondenumerable if S < <k1 ,  contains the single point 10 S P  if 

= 10k , and  if = ∅S >k 10
n {

. This example illustrates that when the fixed points are 

contained in an affine subspace of  ( ,..., }1 mch a a  is not of full dimension), the set of 

"bad" starting points may also be denumerable and nonempty. 
How can these different cases be explained and can they be reconciled with the 

analysis in [1]? To this end let us re-examine , the Jacobian matrix of . It is 
shown in [1] that 

'( )f x ( )f x

( ( ) )( ) ( ), ,..., ,
( ) ( ( , ))=

−
∇ = − =∑ 3

1

1
1

m
i t it

t
i i

w f x a
f x x a t n

s x d x a
i

i

 (7) 

where ( ) / ( , )
=

= ∑
1

m

i
i

s x w d x a  and ∇  denotes the gradient operator. Furthermore, if 

 is contained in an affine subspace of , then  is singular { ,...,1a

∀ ∈

}ma

\ { ,..., }1
n

m

n '( )f x

x a a  (see lemma 1 in [1]). If, on the other hand, { ,...,1 }mch a a  has full 
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dimension , then  is invertible everywhere except at a subset of points of 

measure zero in  (lemma 2 in [1]). 

n '( )f x
n

n

[ '( )x ] ≤ − 1nnk

[ '(f P

{ ,1

rank

ch a

ma

=ira

\∈ n

∀

{ ,...,1a

,

.,= 1 n

= 0x x

( ) ( ) ,0
t tf xf x a

( )f x

 
2.1. Fixed Points in Affine Subspace 

Let the set of fixed points be contained in an affine subspace of , and 
furthermore, assume that 

n

{ ,..., }1 mch a a  has dimension ( )− 1n . (The following 

discussion is readily extended if { ,...,1 }mch a a

{ 1

 is contained in the intersection of two or 

more hyperplanes in .) Referring to [1], it follows that the rank of  must be 
less than or equal to the dimension of 

'( )f x
,..., }mch a a : 

, \ { ,..., }∀ ∈ 1
n

mra f x a a .  

The exceptional case observed in the numerical example with = 10k  occurs 
as a result of the level surfaces, =1 0f  and =2 0f , just touching each other. In effect, 

the intersection of the set of level surfaces degenerates to a single point ( =x P
[ '( )nk f x

 in the 
example). This degeneracy (not foreseen in [1]) is only possible when  

(in the example, ), as proven in the next result.  

] < − 1ra n

)] = <1 2

 

Property 2. Let ..., }ma  have dimension ( )− 1n , and suppose an ∈0x  

 may be found such that \ { ,..., }1
n a ( ) =0

iaT x  for some . If  , a 

continuous trajectory of length >0 passing through 

i
0

[ '( )] =0rank f x n − 1

x  exists such that T x  for 

all points on the trajectory. 

( ) = ia

 
Proof: Suppose that , a constant, ,..., ,∀ = 1i m  and some { ,..., }∈ 1

( )rf x

r  (as in the 

counterexamples in [5] and [4]). From (1) and (2) it follows that , and 

. In effect the r  coordinate drops out.  

n

m

= k

( ) , }∇ = ∀0rf x x a th

k

 
Except for this case it is readily shown by extension of the proof in [1] that 

 (otherwise ( )∇ ≠0 0tf x t [ '( )] < −0 1rank f x n ). Thus, 0x  is not a critical point of any 

of the iteration functions, and  corresponds to a level surface through ( ) ( )= 0
t tf x f x 0x  

for each t . Furthermore, since ,.. [ '( )] = −0 1f xrank n , the intersection of any 

 of these hypersurfaces must yield a continuous trajectory C  of nonzero length 

passing through 

( )− 1n

. Arbitrarily choose the first ( )− 1n  hypersurfaces: 

,...,= = = 1 1it t n . −

Recall that , so that { ,..., }∈ 1 mch a a ( ) , \ { ,..., }
=

= ∀ ∈∑ 0 1
1

n
n

t t m
t

c f x c x a a , 

where 0c  and the tc  are constants not all equal to zero. Therefore, assuming without 
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loss of generality that ≠ 0nc , (otherwise, reselect the ( )− 1n  hypersurfaces), 

( ) ( ),
−

=

 
= − ∀ ∈ 

 
∑

1
0

0
1

1 n

n t it
n t

f x c c a f x x C
c

( ) ( ) ,

= =in na . We conclude that 

= = ∀ ∈x CiT x f x a

C

( ) ( ) , ,⋅ ∇ = ∀ ∈ =0 1tv x f x x C t

( ,..., −1 1t n

( ),∇ ∀ ∈nf x x C ), ∀ ∈0f x x C
0

)

( )v x

,..., −1 n

),∇ =f x t

( ) (=n nf x

x

{ |= 1 1H x c x

, ≠1 2 0c c (
x ( )f x

( ), , ,∇ = 1 2tf x t ...,m

tf

x

( ) , ,∇ ≠ ∀0tf x t ( )][ ' = 1xnk f

,...,1a

, ,..., ,≠ =0 1tc t n ,..., }1 m{ch a a ( )− 1n

, (∉ tx H f

[ '( )nk f x

( ) =0
iT x a i ,∉0x H

. ♦ 

 
Alternatively, consider a unit vector  tangent to C  at any point ( )v x x  on . 

Since  is an intersection of level surfaces, it follows that is normal to  i.e., 

. The singularity of  implies that  is a 

linear combination of  (see also [1]); so that  is also normal to 

. Thus, , and we arrive at the same conclusion. We 

may also conclude that if one point 

C
(v x

'( )f x

( ),∇

)∇ x
tf x

(nf

 is found obeying Property 2, the set of "bad" 
starting points must now be nondenumerable. 

Consider the location problem in the plane ( )= 2n
}

, where all the fixed points 
are contained on a straight line: + 2 2 = 0c x c . Also assume without loss in 

generality that . It is clear that for any ∉x H , the vectors, ), ,..., ,− = 1ix a i m  

are contained in a cone at . Also, { ,..., }∈ 1 mach a  must be a point on H   

somewhere between the two extreme points of the convex hull. It follows that (see (7)) 
 is a weighted sum of the vectors ( ), ,− =i 1x a i , such that negative 

weights are attributed to the fixed points on H  on one side of , and positive 
weights to those on the other side. Thus, 

( )f x
( )∇ x  is a sum of vectors with tails at x , all 

pointing outwards on the same side of the line through  and (f x) . We conclude that 

 and also, ra . Thus, if ( ) =0
iT x a  for some  and i ,∉0x H   

then by Property 2, a continuous trajectory passes through 0x  such that  for 

all points on the trajectory. 

( ) = iT x a

This result appears to generalize to higher dimensional space . Let ( n) H  
denote the affine subspace containing { . Assume without loss of generality 

that 

}ma

 and  has dimension . Using a similar 

reasoning, it follows that for any ) ,∇ ≠ ∀0x t . The rotation of the gradient 

vector for different coordinates (see (7)) also implies that ] = − 1nra . Thus, if 

 for some  and  the set of "bad" starting points must be 

nondenumerable. In other words, it is sufficient to find one "bad" starting point outside 
the affine subspace containing the fixed points for the set of "bad" starting points to be 
nondenumerable. 
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2.2. Convex Hull of Full Dimension 

Finally let us suppose that { ,..., }1 mch a a

n

[ '( )]= rank f x n

 has full dimension . In this case, 

the Jacobian matrix  has full rank of  except at a set of points of measure zero 

in  (lemma 2 in [1]). If  and a point 

n

'( )f x
n { | },L x < ∉0x L  is found such 

that  for some , then by the fundamental inverse function theorem of 

calculus, it follows that a neighbourhood of 

( ) =0
iT x a i

0x  exists such that 0x  is the only point in 
that neighbourhood mapping onto  (also see the discussion in [1]). In fact, the 

invertibility of  implies that in the vicinity of 

ia

'( )f x 0x  the level surfaces,  

 intersect at the unique point 

( ) ,=t if x a t

,..= 1t ., ,n 0x . 
C‹novas et al. [4] in their counterexample 3 wish to infer that the set of "bad" 

starting points  may still be nondenumerable. However, this counterexample is 
completely unrelated to the Fermat-Weber location problem. We now show by 
clarifying the proof in [1] that having 

( )S

{ ,..., }1 mch a a  of full dimension  is sufficient for 

 to be denumerable. 

n

S

Consider the counterexample in . The mapping is given by: 2

( ) ( ( ), ( )) ( , ( ))= = 2
1 2 1 1 2 2G x G x G x x x g x . 

The Jacobian matrix, 

'( )
( ) ( )

 
=  ′ 

1

2 2 1 2 2

2 0x
G x

g x x g x
, 

is invertible everywhere except on { | }= =1 0L x x . Also note that ( )∇ 1G x  is the zero 

vector and  is normal to ( ) ( ( ), )∇ =2 2 2 0G x g x , ∀ ∈L x L . The level curves,  

and , coincide with , and thus, all points in  map onto the origin . 

However, this fabricated example has nothing in common with the problem we are 
looking at. 

( ) =1 0G x

( , )0 0( )2G x = 0 L L

In the context of the Fermat-Weber problem in , it follows from the inverse 
function theorem of calculus that the set  will be nondenumerable only if level curves 
of  and  coincide with  over a finite length, or equivalently,  and 

 have level curves that are identical over a finite length. However, this is 

impossible given the functional forms of  and . 

2

)

S

(1f

( )1f x

( )x

( )2f x L ( )1f x

2f

)x (2f x

The above argument applies to higher dimensional space . In effect, the 
set  of points where  is singular 

( n)
)L '( )f x ( [ '( )] <rank f x n  corresponds analogously to 

the case where { ,1 ..., }mch a a  has dimension ( )− 1n  and [ '( )] < − 1rank nf x : a zero 

gradient vector ( (  may exist at ))∇ tf x x  or a level surface of an  may be just 

tangent to another level surface or the intersection of a combination of such level 
surfaces at 

(tf x)

x . However, the functional forms of the  do not permit the level 

surfaces to all coincide on a continuous trajectory of nonzero length. 

( )xtf
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Thus, the sufficient condition in the theorem in [1] is salvaged, and we restate 
this theorem as follows: 

Given that { ,..., }1 mch a a  has full dimension n , the set of starting points that 

will terminate the Weiszfeld algorithm at some fixed point  after a finite 

number of iterations is denumerable. 
ia

Corollary 1 in [1], that the set  is denumerable whenever S 0x  is restricted to 
the smallest affine subspace containing { , is also seen to hold. ,..., }ma a1

3. CONCLUSIONS 

The counterexamples provided by C‹novas et al. [4] have identified some 
problems with the proof in Brimberg [1]. However, upon closer examination, these 
problems are resolved. We see that when the convex hull of the fixed points is 

contained in an affine subspace of , the set of starting points that terminate the 
Weiszfeld algorithm prematurely at a fixed point will be nondenumerable under 
general conditions specified above. When the convex hull has full dimension n , this set 
is guaranteed to be denumerable. Thus, the open question posed by Chandrasekaran 
and Tamir [5] is reclosed. 

n

The brief reference in [4] to a related work by Brimberg and Chen [2] is 
puzzling, since the problem (and results) for general pl  norms is substantially 

different. 
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