
Yugoslav Journal of Operations Research 
          14 (2004), Number 2, 247-258 

IMPACT OF DEFECTIVE ITEMS ON ( , , )Q r L  INVENTORY 
MODEL INVOLVING CONTROLLABLE SETUP COST 

Bor-Ren CHUANG, Liang-Yuh OUYANG*, Yu-Jen LIN 
        Graduate Institute of Management Sciences, Tamkang University 

Tamsui,Taipei, Taiwan, R.O.C. 
*liangyuh@mail.tku.edu.tw 

Received: November 2004 / Accepted: March 2004 

Abstract: In a recent paper, Ouyang et al. [10] proposed a ( , , )Q r L  inventory model 
with defective items in an arrival lot. The purpose of this study is to generalize Ouyang 
et al.’s [10] model by allowing setup cost ( )A  as a decision variable in conjunction with 
order quantity ( )Q , reorder point ( )r  and lead time ( )L . In this study, we first assume 
that the lead time demand follows a normal distribution, and then relax this assumption 
by only assuming that the first two moments of the lead time demand are given. For each 
case, an algorithm procedure of finding the optimal solution is developed. 

Keywords: Inventory, defective items, setup cost, lead time, minimax distribution free procedure. 

1. INTRODUCTION 

In traditional economic order quantity (EOQ) and economic production quantity 
(EPQ) models, setup cost is treaded as a constant. However, in practice, setup cost can be 
controlled and reduced through various efforts such as worker training, procedural 
changes and specialized equipment acquisition. Through the Japanese experience of 
using Just-In-Time (JIT) production, the advantages and benefits associated with efforts 
to reduce the setup cost can be clearly perceived. 

In the inventory literature, setup cost reduction models have been continually 
modified so as to achieve the real inventory situation. The initial result in the 
development of setup cost reduction model is that of Porteus [15] who introduced the 
concept and developed a framework of investing in reducing setup cost on EOQ model. 
Since this introduction, a lot of studies such as Nasri et al. [9], Kim et al. [5], Paknejad et 
al. [14] and Sarker and Coates [16] have been done on the related researches. 
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The underlying assumption in above models is that the lead time is prescribed 
constant or a random variable, which therefore, is not subject to control (see, e.g. Naddor 
[8] and Silver and Peterson [19]). In fact, lead time usually consists of the following 
components (Tersine [20]): order preparation, order transit, supplier lead time, delivery 
time, and setup time. In many practical situations, lead time can be reduced at an added 
crashing cost; in other words, it is controllable. By shortening lead time, we can lower the 
safety stock, reduce the stockout loss and improve the customer service level so as to 
gain competitive edges in business. Inventory models considering lead time as a decision 
variable have been developed by several researchers recently. Liao and Shyu [6] first 
presented a probability inventory model in which lead time is a unique decision variable 
and order quantity is predetermined. Ben-Daya and Raouf [1] extended Liao and Shyu’s 
[6] model by considering both lead time and order quantity as decision variables. Later, 
some studies [7, 10-13] in the field of lead time reduction generalized Ben-Daya and 
Raouf’s [1] model by allowing reorder point as one of the decision variables. In a recent 
article, Ouyang et al. [10] proposed two general models that even contain some defective 
items in an arrival order lot. We note that these papers are focusing on the benefits from 
lead time reduction in which setup cost is treated as a fixed constant. 

In this paper, using the same assumptions as in Ouyang et al. [10], we formulate 
a modified continuous review model including defective items to extend Ouyang et al.’s 
[10] model by simultaneously optimizing the order quantity (Q), setup cost (A), reorder 
point (r) and lead time (L); that is, our goal is to establish a ( , , , )Q A r L  inventory model 
with defective items to accommodate more practical features of the real inventory 
systems. From the numerical examples provided, we can show that our new models are 
better than that of Ouyang et al. [10]. In our study, we first start with a lead time demand 
that follows a normal distribution, and determine the optimal order policy. Next, we relax 
the normal distributional form of the lead time demand by only assuming that the first 
and second moments of the distribution function of the lead time demand are known and 
finite, and then solve this inventory model by using the minimax distribution free 
approach. Furthermore, two numerical examples are provided. 

2. NOTATIONS AND ASSUMPTIONS 

    In order to develop the proposed models, we adopt the following notations 
and assumptions used in Ouyang et al. [10] in this paper. 
 
Notations: 

D   = expected demand per year for non-defective items  
h   = non-defective holding cost per unit per year 

'h   = defective treatment cost per unit per year 
1π   = shortage cost per unit short 

2π  = lost sales per unit 
ν   = inspecting cost for each item in an arrival order  
β   = the fraction of the demand during the stock-out period that will be 

backordered, β ∈[0,1] 
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p   = defective rate in an order lot, p ∈  [0,1), a random variable 
( )g p  = the probability density function (p.d.f.) of p  with finite mean pM  and 

finite variance pV  
2σ   = variance of the demand per year during lead time 

Q   = order quantity including defective items, a decision variable 
A   = setup cost per setup, a decision variable 
r   = reorder point 
L   = length of lead time, a decision variable, a decision variable 
X   = the lead time demand which has a distribution function (d.f.) F  with 

finite mean DL  and standard deviation Lσ  
( )E ⋅   = mathematical expectation 

x+   = maximum value of x  and 0, i.e., x+ = { },0Max x . 
 

Assumptions: 
1. Inventory is continuously reviewed. Replenishments are made whenever the 

inventory level (based on the number of non-defective items) falls to the reorder 
point r . 

2. The reorder point r  = expected demand during lead time + safety stock (SS), 
and SS = k ×(standard deviation of lead time demand), i.e., r DL k Lσ= + , 
where k  is the safety factor. 

3. The lead time L  consists of n  mutually independent components. The i th 
component has a minimum duration ia  and normal duration ib , and a crashing 
cost per unit time ic . Further, for convenience, we rearrange ic  such that 

1 2 nc c c≤ ≤ ≤ . Then, it is clear that the reduction of lead time should be first 
on component 1 because it has the minimum unit crashing cost, and then 
component 2, and so on. 

4. If we let 0
1

n

j
j

L b
=

= ∑  and iL  be the length of lead time with components 1,2,…, i  

crashed to their minimum duration, then iL  can be expressed as 

1 1
( )

n i

i j j j
j j

L b b a
= =

= − −∑ ∑ , i =1,2,…, n ; and the lead time crashing cost ( )C L  per 

cycle for a given 1[ , ]i iL L L −∈  is given by 
1

1
1

( ) ( ) ( )
i

i i j j j
j

C L c L L c b a
−

−
=

= − + −∑ . 

5. Upon an arrival order lot Q  with a defective rate p , the entire items are 
inspected and all defective items are assumed to be discovered and removed 
from order quantity Q . And thus, the effective order quantity (i.e., the quantity 
of non-defective or salable items) is reduced to an amount equal to (1 )Q p− , 
and defective items in each lot will be returned to the supplier at the time of 
delivery of the next lot. 

6. Inspection is non-destructive and error-free. 
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3. REVIEW OF OUYANG ET AL.’S MODEL 

Ouyang et al. [10] considered a ( , , )Q r L  inventory model with defective items 
in an arrival lot, and asserted the following function of expected total annual cost which 
is composed of setup cost, non-defective holding cost, defective treatment cost, stock-out 
cost, inspecting cost, and lead time crashing cost. Symbolically, the problem is given by 

 

( , , )EAC Q r L  =
[ ]{ }1 2( ) (1 ) ( )

(1 )p

D A C L E X r

Q M

π π β ++ + + − −

−
 

(1 ) ( )h r DL E X rβ + + − + − −  2(1 ) 1p p

Q D
M M
γ ν

+ +
− −

, (1) 

where 
(1 )p

D
Q M−

 is the expected order number per year (see, e.g. Schwaller [17] or  

Shih [18]); 
1

0
( )pM pg p dp= ∫  is the mean of random variable p , ( )E X r +−  is the 

expected demand shortage at the end of cycle, 
1 12

0 0

'(1 ) ( ) 2 (1 ) ( )h p g p dp h p p g p dpγ = − + −∫ ∫  

2' '2( ) ( 2 )( ) 0p p ph h h M h h M V= + − + − + > .  (2) 

In addition, since the lead time demand X  follows a normal d.f. ( )F x  with 

mean DL  and standard deviation Lσ , and the reorder point r DL k Lσ= + , where 
k  is the safety factor, we can consider the safety factor k as a decision variable instead of 
r . Thus, the expected shortage quantity ( )E X r +−  at the end of the cycle can be 
expressed as a function of safety factor k ; that is,  

( )E X r +− ( ) ( )
r

x r dF x
∞

= −∫ ( ) ( )zk
L z k dF zσ

∞
= −∫ ( ) 0LG kσ= > , 

where ( )G k ( ) ( )zk
z k dF z

∞
= −∫  and ( )zF z  is the d.f. of the standard normal variable Z . 

Therefore, problem (1) can be transformed to 

( , , )EAC Q k L =
[ ]{ }1 2( ) (1 ) ( )

(1 )p

D A C L LG k

Q M

π π β σ+ + + −

−
 

[ ](1 ) ( )h L k G kσ β+ + −
2(1 ) 1p p

Q D
M M
γ ν

+ +
− −

. (3)  
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4. MODEL EXTENSION 

In contrast to Ouyang et al.’s [10] model, we consider the setup cost A  as a 
decision variable and seek to minimize the sum of the capital investment cost of reducing 
setup cost A  and the inventory related costs (as express in problem (3)) by optimizing 
over Q , A , k  and L  constrained on 00 A A< ≤ , where 0A  is the original setup cost. 
That is, the objective of our problem is to minimize the following expected total annual 
cost 

( , , , )EAC Q A k L = ( )AηΨ + ( , , )EAC Q k L  (4) 

over 0(0, ]A A∈ , where η  is the fractional opportunity cost of capital per year, ( )AΨ  
follows a logarithmic investment function given by  

0( ) ln( )
A

A b
A

Ψ =   for 0(0, ]A A∈ , (5) 

1/ b  is the fraction of the reduction in A  per dollar increase in investment. This 
logarithmic investment function is consistent with the Japanese experience as reported in 
Hall [4]; and has been used by Nasri et al. [9] and others. 

From function (5), we note that the setup cost level 0(0, ]A A∈ . It implies that if 
the optimal setup cost obtained does not satisfy the restriction on A , then no setup cost 
reduction investment is made. For this special case, the optimal setup cost is the original 
setup cost. 

Substitute (5) and (3) into (4) and minimize the resulting equation; we suffice to 
minimize 

( , , , )EAC Q A k L = 0ln
A

b
A

η  
 
 

[ ]{ }1 2( ) (1 ) ( )

(1 )p

D A C L LG k

Q M

π π β σ+ + + −
+

−

[ ](1 ) ( )h L k G kσ β+ + −
2(1 ) 1p p

Q D
M M
γ ν

+ +
− −

, (6) 

over 0(0, ]A A∈ . 
In order to solve this nonlinear programming problem, we first ignore the 

restriction 0(0, ]A A∈  and take the first partial derivatives of ( , , , )EAC Q A k L  with 
respect to Q , A , k  and 1[ , ]i iL L L −∈ , respectively. 

[ ]{ }1 2

2

( ) (1 ) ( )( , , , )
2(1 )(1 ) pp

D A C L LG kEAC Q A k L
Q MQ M

π π β σ∂ γ
∂

+ + + −
= − +

−−
,  (7) 

( , , , )
(1 )p

EAC Q A k L b D
A A Q M

∂ η
∂

= − +
−

,  (8) 
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( , , , )EAC Q A k L
k

∂
∂

[ ] [ ]1 2 (1 ) ( )
1 (1 ) ( )

(1 )
z

z
p

D LP k
h L P k

Q M
π π β σ

σ β
+ −

= − + − −
−

,  (9) 

where ( )zP k = ( )zP Z k≥ , and 

[ ] [ ]
1/ 2

1 2 1/ 2(1 ) ( )( , , , ) 1 (1 ) ( )
2 (1 ) 2p

D L G kEAC Q A k L h L k G k
L Q M

π π β σ∂
σ β

∂

−
−+ −

= + + −
−

 

(1 )
i

p

Dc
Q M

−
−

. (10) 

    By examining the second order sufficient conditions, it can be easily verified 
that ( , , , )EAC Q A k L  is not a convex function of ( , , , )Q A k L . However, for fixed Q , A 
and k , ( , , , )EAC Q A k L  is concave in 1[ , ]i iL L L −∈ , because 

3/ 22
1 2

2

3/ 2

[ (1 )] ( )( , , , )
4 (1 )

1 [ (1 ) ( )] 0.
4

p

D L G kEAC Q A k L
Q ML

h L k G k

π π β σ∂
∂

σ β

−

−

+ −
= −

−

− + − <

 

Hence, for fixed Q , A and k , the minimum expected total annual cost will occur at the 
end points of the interval 1[ , ]i iL L − . On the other hand, it can be shown that, for a given 
value of 1[ , ]i iL L L −∈ , ( , , , )EAC Q A k L  is a convex function of ( , , )Q A k . Thus, for fixed 

1[ , ]i iL L L −∈ , the minimum value of ( , , , )EAC Q A k L  will occur at the point ( , , )Q A k  

which satisfies ( , , , ) 0EAC Q A k L
Q

∂
∂

= , ( , , , ) 0EAC Q A k L
A

∂
∂

=  and ( , , , ) 0EAC Q A k L
k

∂
∂

= . 

Solving above equations for Q , A and ( )zP k  respectively, produces 

{ } 1/ 2

1 22 ( ) [ (1 )] ( )D A C L LG k
Q

π π β σ

γ

 + + + − =  
  

,  (11) 

(1 )pbQ M
A

D
η −

=   (12) 

and 

1 2

(1 )
( )

(1 )(1 ) [ (1 )]
p

z
p

hQ M
P k

hQ M Dβ π π β
−

=
− − + + −

.   (13) 

From equations (11)-(13), we note that it is difficult to find an explicit general 
solution for ( , , )Q A k . Consequently, we establish the following algorithm to find the 
optimal ( , , , )Q A k L .  
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Algorithm  

Step1. For each iL , i =0,1,2,…, n , perform (i)-(v). 
(i)  Start with 1 0iA A=  and 1 0ik =  and get 1( )iG k =0.3989 by checking the table from 

Silver and Peterson [19, pp. 779-786] or Brown [2, pp. 95-103].  
(ii)  Substituting 1iA  and 1( )iG k  into equation (11) evaluates 1iQ . 
(iii) Utilizing 1iQ  determines 2iA  from equation (12) and 2( )z iP k  from equation (13). 
(iv) By checking 2( )z iP k  from Silver and Peterson [19] or Brown [2] finds 2ik , and 

hence 2( )iG k . 
(v)  Repeat (ii)-(iv) until no change occurs in the values of iQ , iA  and ik .  
 
Step2. Compare iA  and 0A . 
(i)  If 0iA A≤ , iA  is feasible, then go to Step3. 
(ii)  If 0iA A> , iA  is not feasible. For given iL , take 0iA A=  and solve the 

corresponding values of ( , )i iQ k  from equations (11) and (13) iteratively until 
convergence (the solution procedure is similar to that given in Step1), then go to 
Step3. 

 
Step3. For each ( , , , )i i i iQ A k L , i = 0,1,2,…, n , compute the corresponding expected total 
annual cost ( , , , )i i i iEAC Q A k L  utilizing (6). 

 
Step4.  Find

0,1,2,....,
( , , , )i i i ii n

Min EAC Q A k L
=

. 

If * * * *( , , , )EAC Q A k L =
0,1,2,....,

( , , , )i i i ii n
Min EAC Q A k L

=
, then * * * *( , , , )Q A k L  is the optimal 

solution. And hence, the optimal reorder point is * * * *r DL k Lσ= + . 
 
 

5. DISTRIBUTION FREE MODEL 

In many practical situations, the distributional information of lead time demand 
is often quite limited. In this section, as in Ouyang et al.’s [10] model, the assumption 
that the lead time demand is normally distributed is relaxed and only assume that the  d.f. 
F  of X  belongs to the class Ω  of d.f.'s with finite mean DL  and standard deviation 

Lσ . Since the form of the distribution function of lead time demand X is unknown, the 
exact value of the expected demand shortage ( )E X r +−  cannot be determined. 
Therefore, we use the minimax distribution free procedure to solve this problem. The 
minimax distribution free approach for this problem is to find the “most unfavorable” d.f. 
F in Ω  for each ( , , , )Q A r L  and then minimize over ( , , , )Q A r L ; that is, our problem is 
to solve 
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, , ,
( , , , )

Q A r L F
Min Max EAC Q A r L

∈Ω 
, (14) 

over 0(0, ]A A∈ . 
For this purpose, we need the following proposition which was asserted by 

Gallego and Moon [3]. 
 
Proposition. For any  F ∈ Ω , 

2 21( ) ( ) ( )
2

E X r L r DL r DLσ+  − ≤ + − − −  
. (15) 

Moreover, the upper bound of (15) is tight. 
Since r DL k Lσ= +  as mentioned previously, and for any probability 

distribution of the lead time demand X , the above inequality always holds. Then, using 
inequality (15) and model (6), the problem (14) is reduced to minimize  

( , , , )UEAC Q A k L = 0ln
A

b
A

η   + 
 

[ ]( )2
1 2

1
( ) (1 ) 1

2
(1 )p

D A C L L k k

Q M

σ π π β
 

+ + + − + − 
 

−
 

( )21 (1 ) 1
2

h L k k kσ β + + − + −   2(1 )p

Q
M
γ

+
− 1 p

D
M

ν
+

−
,  (16) 

over 0(0, ]A A∈ , where ( , , , )UEAC Q A k L  is the least upper bound of ( , , , )EAC Q A k L . 
By analogous arguments in the normal distribution demand case, we can show 

that ( , , , )UEAC Q A k L  is a concave function of 1[ , ]i iL L L −∈  for fixed ( , , )Q A k . Thus, 
for fixed ( , , )Q A k , the minimum value of ( , , , )UEAC Q A k L  will occur at the end points 
of the interval 1[ , ]i iL L − . On the other hand, for a given value of 1[ , ]i iL L L −∈ , 

( , , , )UEAC Q A k L  is convex in ( , , )Q A k . Hence, for fixed 1[ , ]i iL L L −∈ , the minimum 

value of (16) will occur at the point ( , , )Q A k  which satisfies 
( , , , )

0UEAC Q A k L
Q

∂
∂

= , 

( , , , )
0UEAC Q A k L

A
∂

∂
=  and 

( , , , )
0UEAC Q A k L

k
∂

∂
= , simultaneously. The resulting 

solutions are 

[ ]( )
1/ 2

2
1 2

1
2 ( ) (1 ) 1

2
D A C L L k k

Q
σ π π β

γ

  
+ + + − + −  

  =  
 
  

, (17) 
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(1 )pbQ M
A

D
η −

=   (18) 

and 

[ ]2
1 2

2

(1 )2 1 (1 )
(1 )1 p

Dk
hQ Mk k

π π β
β

+ −+
= + −

−+ −
. (19) 

The similar algorithm procedure as proposed in the previous section can be 
performed to obtain the optimal solutions for the order quantity, setup cost, reorder point 
and lead time. 

6. NUMERICAL EXAMPLES 

In order to illustrate the above solution procedure and the effects of setup cost 
reduction, let us consider an inventory system with the following data used in Ouyang et 
al. [10]: D = 600 units/year, 0A = $200 per setup, h = 20$/unit/year, 'h = 10$/unit/year, 
σ = 7 units/week, ν = 1.6$/unit, 1π = $50/unit, 2π = $150/unit. The lead time has three 
components with data as shown in Table 1, and the defective rate p  in an order lot has a 
Beta distribution with parameters s = 1 and t = 4; i.e., the p.d.f. of p  is 

 
3( ) 4(1 )  , 0 1

0 ,  otherwise
g p p p = − < <




.  

Hence, the mean of p  is /( )pM s s t= + = 0.2, and the variance of p  is pV =  
2/[( ) ( 1)]st s t s t= + + + = 0.02667. Therefore, from equation (2), we can get 16γ = . 

Besides, for setup cost reduction, we take 0.1η =  and 5,800b = . 
 

Table 1:  Lead time data 
 Lead time 
component 

     i  

 Normal 
Duration 

ib (days) 

Minimum 
duration 

ia (days) 

  Unit crashing  
 cost 

 ic ($/day) 

     1 
     2 
     3 

   20 
   20 
   16 

    6 
    6 
    9 

0.4 
1.2 
5.0 

 
 
Example 1:  Suppose that the lead time demand follows a normal distribution. We solve 
the cases when β  = 0, 0.5, 0.8 and 1. Applying the Algorithm procedure, we summarize 
the optimal solutions as shown in Table 2. Furthermore, to see the effects of setup cost 
reduction, we list the results of fixed setup cost model [10] in the same table. 
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Table 2:  Summary of the optimal solutions for normal distribution case ( iL  in week ) 

Setup cost reduction model Fixed setup cost model               
β  

* * * *( , , , )Q A r L  ( )EAC ⋅  * * *( , , )Q r L  ( )EAC ⋅  
Savings  

% 

0.0 (87, 67.17, 78, 4)  $ 4,210 (134, 73, 4)  $ 4,476 5.9 
0.5 (76, 58.55, 106, 6) 4,162 (135, 71, 4) 4,427 6.0 
0.8 (76, 59.09, 103, 6) 4,105 (135, 68, 4) 4,376 6.2 
1.0 (77, 59.81, 99, 6) 4,044 (136, 64, 4) 4,319 6.4 

 Note: Savings % = * * * * * * * * * *{[ ( , , ) ( , , , )] / ( , , )} 100%EAC Q r L EAC Q A r L EAC Q r L− ×  
 
From the results shown in Table 2, comparing our new model with that of fixed 

setup cost case, we observe the savings which range from 5.9% to 6.4%. It implies that 
significant savings can be easily achieved due to controlling the setup cost. 

 
 

Example 2:  The assumption and data are as Example 1, except that the probability 
distribution of the lead time demand is unknown. Using the similar procedure as 
Algorithm, the summarized optimal values are tabulated in Table 3. 

 

 
Table 3:  Summary of the optimal solutions ( iL  in week ) 

      β           * * * *( , , , )Q A r L              * * * *( , , , )UEAC Q A r L  
  0.0      (166, 128.06, 75, 3) $ 5,586 
  0.5      (154, 118.76, 67, 3) 5,227 
  0.8      (137, 105.95, 77, 4) 4,928 
  1.0      (127,  98.18, 70, 4) 4,633 

 
 
Moreover, we can compare the procedures for the worst case distribution against 

the normal distribution. For example, in the case of 1β = , the optimal solutions of 

normal distribution and distribution free model are * * * *( , , , ) (77,59.81, 99,6)Q A r L =  and 

* * * *( , , , ) (127, 98.18, 70 ,4)Q A r L = , respectively. Substituting them into (6), we have 
* * * *( , , , )EAC Q A r L =$4,044 and * * * *( , , , )EAC Q A r L =$4,148. Hence, * * * *( , , , )EAC Q A r L  

* * *
*( , , , )EAC Q A r L− = $ 4,148 − 4,044 = $104 is the largest amount that we would be 

willing to pay for the knowledge of the probability distribution of demand. This quantity 
can be regarded as the expected value of additional information (EVAI). 
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7. CONCLUDING REMARKS 

The purpose of this study is to extend Ouyang et al.’s [10] model by 
simultaneously optimizing the order quantity, setup cost, reorder point and lead time, and 
further examine the effect of defective items on an inventory model. In this paper, we 
first assume that the lead time demand follows a normal distribution, and determine the 
optimal order policy. Then, we relax the assumption about the form of the distribution 
function of lead time demand by applying the minimax distribution free procedure to 
solve the problem.  

In future research on this problem, it would be interesting to adopt the random 
sub-lot sampled inspection policy to inspect the selected items. Another extension of this 
work may be conducted by considering the effects of investing in quality improvement.  
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