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Abstract: This paper studies the N policy M[x]/G/1 queue with server vacations; startup 
and breakdowns, where arrivals form a compound Poisson process and service times are 
generally distributed. The server is turned off and takes a vacation whenever the system 
is empty. If the number of customers waiting in the system at the instant of a vacation 
completion is less than N, the server will take another vacation. If the server returns from 
a vacation and finds at least N customers in the system, he is immediately turned on and 
requires a startup time before providing the service until the system is empty again. It is 
assumed that the server breaks down according to a Poisson process whose repair time 
has a general distribution. The system characteristics of such a model are analyzed and 
the total expected cost function per unit time is developed to determine the optimal 
threshold of N at a minimum cost. 
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1. INTRODUCTION 

We consider an M[x]/G/1 queuing system in which the server operates N policy 
and is typically a subject to unpredictable breakdowns. The server leaves for a vacation 
of random length whenever the system becomes empty. At the end of a vacation, the 
server inspects the system and decides whether to take a vacation, or to take a general 
startup time. The server immediately starts serving the waiting customers whenever he 
completes his startup. 
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Queuing systems with server vacations have attracted much attention from 
numerous researchers since Levy and Yechiali (1975). Server vacations are useful for the 
system in which the server wants to utilize his idle time for different purposes. An 
excellent survey of queuing systems with server vacations was found in Doshi (1986) and 
Takagi (1991). Queuing systems with the threshold policy (N policy) and multiple 
vacations, including some applications, were first Lee and Srinivasan (1989) and Kella 
(1989). They respectively dealt with the batch arrival M/G/1 and the single-unit arrival 
M/G/1 queuing systems, examined the system performances, and obtained the optimal 
policy under a stationary cost function. Lee et al. (1994 a, b) further analyzed Lee and 
Srinivasan’s model with a single vacation and multiple vacations, respectively. They 
provided the probabilistic interpretation of the single (multiple) vacation system with N 
policy, and their results confirmed the stochastic decomposition property given by 
Fuhrmann and Cooper (1985).  

The server startup corresponds to the preparatory work of the server before 
starting the service. In some actual situations, the server often requires a startup time 
before starting his each service period. Examining queuing systems which combine the N 
policy with startup time, Baker (1973) first proposed the N policy M/M/1 queuing system 
with exponential startup time. Borthakur et al. (1987) extended Baker's results to the 
general startup time. The N policy M/G/1 queuing system with startup time was first 
studied by Minh (1988) and was investigated by several researchers such as Medhi and 
Templeton (1992), Takagi (1993), Lee and Park (1997), and others. Recently, Hur and 
Paik (1999) examined the operation characteristics of the N policy M/G/1 queuing system 
with server startup and explained how the system’s optimal policy and cost behave for 
various arrival rates. 

Most studies on queuing systems use “perfect” (reliable) servers. In many real 
systems, however, the server may meet unpredictable breakdowns. Therefore, queuing 
models with server breakdowns are more realistic representation of the systems. 
Discussing queuing systems with N policy and server breakdowns, Wang (1995) 
proposed the N policy M/M/1 queuing system with server breakdowns at first. Wang 
(1997) and Wang et al. (1999) extended Wang’s model to the N policy M/Ek/1 and 
M/H2/1 queuing system cases, respectively. They developed the analytic closed-form 
solutions and provided a sensitivity analysis. Comparable work on the batch arrival 
queues where the server operates an N policy with vacations, startup and breakdowns is 
rarely found in the literature. This motivates us to develop the N policy for an M[x]/G/1 
queuing system where the server is characterized with vacations, startup and breakdowns. 

In this paper, we develop the probability-generating function of the number of 
customers present when the server begins performing startup. We also derive other 
important system characteristics, such as the expected number of customers in the 
system, waiting time distribution in the queue, the expected length of the idle period and 
busy period, etc. Following the construction of the expected cost function per unit time, 
an efficient and quick procedure is developed for searching the optimal threshold N* 

value that minimize the cost function. Some numerical examples are also presented.  
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2. THE SYSTEM ASSUMPTIONS AND NOTATIONS 

In this paper, we consider the control policy for an M[x]/G/1 queuing system 
with the following specifications. It is assumed that customers arrive in batches to occur 
according to a compound Poisson with rate λ . Let kX  denote the number of customers 
belonging to the k th arrival batch, where kX , 1,  2,  3,  k = , are with a common 
distribution, where 

Pr[ ]k nX n g= = , 1,2,3,...n =  

The service times for a customer are independent and identically distributed 
random variables (S) with a common distribution function S(t). The server is subject to 
breakdowns at any time with Poisson breakdown rate α  when he is working. Whenever 
the server fails, it is immediately repaired at a repair facility, where the repair times are 
independent and identically distributed random variables (R) with a common distribution 
function ( )R t . If at any time any customer arrives, he goes to the service facility for 
service. Arriving customers form a single waiting line based on the order of their arrivals; 
that is, they are queued according to the first-come, first-served (FCFS) discipline. The 
server can serve only one customer at a time. A customer who arrives and finds the 
server busy or broken down must wait in the queue until a server is available. Although 
no service occurs during the repair period of a broken down server, customers continue to 
arrive according to a Poisson process.  

Furthermore, we consider the system in which the server is turned off and takes 
a sequence of vacations for a period of random length V  whenever the system becomes 
empty. When the server returns from a vacation and finds that the number of customers 
waiting in the system is less than N, he will go on a vacation again. If N or more 
customers are accumulated in the system, the server is immediately turned on but is 
temporarily unavailable to the waiting customers. He needs a startup time with random 
length U  before starting his service. As soon as the server finishes startup, he starts 
serving the waiting customers until the system becomes empty. Service is allowed to be 
interrupted if the server breaks down, and the server is immediately repaired. Once the 
broken down server is repaired, he immediately returns to serve a customer until the 
system is empty. 

For any discrete random variable, Y, used in the analysis, we adopt the following 
notation:  

1
( ) i

i
i

Y z z y
∞

=

= ∑ ,  

the probability generating function (p.g.f.) of Y,  where Pr[ ]iy Y i= = .  
Similarly, for any continuous random variable Z used in the analysis, ( )Z t  

denotes the distribution function of Z, Z*(θ )
0

( )te dZ tθ∞
= ∫  denotes its Laplace-Stieltjes 

transform (LST) of and Z*(l)(θ ) the l th order derivative of Z*(θ ) with respect to θ . 
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 3. PROBABILITY GENERATING FUNCTION 

In this section we first construct the probability generating function of the 
number of customers present when the server begins performing startup. Then, we study 
various system characteristics by means of the probability generating function. 

Let us define that B  is the number of batches that arrive during a vacation. 
Using the definition of Poisson arrivals,  ( ) / !t ke t kλ λ−  is the probability that k  batches 
arrive during [0, ]t . We have 

 

0

( )Pr( )  ( )
!

k
t

k
tb B k e dV t

k
λλ∞

−= = = ∫ . 

For convenience of computation of kb , we use the following equivalent 
expressions: 

*( )(  ) ( )
!

k
k

kb V
k
λ λ−

= . 

Furthermore, we define that Q  is the number of customers that arrive during a 
vacation. Using the property of convolution, the probability that there are exact n 
customers during k batches arriving as follow: 

 '
( )

1 2Pr[ ]
nk g s

k
n n n n kg g g g X X X n= ⊗ ⊗ ⊗ = + + + = , 

where (0)
0g  is defined to be 1. 

From the definitions of Q  and ( )k
ng , we have the following relations 

( )

0
Pr( )

n
k

n k n
k

q Q n b g
=

= = = ∑ , 0,1,2,...n =   (1) 

From (1), we obtain the following Theorem 1. 
 

Theorem 1. The probability generating function of Q  is given by 

*( ) ( ( ))Q z V X zλ λ= − . 

Differentiating ( )Q z  with respect to z , it finally yields the first and second 
factorial moments of Q  as follows: 

(1) [ ] [ ] [ ]Q E Q E X E Vλ= = ,  (2a) 

and 
(2) 2 2[ ( 1)] [ ( 1)] [ ] ( [ ]) [ ]Q E Q Q E X X E V E X E Vλ λ= − = − + . (2b) 
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Let NΠ  be the number of customers present when the server begins performing 
startup. The following result, stated as Theorem 2 expresses the p.g.f. of NΠ . 

 
Theorem 2.  

0

1( )
1N z

q
Π =

−

1

1 1
  [ ( ) 1]

N
j k

j N j k
j k

q z z z q
− ∞

−
= =

  Π − + 
  
∑ ∑ ,  1, 2,3,...N =  (3) 

Proof: Conditioning on the number of customers who arrive during the previous 
vacation, we have  

1

0
Pr[ ]  Pr  [ ]

N

N j N j k
j

k q k j q
−

−
=

Π = = Π = − +∑ ,    k N≥ , 1, 2,3,...N =  (4) 

It is easy to solve (4) in term of Pr[ ]N kΠ = , and it yields 

1

10

1Pr[ ]  Pr  [ ]
1

N

N j N j k
j

k q k j q
q

−

−
=

  Π = = Π = − + 
−   

∑ , k N≥ , 1, 2,3,...N =  (5) 

From (5), we get the p.g.f. of NΠ  is obtained as 

0

1( )
1N z

q
Π =

−

1

1
 Pr  [ ]

N
k k

j N j k
k N j k N

z q k j z q
∞ − ∞

−
= = =

  Π = − + 
  
∑ ∑ ∑ .  (6) 

Simplify (6) to obtain the desired result of (3). ■ 
 
Using (3),  [ ]NE Π  and [ ( 1)]N NE Π Π −  are obtained by taking first and second 

order derivative of ( )N zΠ  with respect to z . 

   Let (1)  [ ]N NEπ = Π  and (2) [ ( 1)]N N NEπ = Π Π − . Thus we have as follows: 

1
(1) (1) (1)

10

1  
1

N

N j N j
j

q Q
q

π π
−

−
=

  = + 
−   

∑ ,   1,2,3,...N =   (7) 

and  

(2)

0

1
1N q

π =
−

1
(1) (2) (2)

1
  [2 ]

N

j N j N j
j

q j Qπ π
−

− −
=

  + + 
  
∑ ,    1, 2,3,...N =  (8) 

where 
b

a
∑ indicates zero when a b> , and (1)Q  and (2)Q  are given in (2).    

To complete the computations of (1)
Nπ  and (2)

Nπ , we may obtain (1)
kπ and (2)

kπ  
( 1 )k N≤ ≤  recursively using (7) and (8).  
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4. SYSTEM CHARACTERISTICS 

4.1. Expected number of the customers in the system 

We recall some results in the ordinary M[x]/G/1 queuing system with server 
breakdowns. Let H be a random variable representing the completion time of a customer 
service, which includes both the service time of a customer and the repair time of a 
server. The useful results of Tang (1997) are as follows;  

[ ] [ ](1 [ ])E H E S E Rα= + , (9) 

2 2 2 2[ ] (1 [ ]) ( [ ]) [ ] [ ]E H E R E S E S E Rα α= + + , (10) 

and 

[ ] [ ] (1 [ ])H E X E H E Rρ λ ρ α= = + . (11) 

where [ ] [ ]E X E Sρ λ= . Note that Hρ  is traffic intensity and it should be assumed to be 
less than unity. 

Applying the results of Chae and Lee (1995) and Tang (1997), we obtain the 
expected waiting time in the queue for the N policy M[x]/G/1 queuing system with server 
vacations, startup and breakdowns given by 

( [ ]) [ ] [ ] (1 ) [ ]q q r H r H rW L E X E H E H E Iρ ρ= + + + − , (12) 

where qL  denotes the expected number of customers in the queue, rX  denotes the 
residual batch size, rH  denotes the residual completion time and rI  denotes the residual 
idle time. 

   Substituting Hρ Wq  for [ ]qL E H  in (12), and then solving for  Wq  yields 

[ ] [ ] [ ] [ ]
1 1

r H r
q r

H H

E H E X E HW E Iρ
ρ ρ

= + +
− −

.  (13) 

where Hρ  is given in (11).  
From Chae and Lee (1995), we obtain [ ]rE X  given by 

21 [ ][ ] 1
2 [ ]r

E XE X
E X

 
= − 

 
. (14) 

It is well-known results of the Kleinrock (1975) that [ ]rE H  is given by 

2[ ][ ]
2 [ ]r
E HE H
E H

= . (15) 

Let rV  and rU  denote the residual vacation time and the residual startup time. 
Following the result of Chae and Lee (1995) and using the definition of NΠ , the 
expected residual vacation time is given by 
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2[ ]1 1[ ] 1 [ ]
[ ] 2 [ ]

N
r r

N

E
E V E X

E X Eλ
  Π = − −  Π   

. (16)  

Inserting (14) in (16), we obtain 
(2)

(1)

1 [ ( 1)][ ]
2 [ ] [ ]

N
r

N

E X XE V
E X E X

π
λ π

 −
= − 

 
. (17) 

According to the results of Takagi (1991, section 2.2) and Chae and Lee (1995), we have 
22 [ ] [ ][ ]

2(1 [ ])r
E U E UE U

E U
λ

λ
+

=
+

.  (18) 

Since the idle time is consisted of the vacation time and the startup time, we have the 
expected residual idle time as follows: 

[ ] [ ] [ ]r r rE I E V E U= + . 

From (17) and (18), we have  

 
(2) 2

(1)

1 [ ( 1)] 2 [ ] [ ][ ]
2 [ ] [ ] 2(1 [ ])

N
r

N

E X X E U E UE I
E X E X E U

π λ
λ λπ

 − +
= − +  + 

. (19) 

Finally follows from (9)-(10), (13)-(15) and (19), after using Little’s rule ( vs q HL L ρ= +  

q HWλ ρ= + ) we obtain an expression for vsL , stated as Theorem 3. 
 

Theorem 3. The expected number of customers for the N policy M[x]/G/1 queuing system 
server vacations, startup and breakdowns is given by 

2 2 2 2

(2)

(1)

2 2

[ ](1 [ ]) [ ] [ ]
2(1 )

[ ](1 [ ]) [ ( 1)]
2(1 ) [ ]

1 [ ( 1)]
2 [ ] [ ]

2 [ ] [ ] .
2(1 [ ])

vs
H

H

N

N

H

E X E R E S E RL

E S E R E X X
E X

E X X
E X E X

E U E U
E U

λ α λαρ
ρ

λ α
ρ

π
π

λ λ ρ
λ

+ +
=

−
+ −

+
−

 −
+ − 

 
+

+ +
+

  (20) 

 
4.2. Expected length of the complete period, the idle period and the busy cycle 

The server remains on vacations until he finds N or more customers after 
returning from a vacation. This is called the vacation period. The startup period begins 
when the server performs startup as soon as the server returns from a vacation and finds 
at least N customers. This startup period terminates when he starts providing the service. 
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The customers arriving during startup and vacation periods will not be immediately 
served until the server completes the startup. Therefore, the idle period is the sum of the 
vacation and startup period. The busy period is initiated when the server completes his 
startup and starts serving the waiting customers. During the busy period, the server may 
break down and start his repair immediately. This is called the breakdown period. After 
the server is repaired, he returns and provides service until there are no customers in the 
system. Since the complete period starts when the startup period is over and terminates 
when there are no customers in the system, the complete period is represented by the sum 
of the busy period and the breakdown period. 

First let * ( )oH θ  denote the LST of the complete period in the ordinary M[x]/G/1 

queuing system with server breakdowns and * ( )osH θ  be the LST of the complete period 
in ordinary the M[x]/G/1 queuing system with server startup time. It is useful results of 
Baba (1986), Tang (1997), and Wang (1997) that the LST of the complete period started 
with one customer in the M/G/1 queuing system with server breakdowns can be 
expressed by  

* * *( ) [ ( ( ))]o oH H X Hθ θ λ λ θ= + − , (22) 

where * ( )H ⋅  is LST of completion time H . 
Applying the well-known results of Takagi (1991, section 2.2) and Tang (1997) 

we have the following important results  
* * * *( ) ( ) [ ( ( ))]os o oH H U X Hθ θ λ λ θ= − ,  (23) 

where * ( )oH θ  is given in (22). 
Differentiating (22) with respect to θ , we derive the expected length of the 

complete period initiated with one customer in the system as 

[ ][ ]
1o

H

E HE H
ρ

=
−

. (24) 

where [ ]E H  and Hρ  are given in (9) and (11), respectively. 
Differentiate (23) with respect to θ  and using (24), it follows that  

[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

1 (1 [ ]) 1 (1 [ ])

os o oE H E H E X E U E H
E H E X E U E H

E R E R

λ
λ

ρ α ρ α

= +

= +
− + − +

  .  (25) 

 
Expected length of the complete period 

Let * ( )vsH θ  be the LST of complete period for the N policy M[x]/G/1 queuing 
system with server vacations, startup and breakdowns, and the first customer in each 
complete period needs to wait for a server startup time U before receiving the service. 
After the server finishes startup, he resumes the supply of service. The time spent on 
serving the customers who arrive during the vacation period and the subsequent arrivals 
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while the server is providing service is denoted by vH  with LST * ( )vH θ . And sH  
denotes the time spent on serving the arrivals during the server startup period and those 
subsequent arrivals before the system becomes empty again, where * ( )sH θ  is the LST of 

sH . It is clear that * ( )vsH θ  is convolution of * ( )vH θ  and * ( )sH θ . Since the vacation and 
the startup times are independent, we have  

   * * * * *( ) ( ) ( ) ( ) ( )vs v s v sH H H H Hθ θ θ θ θ= ⊗ = . (26) 

 
Find [ ]sE H  

Recall that the expected length of complete period given by (25) decomposes 
into two parts: one (the first term) is the expected length of complete period in the 
ordinary M[x]/G/1 queuing system with server breakdowns, the other (the second term) is 
the expected length of the complete period caused by the server startup. Using the 
meanings of the above listed sH  we have 

[ ][ ] [ ] [ ][ ]
1 (1 [ ]) 1

H
s

H

E UE X E U E HE H
E R

ρλ
ρ α ρ

= =
− + −

.  (27) 

 
Find [ ]vE H  

Since * ( )oH θ  is the LST of the complete period started with one customer and 
arrival process is Poisson, the LST of the complete period initiated with n  customers in 
the system is given by *[ ( )]n

oH θ . Thus, using the definitions of vH  we have  

 * * *( ) Pr[ ]( ( )) ( ( ))k
v N o N o

k N
H k H Hθ θ θ

∞

=

= Π = = Π∑ . (28)  

Differentiating (28) with respect to θ  and using (24), we get 

[ ]vE H
(1) [ ]

1 (1 [ ])
N E H

E R
π
ρ α

=
− +

(1) [ ](1 [ ])
1 (1 [ ])
N E S E R

E R
π α

ρ α
+

=
− +

. (29) 

Differentiating (26) with respect to θ  and using (27) and (29), we obtain an expression 
for [ ]vsE H , stated as Theorem 4. 

 
Theorem 4. The expected length of the complete period for the N policy M[x]/G/1 
queuing system with server vacations, startup and breakdowns is given by  

(1) [ ](1 [ ])[ ] ( [ ] [ ])
1 (1 [ ])vs N
E S E RE H E X E U

E R
απ λ

ρ α
+

= +
− +

. (30) 
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Expected length of the busy period and the breakdown period 

The expected length of the busy period and the expected length of breakdown 
period are denoted by [ ]vsE B  and [ ]vsE D , respectively. Recall that the complete period 
is the sum of the busy and the breakdown periods which imply [ ] [ ] [ ]vs vs vsE H E B E D= + . 
Hence, from (30) we have 

(1)( [ ] [ ]) [ ]
[ ]

1 (1 [ ])
N

vs
E X E U E S

E B
E R

π λ
ρ α

+
=

− +
,  (31) 

and 
(1)( [ ] [ ])  [ ] [ ]

[ ]
1 (1 [ ])

N
vs

E X E U E S E R
E D

E R
π λ α

ρ α
+

=
− +

.  (32) 

 
Expected length of the idle period 

Let * ( )vsI θ  be the LST of the idle period, which is the sum of vacation period 
and startup period, for the N policy M[x]/G/1 queuing system with server vacations, 
startup and breakdowns. Suppose * ( )vI θ  denotes the LST of the vacation period. It is 

clear that * ( )vsI θ  is convolution of * ( )vI θ  and * ( )U θ . Since the vacation time and the 
startup time are independent, we have  

* * * * *( ) ( ) ( ) ( ) ( )vs v vI I U I Uθ θ θ θ θ= ⊗ = .  (33) 

Since (1)
Nπ  is the expected number of arrivals before the server starts performing 

startup, we have the expected length of the vacation period as follows; 
(1)

[ ]
[ ]
N

vE I
E X
π

λ
= . (34) 

Differentiating (33) with respect to θ  and using (34), the expected length of the 
idle period for this system is expressed by the following theorem. 

 
Theorem 5. 

(1)

[ ] [ ]
[ ]
N

vsE I E U
E X
π

λ
= + .  (35) 

 
Expected length of the busy cycle 

The busy cycle for the N policy M[x]/G/1 queuing system with server vacations, 
startup and breakdowns, denoted by vsΘ , is the length of time from the beginning of the 
last idle period to the beginning of the next idle period. From (30) and (35), we have 
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[ ]
(1) [ ] [ ]

[ ]
[ ] 1 (1 [ ])

N
vs

E X E U
E

E X E R
π λ

λ ρ α
+

Θ =
− +

. (36) 

 
 

5. SPECIAL CASES 

In this section, we present some existing results in the literature which are 
special cases of our system. 

 
Case 1: It is to be noted that when Pr[ 0] 1U = = , 0α =  and 1N = , we recover the 
results for the ordinary M[x]/G/1 queuing system with multiple vacations (i.e. a sequence 
of the same vacations of random length). In this case, the expected residual vacation 
time, [ ]rE V  given in equation (17), can be reduced to a special case for the last term of 
expression (3.21a) of Takagi (1991, p143) or the expression (6) of Chae and Lee (1995). 

 
Case 2: When Pr[ 0] 1U = = , 0α =  and 1N > , we recover the results for the N policy 

M[x]/G/1 queuing system with multiple vacations. In this case, expression (7) for (1)
Nπ , 

expression (8) for (2)
Nπ , and (36) for [ ]vsE Θ  can be reduced to a special case for the 

expressions (4.10), (4.11) and (4.38) of Lee and Srinivasan (1989). 
 

  
6. OPTIMAL POLICY 

In this section, we develop the total expected cost function per unit time for the 
N policy M[x]/G/1 queuing system with server vacations, startup, and breakdowns, in 
which N is decision variable. Let us consider the following costs: 

 
sc ≡ setup cost for per busy cycle; 

hc ≡ holding cost per unit time for each customer present in the system; 

rc ≡ startup cost per unit time for the preparatory work of the server before 
starting the service;   

oc ≡ cost per unit time for keeping the server on and in operation;  

dc ≡ breakdown cost per unit time for a failed server.     
 

Using the definitions of each cost element and its corresponding system performances, 
the total expected cost with threshold N becomes 

 ( )
[ ]

s
h vs

vs

c
F N c L

E
= + +

Θ
[ ] [ ][ ]

[ ] [ ] [ ]
vs vs

r o d
vs vs vs

E B E DE Uc c c
E E E

+ +
Θ Θ Θ

. (37) 

Substituting (21), (31)-(32), and (36) into (37), we obtain 
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   (38) 

where 1 [ ](1 )( [ ])H s rA E X c c E Uλ ρ= − + ,  

( )22 2 2
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2 2

2

[ ] 1 [ ] [ ] [ ]
2(1 )

[ ](1 [ ]) [ ( 1)] 2 [ ] [ ]
2(1 ) [ ] 2(1 [ ])
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2( [ ])

h
H

H
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ρ ρα ρ

 + +
= 
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+ +
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−
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and Hρ  is given by (11). 
We want to find the value of N that yields the minimum expected cost per unit 

of time.  Following the concepts of Lee and Srinivasan (1989), the optimal value *N  of  
N  is given by the first  N  such that ( ) 0I N > . That is 

{ }* min 1 ( ) 0N N I N= ≥ > .  (39) 

where 

1 (1) (1)
1

(2) (2)
1

(1) (1)
1

( ) ( 1) ( )

1 1
[ ] [ ] [ ] [ ]

 .
2 [ ]

N N

h N N

N N

I N F N F N

A
E X E U E X E U

c
E X

π λ π λ

π π
π π

+

+

+

= + −

 
= − + + 

 
+ − 

 

 (40) 

The sign of ( )I N  determines whether ( )F N  increases or decreases with 
respect to N. Numerical experiments based on (39) can convince us that the expected cost 
function is convex which is performed in the following section. 
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7. NUMERICAL EXAMPLES 

We present some numerical examples in this section to demonstrate how the 
management of a production line system uses the above results to make the decision to 
minimize the total expected cost function regarding the threshold value. 

Consider a production line in which the production does not start until at least 
some specified number of units, N (N 1≥ ), are accumulated during an idle period. The 
units arrive in batches according to a compound Poisson process with batch arrival rate 

0.6λ = . The operator will take a sequence vacations whenever there are no units to 
process. The operator of the machine may utilize his vacation time to perform some extra 
operations such as preventive maintenance, or some other work, etc. When the operator 
returns from a vacation and finds that the number of processed units is less than 
threshold, N, he will go on a vacation again. It is noted that the operator requires a startup 
time to operate machine when he finds that the number of processed units reaches or 
exceeds N and the operation may be interrupted because of emergent events. We wish to 
obtain an optimal policy regarding the threshold value, which minimizes the total 
expected cost function and the costs are assumed as follows; 

1000sc = , 1hc = , 100rc = , 200dc = , 100oc = . 

The above system can be modeled as M[x]/G/1 queue with the following assumptions: 
 Batch arrival size distribution is geometric with parameter p ;  
 vacation time is a 2-stage Erlang distributions with mean [ ]E V ;  
 startup time is an exponential distribution with mean [ ]E U ;  
 service time is a 2-type hyperexponential distribution with probability density 

function 
21 1 1 2 2( ) exp( ) exp( )f s s sξ µ µ ξ µ µ= − + −  and mean [ ]E S  (We let 

1 3 / 4ξ = , 2 1/ 4ξ = , 1 3µ = , and 2 1µ =  in all numerical examples, and 
therefore [ ] 0.5E S = ); 

 repair time of the server is a 3-stage Erlang distribution with mean [ ]E R . 
First, we select 0.6λ = , 0.55p = , [ ] 0.5E S = , [ ] 5.0E V = , [ ] 1.0E U = , and 

change in specific values ( ,  [ ])E Rα . The numerical results of the optimal threshold and 
its minimum expected cost are summarized in Table 1. One easily sees from Table 1 that 
the optimal threshold and its minimum expected cost slightly change when α  is from 
0.05 to 0.3 or  [ ]E R  from 0.2 to 1.0. 

 
Table 1: The optimal threshold *N  and its minimum expected cost *( )F N   

( 0.6,  λ =  0.55,p = [ ] 0.5, [ ] 5.0,  [ ] 1.0)E S E V E U= = = . 

( ,  [ ])E Rα  (0.2, 0.2) (0.2, 0.5) (0.2, 1) (0.3, 0.5) (0.1, 0.5) (0.05, 0.5) 

*N  25 25 24 24 25 25 
*( )F N  59.982 62.716 67.263 64.981 60.439 59.301 
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Finally, we select 0.6λ = , 0.45p = , 0.05α = , [ ] 0.5E S = , [ ] 0.4E R = , and 
change in specific values ( [ ],  [ ])E V E U . The numerical results of the optimal threshold 
and its minimum expected cost are summarized in Table 2. We observe from Table 2 that 
the optimal threshold *N  and the minimum expected cost *( )F N  increase as [ ]E V  or 

[ ]E U  increase.   
 

Table 2: The optimal threshold *N  and its minimum expected cost *( )F N   
( 0.6λ = , 0.45, 0.05, [ ] 0.5,  [ ] 0.4) p E S E Rα= = = = . 

( [ ],  [ ])E V E U (10, 2) (5, 2) (1, 2) (5, 5) (5, 10) (5, 15) 

*N  35 34 12 36 39 41 
*( )F N  74.139 70.423 50.322 74.743 81.237 87.130 

 

8. CONCLUSIONS 

For the N policy M[x]/G/1 queuing system, we easily derived some important 
system characteristics through the key probability - generating function and 
decomposition property. We also performed a numerical analysis between the optimal 
value N and the specific values of system parameters. The model is significant since 
more general situations in practical applications are considered in the model. 
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