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Abstract. In this paper an algorithm for LC1 unconstrained optimization problems, which 
uses the second order Dini upper directional derivative is considered. The purpose of the 
paper is to establish general algorithm hypotheses under which convergence occurs to 
optimal points. A convergence proof is given, as well as an estimate of the rate of 
convergence. 
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1. INTRODUCTION 

We shall consider the following LC1 problem of unconstrained optimization 

{ }min ( ) | nf x x D R∈ ⊂ , (1) 

where : nf D R R⊂ →  is a LC1 function on the open convex set D , that means the 
objective function we want to minimize is continuously differentiable and its gradient 

f∇  is locally Lipschitzian, i.e. 

( ) ( )f x f y L x y∇ − ∇ ≤ −   for  ,x y D∈  

for some 0L > . 
We shall present an iterative algorithm which is based on the algorithms from 

[1] and [4] for finding an optimal solution to problem (1) generating the sequence of 
point { }kx  of the following form: 
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2
1 , 0,1,..., 0, 0k k k k k k k kx x s d k s dα α+ = + + = ≠ ≠  (2) 

where the step-size kα  and the directional vectors ks  and kd  are defined by the 
particular algorithms. 

 
2. PRELIMINARIES 

We shall give some preliminaries that will be used for the remainder of the 
paper. 

 

Definition (see [4]). The second order Dini upper directional derivative of the function 
1f LC∈  at n

kx R∈  in the direction nd R∈  is defined to be  

[ ]
0

( ) ( )
( ; ) limsup

T
k k

D k

f x d f x d
f x d

λ

λ
λ↓

∇ + − ∇
′′ = . 

If f∇  is directionally differentiable at kx , we have 

[ ]
0

( ) ( )
( ; ) ( ; ) lim

T
k k

D k k

f x d f x d
f x d f x d

λ

λ
λ↓

∇ + − ∇
′′ ′′= =   for  all nd R∈ . 

Lemma 1 (See [4]). Let : nf D R R⊂ →  be a 1LC  function on D , where nD R⊂  is an 
open subset. If x  is a solution of 1LC  optimization problem (1), then: 

( ; ) 0f x d′ =  

and ( ; ) 0, n
Df x d d R′′ ≥ ∀ ∈ . 

 

Lemma 2 (See [4]): Let : nf D R R⊂ →  be a 1LC  function on D , where nD R⊂  is an 
open subset. If x  satisfies 

( ; ) 0f x d′ =  

and ( ; ) 0, 0, n
Df x d d d R′′ > ∀ ≠ ∈ , then x  is a strict local minimizer of (1). 

 
 

3. THE OPTIMIZATION ALGORITHM 

At the k-th iteration the direction vector 0ks ≠  in (2) is any vector satisfying 

the descent property, i.e. ( ) 0T
k kf x s∇ ≤  holds, and the direction vector kd  presents a 

solution of the problem 

{ }min ( ) | n
k d d RΦ ∈  (3) 

where 1
2( ) ( ) ( , )T

k k D kd f x d f x d′′Φ = ∇ + . For given q , where 0 1q< < , the step-size 
0kα >  is a number satisfying 

( )i k
k qα = , 
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where ( )i k  is the smallest integer from 0,1,...i =  such that 

( ) 2 ( )
1

i k i k
k k k kx x q s q d D+ = + + ∈  

and 
( ) 4 ( )

1
1( ) ( ) ( ) ( ; )
2

i k T i k
k k k k D k kf x f x q f x s q f x dσ+

⎡ ⎤′′− ≤ ∇ −⎢ ⎥⎣ ⎦
 (4) 

where 0 1σ< <  is a pre assigned constant, and 0x D∈  is a given point. 
We make the following assumptions. 

A1. We suppose that there exist constants 2 1 0c c≥ >  such that 

2 2
1 2( ; )Dc d f x d c d′′≤ ≤  (5) 

for every nd R∈ . 
 

A2. 1kd =  and 1, 0,1,...ks k= =  
A3. There exists a value 0β >  such that 

( ) ( ) , 0,1, 2,...T
k k k kf x s f x s kβ∇ ≤ − ∇ =  (6) 

It follows from Lemma 3.1 in [4] that under the assumption A1 the optimal 
solution of the problem (3) exists. 

 

Proposition 1. If the function 1f LC∈  satisfies the condition (5), then: 1) the function 
f  is uniformly and, hence, strictly convex, and, consequently; 2) the level set 

{ }0 0( ) : ( ) ( )L x x D f x f x= ∈ ≤  is a compact convex set; 3) there exists a unique point *x  

such that 
0

*

( )
( ) min ( )

x L x
f x f x

∈
= . 

 

Proof: 1) From the assumption (5) and the mean value theorem it follows that for all 
0( )x L x∈  there exists (0,1)θ ∈  such that 

[ ]0 0 0 0 0 0

2
0 0 1 0 0 0

1( ) ( ) ( ) ( ) ( );
2

1( ) ( ) ( ) ( ),
2

T
D

T T

f x f x f x x x f x x x x x

f x x x c x x f x x x

θ′′− = ∇ − + + − −

≥ ∇ − + − > ∇ −
 

that is, f  is uniformly and consequently strictly convex on 0( )L x . 
2) From [3] it follows that the level set 0( )L x  is bounded. The set 0( )L x  is closed 
because of the continuity of the function f ; hence, 0( )L x  is a compact set. 0( )L x  is 
also (see [5]) a convex set. 
3) The existence of *x  follows from the continuity of the function f  on the bounded set 

0( )L x . From the definition of the level set it follows that 

0

*

( )
( ) min ( ) min ( )

x L x x D
f x f x f x

∈ ∈
= = . 
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Since f  is strictly convex it follows from [5] that *x  is the unique minimizer. 
 

Lemma 3 (See [4]): The following statements are equivalent: 
1. 0d =  is a globally optimal solution of the problem (3); 
2. 0 is the optimum of the objective function of the problem (3); 
3. the corresponding kx  is a stationary point of the function f . 

Theorem 1 (Convergence theorem). Suppose that 1f LC∈  and that the assumptions A1, 
A2 and A3 hold. Then for any initial point 0 , kx D x x∈ → , as k → ∞ , where x  is the 
unique minimal point. 
 

Proof: If 0kd ≠  is a solution of (3), it follows that ( ) 0 (0)k k kdΦ ≤ = Φ . Consequently, 
we have by (5) that 

2
1

1 1( ) ( ; ) 0
2 2

T
k k D k k kf x d f x d c d′′∇ ≤ − ≤ − <  (7) 

kd  is a descent direction at kx . From (4), (5) and (6) it follows that 

( ) 4 ( )
1

1( ) ( ) ( ) ( ; )
2

i k T i k
k k k k D k kf x f x q f x s q f x dσ+

⎡ ⎤′′− ≤ ∇ −⎢ ⎥⎣ ⎦
 

2
1( ) 0k k kf x s c dσ β⎡ ⎤≤ − ∇ − <⎣ ⎦  (8) 

Hence { ( )}kf x  is a decreasing sequence and consequently 0{ } ( )kx L x⊂ . Since 

0( )L x  is by Proposition 1 a compact convex set, it follows that the sequence { }kx  is 
bounded. Therefore there exist accumulation points of { }kx . Since f∇  is by assumption 
continuous, then, if ( ) 0kf x∇ →  as k → ∞ , it follows that every accumulation point x  
of the sequence { }kx  satisfies ( ) 0f x∇ = . Since f  is by the Proposition 1 strictly 
convex, it follows that there exists a unique point 0( )x L x∈  such that ( ) 0f x∇ = . Hence, 
{ }kx  has a unique limit point x  – and it is a global minimizer. Therefore we have to 
prove that ( ) 0,kf x k∇ → → ∞ . There are two cases to consider. 
a) There exists an infinite set 1K  such that the set of indices { ( )}i k  for 1k K∈ , is 

uniformly bounded above by a number I , i.e. ( )i k I≤ < ∞  for 1k K∈ . Consequently, 
from (4) and (6) it follows that  

( ) 4 ( )
1

4

4

4

1( ) ( ) ( ) ( ; )
2

1( ) ( ; )
2

( ) ( ; )
2

( ) ( ; )
2

i k T i k
k k k k D k k

I T I
k k D k k

I I
k k D k k

I I
k D k k

f x f x q f x s q f x d

q f x s q f x d

q f x s q f x d

q f x q f x d

σ

σ

σσ β

σσ β

+
⎡ ⎤′′− ≤ ∇ −⎢ ⎥⎣ ⎦
⎡ ⎤′′≤ ∇ −⎢ ⎥⎣ ⎦

′′≤ − ∇ −

′′= − ∇ −

 

(since by A2 1, 0,1,...ks k= = ). 
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Multiplying this inequality by (–1) we get  

4
1( ) ( ) ( ) ( ; )

2
I I

k k k D k kf x f x q f x q f x dσσ β+ ′′− ≥ ∇ +  (9) 

Since { }( )kf x  is bounded below and 1( ) ( ) 0k kf x f x+ − →  as 1,k k K→ ∞ ∈  from (9) it 

follows that ( ) 0kf x∇ →  and 1( , ) 0, ,D k kf x d k k K′′ → → ∞ ∈ . 
 

b) There exists an infinite set 2K  such that 2lim ( ) ,
k

i k k K
→∞

= ∞ ∈ . 

By the definition of ( )i k  it follows that 

( ) 1 4 ( ) 4
1

1( ) ( ) ( ) ( ; )
2

i k T i k
k k k k D k kf x f x q f x s q f x dσ − −

+
⎡ ⎤′′− > ∇ −⎢ ⎥⎣ ⎦

 (10) 

By the definition of the Dini derivative and by (5) we have 
( ) 1 2 ( ) 2

1

( ) 1 2 ( ) 2 2 ( ) 2 ( ) 1

22 ( ) 2 ( ) 1 2 ( ) 2 2 ( ) 2
1

( ) 1 2 ( ) 2

( ) ( ) ( ) ( )
1 ; ( ) ( )
2

1( ) ( )
2

( ) ( )

i k T i k T
k k k k k k

i k i k i k i k T
D k k k k k

i k T i k i k i k
k k k k

i k T i k T
k k k

f x f x q f x s q f x d

f x q s q d o q q f x s

q f x d c q s q d o q

q f x s q f x

− −
+

− − − −

− − − −

− −

− = ∇ + ∇

′′ ⎡ ⎤+ + + ≥ ∇⎣ ⎦

+ ∇ + + +

= ∇ + ∇
22 ( ) 2 ( ) 1

1

2 ( ) 2 ( ) 1 4 ( ) 4

1
2

1( ) ( ) ( ; ) (according to (10)).
2

i k i k
k k k

i k i k T i k
k k D k k

d c q s q d

o q q f x s q f x dσ

− −

− − −

+ +

⎡ ⎤′′+ > ∇ −⎢ ⎥⎣ ⎦

 

Accumulating all terms of order higher than 2 ( ) 2( )i ko q −  into the 2 ( ) 2( )i ko q −  term 
(because 1k ks d= = ) and using the fact that ( ) 0T

k kf x d∇ ≤  yields 

22 ( ) 2 2 ( ) 2 ( ) 1
1

1 ( ) ( 1) ( ) 0
2

i k i k i k T
k k kc q s o q q f x sσ− − −+ > − ∇ ≥  

since 0 1σ< <  and ( ) 0T
k kf x s∇ ≤ . Dividing by ( ) 1i kq −  yields  

2( ) 1 ( ) 1
1

1 ( ) ( 1) ( )
2

i k i k T
k k kc q s o q f x sσ− −+ > − ∇ . 

Dividing by 2
1 1

1 1
2 2kc s c=  yields 

( ) 1
( ) 1

1
1

2( 1) ( )( )
1
2

i k
i k T

k k
o qq f x s

c c

σ −
− −> ∇ + . 

Taking the limit as 2,k k K→ ∞ ∈  and having in view (6), we get 

( ) 1 ( ) 1

1

2(1 ) ( ) ( )i k i k
kq f x o q

c
σ β− −−> ∇ + .  

Since ( ) 1 0i kq − →  as k → ∞ , 2k K∈ , it follows that ( ) 0kf x∇ →  as ,k → ∞  2k K∈ . 
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In order to have a finite value ( )i k , it is sufficient that ks  and kd  have descent 
properties, i.e. 

( ) 0T
k kf x s∇ <   and  ( ) 0T

k kf x d∇ <   whenever  ( ) 0kf x∇ ≠ . 

The first relation follows from (6) and the second follows from (7). At a saddle 
point the relation (4) becomes 

4 ( )
1( ) ( ) ( ; )

2
i k

k k D k kf x f x q f x dσ
+ ′′− ≤ −  (11) 

In that case 0kd ≠  by Lemma 3 and hence, by (5), ( ; ) 0k kf x d′′ > ; so (11) 
clearly can be satisfied. 
 

Theorem 2 (Convergence rate theorem). Under the assumptions of the previous theorem 
we have that the following estimate holds for the sequence { }kx  generated by the 
algorithm. 

1
1

1
0 0 2 2

0

( ) ( )1( ) ( ) 1 , 1, 2,...,
( )

n
k k

n
k k

f x f xf x f x n
f x

μ μ
η

−
−

+

=

⎡ ⎤−
− ≤ + =⎢ ⎥

∇⎢ ⎥⎣ ⎦
∑  

where 0 0( ) ( )f x f xμ = − , and 0diam ( )L x η= < ∞  since by Proposition 1 it follows that 

0( )L x  is bounded. 
Proof: The proof directly follows from the Theorem 9.2, page 167 in [2]. 

 
 

4. CONCLUSION 

As it has already been pointed out, the algorithm presented in this paper is based 
on the algorithms from [1] and [4]. Note that such an algorithm generates at every 
iteration a point closer to an optimal point than the algorithms given in [4]. It happens 
because in [4] minimization is applied along one direction, while here we have 
minimization along a plane defined by the vectors ks  and kd . Relating to the algorithm 
in [1], the presented algorithm is defined and converges under weaker assumptions than 
the algorithm given in [1]. 
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