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Abstract: This paper addresses the problem of blind separation of non-stationary signals. 
We introduce an on-line separating algorithm for estimation of independent source 
signals using the assumption of non-stationarity of sources. As a separating model, we 
apply a self-organizing neural network with lateral connections, and define a contrast 
function based on correlation of the network outputs. A separating algorithm for 
adaptation of the network weights is derived using the state-space model of the network 
dynamics, and the extended Kalman filter. Simulation results obtained in blind separation 
of artificial and real-world signals from their artificial mixtures have shown that 
separating algorithm based on the extended Kalman filter outperforms stochastic gradient 
based algorithm both in convergence speed and estimation accuracy. 
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1. INTRODUCTION 

Blind separation of sources refers to the problem of recovering source signals 
from their instantaneous mixtures using only the observed mixtures. The separation is 
called blind, because it assumes very weak assumptions on source signals and the mixing 
process. The key assumption is the statistical independence of source signals. A goal is to 
obtain output signals that are as independent as possible using the observed mixture 
signals.  
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In the last few years, the problem of blind source separation has received 
considerable attention. Since 1985, when blind source separation was initially proposed 
by Jutten and Herault to explain some phenomena in human brain due to simultaneous 
excitation of biological sensors, various approaches have been proposed [10]. These 
approaches include independent component analysis - ICA [7], information maximization 
[2], the natural gradient approach [5,6], etc. Most of the approaches use the independence 
property either directly, through optimization of criteria based on the Kullback-Leibler 
divergence, or indirectly, through minimization of criteria based on the cumulants. 
Having in mind the independence property of sources, the task of blind separation is to 
recover independence of the estimated output signals. Since the independence of sources 
implies that cumulants of all orders should be equal to zero, the problem is obviously 
related to higher-order statistics (HOS). It has been shown that the fourth-order statistics 
are enough to achieve independence, and therefore most of the algorithms based on HOS 
use fourth-order cumulants [4]. However, application of HOS is limited to non-Gaussian 
signals, because for Gaussian signals, cumulants of order higher than two vanish. If the 
source signals are stationary, Gaussian processes, it has been shown that blind separation 
is impossible in a certain sense. 

In this paper, we consider blind separation of non-stationary signals using 
second-order statistics. In [11,12], it has been shown that, using the additional 
assumption on non-stationarity of sources, blind source separation of Gaussian or non-
Gaussian signals can be achieved using only second-order statistics (SOS). Mainly, we 
are interested in second-order non-stationarity in the sense that source variances vary 
with time. We base our algorithm on diagonalization of the output correlation matrix in 
order to achieve decorrelation of the estimated output signals. As a mixing model, we 
consider instantaneous linear mixture of non-stationary, statistically independent sources. 
In order to blindly separate source signals from the observed mixtures, we apply a self-
organizing neural network with lateral connections, which uses the observed mixtures as 
inputs, and provides the estimated source signals as outputs. Throughout the learning 
process, the network weights are adapted in a direction that reduces correlation between 
outputs. As an optimization algorithm that minimizes cross-correlations between output 
signals, we propose an on-line algorithm derived from the Extended Kalman Filter (EKF) 
equations. In our experiments with real-world signals, the EKF based algorithm has 
shown superior convergence properties compared to the stochastic gradient separating 
algorithm. 

The paper is organized as follows. In Section 2, we formulate the problem of 
blind source separation. In Section 3, we briefly describe a stochastic gradient based 
method for blind separation of non-stationary sources which uses a neural network with 
lateral connections as a demixing model. In section 4, we propose a separating algorithm 
based on the contrast function derived using only the second-order statistics, and apply 
EKF as an optimization algorithm in order to estimate neural network weights and 
recover non-stationary sources. Section 5 contains the simulation results obtained in 
separation of non-stationary artificial and real-world source signals. In Section 6, we give 
the concluding remarks. 



 S. Todorović-Zarkula, B. Todorović, M. Stanković / On-Line Blind Separation  81 

2. PROBLEM FORMULATION 

Let 1 2[ ... ]T
Ns s s s= represent N zero-mean random source signals whose exact 

probability distributions are unknown. Suppose that M sensors receive linear mixtures 

1 2[ ... ]T
Mx x x=x  of source signals. If we ignore delays in signal propagation, this can be 

expressed in the matrix form: 

=x A s  (1) 

where A is the unknown M N×  linear combination matrix, and x is the vector of the 
observed mixtures. In a demixing system, source signals have to be recovered using the 
observed mixtures as inputs. As a result, we get generally an N-dimensional ( N M≤ ) 
random vector y of separated components: 

= = =y Bx BAs Gs  (2) 

where B is an N M×  matrix, and G is an N N×  global system matrix. Since it is of 
interest to obtain separated components that represent possibly scaled and permuted 
versions of source signals, the matrix G has to represent a generalized permutation 
matrix [3]. Ideally, if G is an identity matrix, the set of sources is completely separable. 
Therefore, the problem is to obtain, if possible, a matrix B such that each row and each 
column of G contains only one nonzero element. It should be noted that the problem has 
inherent indeterminacies in terms of ordering and scaling of the estimated output signals. 
Due to the lack of prior information, the matrix A can not be identified from the observed 
signals even if it should be possible to extract all source signals, because their ordering 
remains unknown. The magnitudes of the source signals are also not recoverable, because 
a scalar multiple of js , jks , can not be distinguished from multiplication of the j-th 
column of A by the same scalar k. Therefore, we can obtain at best =y DPs , where P is 
a permutation matrix, and D is a nonsingular diagonal scaling matrix. This means that 
only permuted and rescaled source signals can be recovered from mixture signals. In 
most cases, such solution is satisfactory, because the signal waveform is preserved. In our 
further considerations we assume for simplicity that =DP I  without loss of generality. 

 

In the following, we assume that the sources are non-stationary, mutually 
independent zero-mean random signals, the mixing process is linear, time invariant and 
instantaneous, and the number of observed mixtures N is equal to the number of sources 
and number of separated components, N=M. In practice, the number of sources is usually 
unknown, and may be less, equal, or greater than the number of mixtures, i.e. sensors. 
Most of the approaches to the blind separation are based on the prior assumption that the 
number of mixtures is equal or greater than the number of sources. However, the 
underdetermined case, i.e. the case when the number of sources is greater than the 
number of sources, has also been examined [5]. 
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3. STOCHASTIC GRADIENT BASED ALGORITHM FOR BLIND 
SOURCE SEPARATION 

Blind source separation using the additional assumption on non-stationarity of 
sources was initially proposed in [12]. It was shown that non-stationary signals can be 
separated from their mixtures using SOS if signal variances change with time, and 
fluctuate independently of each other during the observation. In order to separate non-
stationary source signals from their instantaneous mixtures, a linear self-organizing 
neural network with lateral connections was applied as a demixing model [12]. 
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Figure 1: Self-organizing linear neural network with lateral connection for blind source 
separation 

According to Figure 1, unknown source signals 1 2, ,..., Ns s s  generated by N 
independent sources, are mixed in an unknown mixing process, and picked up by N 
sensors. The network receives observed sensor signals tx  which represent mixtures of 
source signals as inputs and provides estimates of the original source signals ty  as 
outputs. In matrix notation, the dynamics of each output unit is given by the first-order 
linear differential equation: 

t
t t t

d
dt

τ + = −
y

y x Wy  (3) 

where the matrix [ ]ijw=W  denotes the mutual lateral connections between the output 
units. The output units have no self-connections, and therefore wii=0. In the steady state, 
the equation (3) becomes: 

1( )t t
−= +y I W x  (4) 

Using the self-organized neural network (Fig. 1) as a demixing model, 
Matsuoka et al. [12] have derived an on-line stochastic gradient (SG) based algorithm for 
blind separation of non-stationary sources. The algorithm was obtained by minimization 
of the following contrast function [12]: 
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( ) 2 T
, ,

1 log log | |
2y t i t t t

i
Q y⎧ ⎫= < > − < >⎨ ⎬

⎩ ⎭
∑W, R y y  (5) 

where ,y tR  is the output correlation matrix, and <⋅>  denotes expectation. It should be 
noted that in the case of zero-mean signals, correlation matrix is equal to covariance 
matrix. In discrete-time k, the SG based separating algorithm is given by the following 
equations for adaptation of the network weights , , , 1,...,ij kw i j N= [12]: 

ki

kjki
kijkij

yy
ww

,

,,
,, φ

β+=
 

(6a)
 

2
,,, )1( kikiki yααφφ −+=  (6b) 

In (6a), the learning rate β  is assumed to be a very small positive constant, and 
the constant α in (6b) is a forgetting factor, 0 1α< < . The learning algorithm (6a)-(6b) 
uses moving average ,i kφ  in order to estimate >< 2

,kiy  in real time. In practice, expected 
values are not available, and time-averaged or instantaneous values can be used instead 
of them.  

4. EXTENDED KALMAN FILTER BASED ALGORITHM FOR BLIND 
SOURCE SEPARATION 

Separating algorithms based on stochastic gradient suffer from slow 
convergence. In order to improve convergence speed and estimation accuracy, we 
propose an application of the extended Kalman filter to the problem of blind source 
separation. Kalman filter [9] is well-known for its good properties in state estimation [8] 
and on-line learning [13]. Our approach to non-stationary blind signal separation is based 
on the assumption that cross-correlations of the output signals should be equal to zero. 
The problem of blind separation is formulated as minimization of the instantaneous 
contrast function [14]: 

( ) ( ) ( )T
k k k k kJ =w r w r w . (7) 

In (7), kr  is the vector formed of the non-diagonal elements of the output 

correlation matrix, i.e. the cross-correlations ( ) ( )i k j ky yw w  of the network outputs ky  

at time step k, parameterized by the unknown mixing weigths kw . As a demixing model, 
we have applied a neural network with lateral connections (Fig. 1). The network outputs, 
which represent the recovered source signals, are calculated at every time step according 
to: 

, , , ,
1

, , 1,...
N

i k i k ij k j k
j
j i

y x w y i j N
=
≠

= − =∑ . (8) 
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Since the averaged values i jy y are not available in blind signal processing, the 

cross-correlations of the network outputs ( ) ( )i k j ky yw w  are estimated as time-
averaged values using the following moving average: 

, , 1 , ,(1 ) , , 1,...,ij k ij k i k j kr r y y i j Nα α−= + − = . (9) 

To derive the extended Kalman filter equations which will minimize the contrast function 
(7), we have defined the following state space model in the observed-error form [14]: 

1 1 1 1, ~ (0, )k k k k kN− − − −= +w w d d Q  (10a) 

( ) , ~ (0, )k k k k k kN= − +z r w v v R . (10b) 

Note that the observations kz  of cross-correlations ( )k kr w are equal to zero at 
every time step k. The process noise 1k −d  and the observation noise kv  are assumed 
mutually independent, white and Gaussian and with variances equal to 1k −Q  and kR , 
respectively. The estimate of the network weights and its associated covariance kP at 
time step k, are given by [14]: 

1 1ˆ ˆ ˆ( )k k k k k− −= +w w K r w  (11a) 

1 1( ) ( )k k k k k− −= − ⋅ +P I K H P Q , (12b) 

where kK  is the Kalman gain: 

1
1 1 1 1( ) ( ( ) )T T

k k k k k k k k k
−

− − − −= + + +K P Q H R H P Q H , (12) 

and  

( )
1ˆk kk k k k w ww

−== ∂ ∂H r w . (13) 

Recursions (11a) and (11b) represent the basic equations of the extended 
Kalman filter for the problem defined by the state space model (10). 

5. SIMULATION RESULTS 

In order to demonstrate performances of our EKF-based algorithm in blind 
source separation, we have compared it with the stochastic gradient separating algorithm 
proposed in [12]. We give here two examples.  

 
Example 1. In this example we apply EKF and SG algorithms to separate two non-
stationary artificial source signals from the same number of their observed mixtures. The 
sources are given by [12]: 

1, 1, 1,

2, 2, 2,

sin( 400) , ~ (0.1)
sin( 200) , ~ (0.1)

k k k

k k k

s k n n N
s k n n N

π
π

= ⋅
= ⋅

 (14) 
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The waveforms of the source signals are represented in Fig. 2. Mixture signals 
(Fig. 3) used in this example are obtained artificially according to (1) using the following 
mixing matrix: 

1 0.9
0.5 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A  (15) 

In this framework, we can measure the performance of the algorithm in terms of 
the performance index PI defined by [5]: 

( ) 1 1 1

1 1 1
1 max max

n n n
ik ki

i k kj ij j ji

g g
PI

n n g g= = =

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟= − + −
⎜ ⎟ ⎜ ⎟− ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑ ∑  (16) 

where ijg is the ( , )i j -th element of the global system matrix 1( )−= +G I W A . The 
performance index indicates how far the global system matrix G is from a generalized 
permutation matrix. When perfect signal separation is achieved, the performance index is 
zero. 
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Figure 2: Source signals 
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In this example, the learning rate β  and forgetting factor α  for the SG-based 
algorithm were set to 0.001β =  and 0.8α = . The observation noise covariance kR  for 
the EKF-based algorithm was fixed to identity matrix, k =R I , and the process noise 
covariance kQ  was a diagonal matrix which entries were exponentially decayed in the 

range ( )3 1010 10− −−  in order to achieve fast convergence at the beginning of the learning 

process, and to retain good tracking abilities. For both algorithms, initial values of 12w  
and 21w , as well as the initial cross-correlations in moving average, were set to zeros, and 
the initial value of estimation error covariance P in EKF-based algorithm was set to 

0.1k = ⋅P I . 
The results obtained using EKF and SG algorithms in the estimation of source 

signals are shown in Figures 4-6.  
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Figure 3: Linear mixtures of sources 
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Figure 4: Difference between the original source signals and recovered source signals 
obtained using: a) EKF-based separating algorithm; b) SG-based separating algorithm 
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Figure 5: Adaptation of the neural network weights through iterations 
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Figure 6: Evolution of the performance index through iterations 
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Figure 7: Averaged numbers of iterations versus mixing coefficients 12a  and 21a  obtained in 
blind separation of two sources using: a) EKF-based separating algorithm; b) SG-based 

separating algorithm 



 S. Todorović-Zarkula, B. Todorović, M. Stanković / On-Line Blind Separation  90 

In Fig. 7, we give the average numbers of iterations with respect to mixing 
coefficients 12a  and 21a , required to obtain performance index less than 0.1. For both 
EKF and SG based algorithms, the task was to recover two source signals, given by (14), 
from their artificial mixtures. The results shown in Fig. 7 were obtained by averaging 20 
independent trials for every pair of the mixing coefficients ( )12, 21a a  on the interval 
[0.1,0.9]  with the step 0.1. It is evident that the convergence of both algorithms is slower 
when the mixing matrix is near to become singular (the case 12 21 0.9a a= = ), and when 
the signals are badly scaled (for example, the case 12 210.1 0.9a a= ∧ = ). However, 
according to obtained results, the EKF based algorithm is more robust with respect to 
mixing coefficient values, and outperforms SG-based algorithm both in convergence 
speed and estimation accuracy.  
 
Example 2. Blind separation of sound sources is an important task in blind signal 
processing [5, 6, 15]. In this example, the task was to separate two real-world sound 
signals from their artificial mixtures. The source signals used in this example were two 
speech recordings obtained from http://medi.uni-oldenburg.de/members/ane/pub/ 
demo_asa99/. The signals were recorded in anechoic chamber at sampling rate 12kHz 
and each recording consisted of 60000 samples. The speech signal waveforms are given 
in Fig. 8. Mixture signals (Fig. 9) are obtained artificially using the mixing matrix: 

1 0.5
0.9 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A  (17) 

In this example, the learning rate β  and forgetting factor α  for the SG-based 
algorithm were set to 0.0001β =  and 0.8α = , the observation noise covariance kR  for 
the EKF-based algorithm was fixed to k =R I , and the entries of the diagonal process 

noise covariance matrix kQ  were exponentially decayed in the range ( )1 610 10− −− . As in 

the first example, initial values of 12w , 21w , and the initial cross-correlation in moving 
average were set to zeros, and the initial value of estimation error covariance P in EKF-
based algorithm was set to identity matrix. 

The results obtained using EKF and SG algorithms in separation of real-world 
speech signals are shown in Figures 10-12.  
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Figure 8: Source signals – speech recordings 

0 1 2 3 4 5 6
x 104

-1

-0.5

0

0.5

1

M
ix

tu
re

 x
1

Time steps k

MIXTURES

0 1 2 3 4 5 6
x 104

-1.5

-1

-0.5

0

0.5

1

1.5

M
ix

tu
re

 x
2

Time steps k

 

Figure 9: Linear mixtures of sources 
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Figure 10: Difference between the original speech signals and recovered speech signals 
obtained using: a) EKF-based separating algorithm; b) SG-based separating algorithm 
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Figure 11: Blind separation of speech signals: adaptation of the neural network weights 

through iterations 
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Figure 12: Blind separation of speech signals: evolution of the performance index 
through iterations 



 S. Todorović-Zarkula, B. Todorović, M. Stanković / On-Line Blind Separation  94 

It is interesting to note that in this example better results in separation using 
EKF-based algorithm are obtained using instantaneous, instead of time-averaged values 
of output cross-correlations. 

6. CONCLUSION 

Blind source separation is an important task in signal processing that appears in 
many areas, such as biomedical signal processing, speech and image processing, and 
environmental engineering. So far, various approaches and methods were proposed to 
this problem. In this contribution, we have considered blind separation of instantaneously 
mixed non-stationary sources using second-order statistics. As a demixing model, we 
have applied a linear neural network with lateral connections. Using the additional 
assumption of non-stationarity of sources, we have defined a simple contrast function as 
the measure of decorrelation of output signals. In order to improve convergence 
properties of the existing on-line separating algorithm, we have proposed the application 
of the extended Kalman filter in optimization of the proposed contrast function. We have 
defined a state-space model of the mixing coefficient dynamics and applied extended 
Kalman filter to estimate the network weights. The proposed algorithm has shown better 
convergence properties compared to the algorithm based on the stochastic gradient 
descent. The algorithm can be applied in blind separation of non-stationary sources if the 
number of sources is equal or less than the number of mixtures. Since the proposed 
algorithm requires only second-order statistics of signals, it does not require any 
additional assumption on the source signal distributions, and can be applied to both 
Gaussian and non-Gaussian signals. In contrast to other approaches, the methods based 
on non-stationarity of sources allow the separation of colored Gaussian sources with 
identical power spectra shapes, but they do not allow separation of sources with identical 
non-stationarity properties. 
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