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Abstract: Relations are very important mathematical objects in different fields of theory and 
applications. In many real applications, for which gradation of relations is immanent, the 
classical relations are not adequate. Interpolative relations (I-relations) (as fuzzy relations) 
are the generalization of classical relations so that the value (intensity) of a relation is an 
element from a real interval [0, 1] and not only from {0, 1} as in the classical case. The 
theory of I-relations is crucially different from the theory of fuzzy relations. I-relations are 
consistent generalizations of classical relations and, contrary to fuzzy relations, all laws of 
classical relations (set-theoretical laws) are preserved in general case. In this paper, the main 
characteristics of I-relations are illustrated on the interpolative preference structures (I-
preference structures) as consistent generalization of classical preference structures.  

Keywords: Fuzzy relations, interpolative relations (I-relations), symbolic level of I-relations, 
structure of I-relations, primary, atomic and combined I-relations, valued level of I-relations, 
intensity of I-relations, generalized product, interpolative preference (I-preference) structure.  

1. INTRODUCTION 

Classical relations based on classical logic and/or classical set theory are very 
useful in classical mathematics and almost all applications for which “black & white” 
approach is appropriate.  In many real applications the classical relations are not 
adequate. This was the motive for development of fuzzy relations [4]. Fuzzy relations are 
based on fuzzy logic and/or theory of fuzzy sets [8]. Fuzzy logics are truth functional. 
Logic is truth functional if the truth value of a compound sentence depends only on the 
truth values of the constituent atomic sentences, not on their meaning or structure [2].  As 
a consequence fuzzy relations are not consistent generalizations of classical relations; 
actually, they are not in the same frame as classical logic. 
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Interpolative relations (I-relations), as fuzzy relations, are generalization of 
classical relations, so that the value (intensity) of a relation is from the real interval [0, 1] 
and not only from {0, 1} as in classical case. I-relations are consistent generalizations of 
classical relations and, contrary to fuzzy relations, all laws of classical relations (set-
theoretical laws) are preserved in general case. I-relations have two levels: (a) symbolic (or 
qualitative) and (b) valued (or quantitative). On symbolic level I-relations are treated 
independently of their valued realization, and algebra of relations is Boolean algebra. 
Valued level of I-relations is concrete valued realization as a consequence of relations from 
symbolic level. Boolean nature (Boolean tautologies and/or contradiction) is preserved 
from symbolic level on valued level using interpolation immanent to I-relations.  

The theory of I-relations is given in this paper and it is illustrated on 
generalization of preference structures. Preference structures are important relations in 
decision making and OR generally.  

2. CLASSICAL RELATIONS  

Classical relation is a subset of a finite Cartesian power nX X X X= × ×⋅⋅ ⋅× of a 
given set  X  (universe), i.e. a set of tuples 1( ,..., )nx x of elements of X. 

A subset nR X⊆  is called n-place, or n-ary, relation on X. The number n is 
called the rank, or type, of the relation R. A subset nXR ⊆  is also called n-place, or n-
ary, predicate on  X. The notation 1( ,..., )nR x x=  signifies that 1( ,... )nx x R∈ . 

One-place relations are called properties. Two-place relations are called binary, 
three-place relations are called ternary, etc. 

The set nX  and the empty subset ∅  are called, respectively, the universal 
relation and the zero relation of rank n on X. The diagonal of the set nX , i.e. the set  

( ){ }Xxxx ∈=Δ :,...,  

is called the equality relation on X. 
If R and S are n-place relations on X, then the following subsets of nX  will also 

be n-place relations on X:  

.\,\,, SRandRXRSRSR nc =∩∪  

The set of all n-ary relations on X is a Boolean algebra relative to the operations 
, , '.∪ ∩  An (n+1)-place relation F on X is called a function if for any elements x1,…,xn, 

x, y from X it follows from (x1,…,xn, x) F∈  and (x1,…,xn, y) F∈   that x = y. 
 
2.1. Boolean algebra, Boolean lattice  

Boolean algebra (and/or Boolean lattice) is a partially ordered set of a special 
type. It is a distributive lattice with a largest element "1", the unit of the Boolean algebra, 
and a smallest element "0", the zero of the Boolean algebra, that contains together with 
each element a also its complement - the element a¬ or a , which satisfies the relations 

{ , } 1, { , } 0.Sup a Ca Inf a Ca= =  
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The operations Sup and Inf are usually denoted by the symbols ∨  and ∧ , and 
sometimes by ∪  and ∩  respectively, in order to stress their similarity to the set-
theoretical operations of union and intersection. The notation ', aa  or a¬  may be 
employed instead of Ca. The complement of an element in a Boolean algebra is unique. 

A Boolean algebra can also be defined in a different manner. Viz. as a non-
empty set with the operations ∨∧− ,, ,  which satisfy the following axioms: 

1) ,a b b a a b b a∨ = ∨ ∧ = ∧ ; 
2) ( ) ( ) ( ) ( ) ;, cbacbacbacba ∧∧=∧∧∨∨=∨∨   
3) ( ) ( ) bbbabbba =∧∨=∨∧ , ; 
4) ( ) ( ) ( ) ( ) ( ) ( )cabacbacabacba ∨∧∨=∧∨∧∨∧=∨∧ , ; 
5) ( ) ( ) bbaabbaa =∧∨=∨∧ , .  

On the basis of the set { , }a bΩ =  with two relations (properties, propositions, etc.) 
by using Boolean operators, the following set of relations - Boolean lattice can be generated: 

 
1

0

ba ∧ ba ∧ ba ∧ ba ∧

a b ba ⇔ ba ∨ b a

ba ∨ ba ∨ ba ∨ ba ∨

 

Figure 1: Boolean lattice generated by primary relations { , }a bΩ =  

Where: ( ) ( )a b a b a b⇔ = ∧ ∨ ∧   and  ( ) ( )a b a b a b∨ = ∧ ∨ ∧ . 
The following truth table, in case that { , }a bΩ =  is a set of proposition, 

corresponds to analyzed Boolean lattice, from Figure 1:  
 
Table 1: Truth table 

ba ∧ ba ∧ ba ∧ ba ∧ a b ba ⇔ ba∨ a b ba ∨ ba ∨ ba ∨ ba ∨a b
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The property that the truth value of combined proposition can be directly 
calculated on the base of truth value of its components – truth functionality principle, is 
kept as a fundamental principle and used in MV-logics [2] and fuzzy logic [8].  

3. FUZZY RELATIONS 

Motives for creation of fuzzy relations are similar to the motives for fuzzy sets. 
Fuzzy relations are generalized relations in the same way as fuzzy sets are generalized 
classical sets [8]. Fuzzy relations play an important role in fuzzy modeling, fuzzy 
diagnosis, and fuzzy control. They also have applications in fields such as biology, 
psychology, medicine, economics, and sociology [4].  

Fuzzy relations are characterized as fuzzy sets by characteristic functions, which 
take the values from real interval [0, 1]. Fuzzy relations, as MV-logics and fuzzy logic, 
are based on the principle of truth functionality. Logic is truth functional if the truth value 
of a compound sentence depends only on the truth values of the constituent atomic 
sentences, not on their meaning or structure. According to [3] fuzzy logic is based on 
truth functionality, since: “This is very common and practically useful assumption”. On 
the other hand: (Truth functional) “Logic changes from its very foundations if we assume 
that in addition to truth and falsehood there is also some third logical value or several 
such values” [8]. It means that Boolean algebra is not the algebra of fuzzy relations. This 
is reason for serious problems in attempts of generalization of classical results (based on 
classical logic, classical theory of sets and/or classical relations) by fuzzy techniques. For 
example generalization of classical preference structures by fuzzy preference structures is 
impossible straightaway. 

The following question is very important: Is it possible to generalize relations 
(to take the values from real interval [0, 1]) in framework of Boolean algebra (Boolean 
lattice)? The answer is positive [5], [6] and it is given in the following section. 

4. INTERPOLATIVE RELATIONS (I-RELATIONS) 

Since, (a) classical relations are not adequate in many real applications in a 
similar way as integers are not adequate in the problems which need real numbers and (b) 
fuzzy relations as fuzzy sets are not consistent generalizations of classical case (the laws 
of classical set algebra are not preserved in fuzzy case), the need for a consistent 
generalization of classical relations is very natural.  

Interpolative relations (I-relations) are consistent generalization of classical 
relations. I-relations have two levels: (a) symbolic (or qualitative) and (b) valued (or 
quantitative).  
 
4.1. I-relations: symbolic (qualitative) level 

On symbolic or qualitative level I-relations are treated independently of their 
valued realization. The following notions are introduced and analyzed: primary, atomic 
and combined I-relations; algebra of I-relations; structure of I-relations and principle of 
structural functionality.   
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4.1.1. Primary I-relations and context 

Qualitative context, Ω , is a finite set of primary I-relations. Primary I-relation 
can’t be relational (set) function of the rest I-relations from the analyzed qualitative 
context Ω .  

 
4.1.2. Algebra of I-relations 

The set of all possible I-relations, ( )Β Ω , generated by the qualitative context, 
Ω , (set of primary I-relations) using Boolean operator (binary connectives join ( ∩ ) and 
meet ( ∪ ), and unary connective complement(c)) is algebra of I-relations. Algebra of I-
relations, on symbolic level, is Boolean algebra. A Boolean algebra of I-relations is the 
algebraic structure  ( ( ), , , )cΒ Ω ∩ ∪ ,  with the following four additional properties: 

1. bounded below: There exists an element (constant zero I-relation) 0 , such 
that 0A A∪ =  for all A in ( )Β Ω . 

2. bounded above: There exists an element (constant unit I-relation) 1 , such that 
1A A∩ =  for all  A in ( )Β Ω . 

3. distributive law: For all CBA ,,  in ( )Β Ω , ( ) ( ) ( )A B C A B A C∩ ∪ = ∩ ∪ ∩ . 
4. existence of complements: For every A in ( )Β Ω  there exists an element 

(complement vector) cA  in ( )Β Ω  such that 1cA A∪ =  and 0cA A∩ = . 
 

1

0

BA ∩

B cB cA
( )
( )BA

BA
c

c

∩

∪∩ ( )
( )cc BA

BA

∩

∪∩

cc BA ∪BA ∪ BAc ∪ cBA ∪

cBA ∩ BAc ∩ cc BA ∩

A

 
Figure 2: Boolean lattice of I-relations for { }BA,=Ω   

Algebra of I-relations is partially ordered set, Boolean lattice. Order is based on 
inclusion ⊂ . In the case when number of elements of context, Ω , is n, ( | |)n = Ω  the 



 D. Radojević / Interpolative Relations and Interpolative Preference Structures 176

number of elements of Boolean algebra (different on the base of inclusion) is 22
n

. Two 
elements P and Q of Boolean algebra of I-relation are equal P = Q on symbolic level by 
inclusion, if and only if QP ⊂  and PQ ⊂ . Otherwise they are different. 

Boolean lattice of I-relations on symbolic level, for qualitative context { , }A BΩ = , 
and order defined by inclusion, is given in the Figure 2.  

It is clear that lattice of I-relations and lattice of classical relations generated by 
the same qualitative contexts are the same on this level. 
  
4.1.3. Combined I-relation 

Combined I-relation is Boolean function of primary I-relations.  
 
4.1.4. Atomic I-relation 

Atomic I-relation has the simplest structure in the sense that it doesn’t include 
any other I-relation from algebra except itself and trivial constant zero.  To every element 
of power set P( Ω ) corresponds one atomic I-relation, defined by the following 
expression:  

( )
\i j

c
i jA S A S

R S A Aα
∈ ∈Ω

= ∩ ∩  

As a consequence, the number of corresponding atomic I-relations is 2 Ω , since 
( ) 2P ΩΩ = . 

 
Example: Atomic I-relations in the case of two primary logical relations { , }A BΩ =  are: 

{ }( )
{ }( )
{ }( )

( ) cc

c

c

BAR

BABR

BABR

BABAR

∩=∅

∩=

∩=

∩=

α
α

α
α ,

 

 
4.1.5. Structure of I-relation  

Any I-relation can be represented by atomic I-relations by disjunctive canonical 
form. Boolean lattice of I-relations in disjunctive canonical forms for context Ω ={A, B}, 
is given in the Figure 3. 

Structure of a I-relation is information on which atomic I-relations, generated by 
the analyzed context, are relevant for it (which are included in it) and/or which are not 
relevant (which are not included). Formally, structure of I-relation is characteristic 
function of the set of its relevant atomic relations: 

: ( ) {0, 1},s Ρ Ω →  

where: ( )Ρ Ω  is power set of set of primary I-relations Ω . 
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 1

 0

( )BA ∩ ( )cBA ∩ ( )BAc ∩ ( )cc BA ∩

( )
( )BA

BA
c ∩

∪∩ ( )
( )cc BA

BA

∩

∪∩ ( )
( )cc

c

BA

BA

∩

∪∩

( )
( )
( )BA

BA

BA

c

c

∩

∪∩

∪∩ ( )
( )
( )cc

c

BA

BA

BA

∩

∪∩

∪∩ ( )
( )
( )cc

c

BA

BA

BA

∩

∪∩

∪∩ ( )
( )
( )cc

c

c

BA

BA

BA

∩

∪∩

∪∩

( )
( )cBA

BA

∩

∪∩ ( )
( )BA

BA
c

c

∩

∪∩ ( )
( )cc

c

BA

BA

∩

∪∩

 
Figure 3: Boolean lattice with elements in disjunctive canonical form  

Note: Structure of I-relation is qualitative context- dependent (depends only on the set of 
primary relations as the symbols) and it is not value-dependent.  It means that the 
structure of I-relation is irrelevant of a value realization and/or it is the same for classical 
(two-valued) case as in multi-valued case. 

Illustration of notion the structure of I-relation is given in the following example:  
 

Example: In the case when context has two elements ( | | 2Ω = ) the lattice ( )Β Ω  as the 
function of atomic elements can be graphically represented in the following way: 

 

 
Figure 4: Structure of Boolean lattice 
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or in the form of table:  
 
Table 2: Structure of elements of lattice  

0

0

00

0

1

0

0

0

1

0

0 0

0 0

0 0

1 0

0 1

1 1

1 0

0 1

0 0

1 0 0 0 1 1 1 0 1

0 1 0 1 1 1 0 1 1

0 1 1 0 1 0 1 1 1

1 0 1 1 0 1 1 1 1

 
 
For { , }A BΩ = , on the base of table above the structures of corresponding I-relations 
are: 

{ } { } { }

( )

,

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
1 0 1 0
1 0 0 1

c

c

c

c c

A B A B

A A
A B

A B

A Bs S
A B
A
B
A B

∅

⎧ ⎫⎡ ⎤∩ ⎡ ⎤⎪ ⎪⎢ ⎥ ⎢ ⎥∩⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥∩⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥∩ ⎢ ⎥=⎨ ⎬⎢ ⎥ ⎢ ⎥∩⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦⇔⎣ ⎦⎩ ⎭

;    

{ } { } { }

( )

,

1 1 1 1
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0
0 0 1 1
0 1 0 1
0 1 1 0

c

c c

c

c

c

c

A B A B

A A

A B

A B
A Bs S
A B

A

B
A B

∅

⎧ ⎫⎡ ⎤∪ ⎡ ⎤⎪ ⎪⎢ ⎥ ⎢ ⎥∪⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥∪⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥∪⎪ ⎪ ⎢ ⎥=⎢ ⎥⎨ ⎬ ⎢ ⎥∪⎢ ⎥⎪ ⎪ ⎢ ⎥⎢ ⎥⎪ ⎪ ⎢ ⎥⎢ ⎥⎪ ⎪ ⎢ ⎥⎢ ⎥⎪ ⎪ ⎢ ⎥⎢ ⎥⎪ ⎪ ⎢ ⎥⎣ ⎦∨⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

; 

where: ( )S ∈ Ρ Ω . 
 
Structure of I-relations is defined in the following way:  

Structure of primary I-relation, ( )s A A∈ Ω , is given by the following 
expression:  

1
( )( ) ; ( ) ,

0
A S

s A S S A
A S

∈⎧
= ∈ Ρ Ω ∈ Ω⎨ ∉⎩

, 

where: Ω is set of primary I-relations (qualitative context). 
Structure of atomic I-relation, ( ( )), ( )s R S Sα ∈ Ρ Ω , is given by the following 

expression:  

1
( ( ))( ) ; , ( )

0
S SS

s R S SS S SS
S SS

α
=⎧

= ∈ Ρ Ω⎨ ≠⎩
, 

where: ( )Ρ Ω  is power set of Ω . 
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Structure of arbitrary I-relation R for the set of primary I-relations Ω , is 
characteristic function of the set of relevant atomic I-relations : 

1 ( )
( )( ) ; ( ).

0 ( )
R S R

s R S S
R S R

α
α

⊂⎧
= ∈ Ρ Ω⎨ ⊄⎩

 

Any relations can be expressed in the following disjunctive form: 

( )
( )( ) ( )

S
R s R S R Sα

∈Ρ Ω
= ∪  

Since, 
\

( )
i j

c
i jA S A S

R S A Aα
∈ ∈Ω

= ∩ ∩ , it follows for any relations R corresponding canonical 

disjunctive form that: 

( )
( )( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∩∩∪=

Ω∈∈ΩΡ∈
j

c

SAiSAS
AASRsR

ji \
, 

where Ω  is the set of primary I-relations (qualitative context) and ( )Ρ Ω  power set of Ω . 
 

Structure of universal relation – I-relation constant 1: 

( )( ) ( )1 1,s S S= ∀ ∈ Ρ Ω . 

Structure of zero relation – I-relation constant 0: 

( )( ) ( )0 0,s S S= ∀ ∈ Ρ Ω . 

 
4.1.6. Principle of structural funcionality 

Structure of any I-relations can be determined by principle of structural 
functionality. The principle of structural functionality says that structure of any I-relation 
can be uniquely calculated by the structures of its components (corresponding I-
relations). This is achieved by defining the structure function of connective (formally 
equivalently to truth function of connective from classical propositional logic) as follows: 

( ) 0 1 0 1
0 1 0 0 0 0 0 1
1 0 1 0 1 1 1 1

− ∧ ∨
 

where: ∧ is structure function of ∩ , ∨  of  ∪  and – of  c. 
Using this, each structure function s extends uniquely to a structure 

determination of all I-relations as follows: 

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( ) ( )( )

( ) ( )

,

,

,

, , .

c

s A B S s A S s B S

s A B S s A S s B S

s A S s A S

S A B

∩ = ∧

∪ = ∨

= −

∈ Ρ Ω ∈ Β Ω
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Remark: This fundamental property has its isomorphism on the value level but only in 
classical case (values of logical variables and/or intensity of relations are from {0, 1}), 
known as principal of truth functionality. Principle of truth functionality is not 
fundamental and as a consequence it can’t be used in generalization.  

 
4.2. I-relations: Valued level 

Valued level of I-relations is only a consequence or a concrete realization of 
symbolic level. Valued context and/or universe relation of analyzed relations is a set 

XXX n ××= ...  of finite Cartesian product, where:  power n is the rank or type of the I-
relations and X set generator. I-relation on valued level is I-subset of universe relation 
(Cartesian product nX ). The elements of I-relation (I-subset) have continuum of grades 
of memberships (intensities of relations).   

Since relations on valued level are concrete realizations of relations defined on 
symbolic level, and symbolic level is valued-independent and Boolean in its nature, then 
a concrete realization or quantification on valued level has to preserve Boolean nature 
(Boolean tautologies and/or contradictions). This is achieved by interpolation immanent 
to valued level of I-relations, since interpolation preserved primitive (or starting) 
properties. The main notions on valued level in the light of valued context, are: intensity 
of I-relations: primary, atomic and combined; generalized product; superposition of 
atomic relation values. 

 
4.2.1. Intensity of primary I-relation 

Value or intensity of primary I-relation, A, element of the analyzed qualitative 
context Ω in general case has intensity from the real unit interval [0, 1] on valued-level, 
determined by quantitative context X: 

( ) [ ] ( )1 1,..., 0, 1 , ,..., .n
n nA x x x x X∈ ∈  

 
4.2.2. Intensity of atomic I-relation 

Intensity of atomic I-relation is a function of intensities of primary I-relations:  
 

( )( ) ( )
( )

( ) ( ) ( )1 1 1
\

,..., 1 ,..., ; ,..., ,K n
n n nA K SK S

R S x x A x x x x X Sα
∈ ∪∈Ρ Ω

= − ⊗ ∈ ∈ Ρ Ω∑ . 

Example: In the case of qualitative context { , },A BΩ =  and 1 1( ,..., ), ( ,..., )n nA x x B x x  

values of atomic I-relations at 1( ,..., ) n
nx x X∈  are calculated in the following way 

{ }( )( ) ( ) ( )
{ }( )( ) ( ) ( ) ( )
{ }( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

, ,..., ,..., ,...,

,..., ,..., ,..., ,...,

,..., ,..., ,..., ,...,

,..., 1 ,..., ,..., ,..., ,..., .

n n n

n n n n

n n n n

n n n n n

A B x x A x x B x x

A x x A x x A x x B x x

B x x B x x A x x B x x

x x A x x B x x A x x B x x

α

α

α

α

= ⊗

= − ⊗

= − ⊗

∅ = − − + ⊗
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Operator ( )n⊗  or abbreviated ⊗ , is generalized n-product on real unit interval: 

[ ] [ ]2: 0, 1 0, 1⊗ → , such that for all [ ]1,...., 0, 1nvR vR ∈  the following five axioms are 
satisfied [6]: 
 
(T1) Commutativity  

( ) ( ), ,i j j ivR vR vR vR⊗ = ⊗ , 

(T2) Associativity  

( )( ) ( )( ), , , ,i j k i j kvR vR vR vR vR vR⊗ ⊗ = ⊗ ⊗ , 

(T3) Monotonicicity 

( ) ( ), ,i j i k j kvR vR vR vR whenever vR vR⊗ ≤ ⊗ ≤ , 

(T4) Boundary condition 

( ), 1i ivR vR⊗ = , 

(T5) Non-negativity condition 

( )
( )

( )
\

1 0,
i

S
ivR A SS A

vR A
∈ ∪∈Ρ Ω

− ⊗ ≥ ∀ ∈ Ρ Ω∑  

where: { } [ ]1,..., 0, 1 n
nvR vRΩ = ∈ . 

 
Remark: Axioms (T1)-(T4) are the same as in the case of definition of T-norm, a non-
negativity condition is new. The role of operator of generalized product is only for 
interpolation (it is not logic (or relation) operator as it is the case with T-norm in fuzzy 
relations). 

Basic properties of atomic I-relations are: 

( )( )
( )

1,..., 1n
S

R S x xα
∈Ρ Ω

=∑  

and 

( )( ) ( ) ( )1 1,..., 0, , ,..., .n
n nR S x x S x x Xα ≥ ∀ ∈ Ρ Ω ∀ ∈  

Example: In the case of the following qualitative context { }BA,=Ω : 

{ }( )( ) { }( )( ) { }( )( ) ( )( )1 1 1 1, ,..., ,..., ,..., ,..., 1n n n nR A B x x R A x x R B x x R x xα α α α+ + + ∅ =  

( )1,..., .n
nx x X∀ ∈  

 
These properties are valid in classical case too, but with constraint that only one 

basic relation has intensity equal to 1 and others are equal to 0.  New situation can be 
illustrated by the following visualization 



 D. Radojević / Interpolative Relations and Interpolative Preference Structures 182

        

Figure 5a: Boolean lattice in the case of gradation 

From this visualization of new result it is clear that this generalization preserves 
nature of Boolean lattice in any valued realization. Valued level of I-relation logic is actually 
interpolative level. On the valued level, intensity (value) of relation is calculated on the base 
of its structure (which atomic relations are relevant) and the values of atomic relations.  
 
4.2.3. Intensit a b∧ y of any I-relation 

Since conjunction of any two different atomic vectors is equal to constant zero 
vector, combined logical vector is actually superposition of relevant atomic logic vectors. 

( ) ( )( ) ( )( )
( )

( )1 1 1,..., ,..., ; ,..., .n
n n n

S
R x x s R S R S x x x x Xα

∈Ρ Ω
= ∈∑  

In the function of intensities of primary relations: 

( ) ( )
( )

( ) ( )
( )

( ) ( )1 1 1
\

,..., 1 ,..., ; ,..., .K n
n n nA K SS K S

R x x s R S A x x x x X
∈ ∪∈Ρ Ω ∈Ρ Ω

= − ⊗ ∈∑ ∑  

 
4.2.4. Intensity of relational constants 

Intensity of universal relation (1) is: 

( ) ( )1 11 ,... 1, ,..., ,
or

1 .

n
n n

n

x x x x X

X

= ∀ ∈

=

 

as in classical case. Value (intensity) of zero relation (0): 

( ) ( )1 10 ,... 0, ,..., ,
or
0 .

n
n nx x x x X= ∀ ∈

= ∅
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5. COMPARATIVE PRESENTATION OF RELATIONS 

Here are compared classical, fuzzy and interpolative relations in the following 
sense:  
 
A MEMBERSHIP FUNCTION 
 

A classical case: A characteristic function of a relation maps { }0, 1nX → . 

A fuzzy case: A membership functions of a relation maps [ ]0, 1nX → . 

An Interpolative case (I-case): The same as in a fuzzy case. 
 
Comment: In a fuzzy approach all relational operations reduce directly to operations 
with the values of membership functions, while in an I-case the values of membership 
functions are used only for interpolation purposes on a valued level. 
 
EQUALITY OF RELATIONS 
 

Comment: Even when two I-relations have the same elements (tuples) with the same 
values (intensities of relations) and are generated by different atoms (atomic relations) 
these two relations are not equal! But, if two I-relations are equal, then they have the 
same membership function. 
 
A SUB-RELATION (SUBSET) 
 

A classical case: If every tuples - element of relation A is also an element of relation B, a 
relation A is referred to as a sub-relation of relation B. 

A fuzzy case: If the value of membership function (intensity of relation) of any element 
(tuples) of relation A is smaller than or equal to the membership function value of the 
same element of relation B, a relation A is then sub-relation of relation B. 

A I-case:  If set of relevant atomic I-relations of I-relation A is subset of relevant atomic 
I-relations of I-relation B, then I-relation A is sub-relation of I-set B. 

 
A PROPER RELATION  
 

A classical case: An I-relation B is proper sub-relation of I-relation A if, in the first place, 
B is sub-I-relation of I-relation A and, in the second, if B is not equal to I-relation A, or 
concisely and .B A B A⊂ ≠  

A fuzzy case: A fuzzy relation B is a proper subset of fuzzy relation A if the values of the 
difference between membership functions (intensities of relations) of fuzzy relations A 
and B for all elements (tuples) are nonnegative and if this value is positive for at least one 
element. 

A I-case: I-relation B is a proper sub-relation of an I-relation A if all relevant atomic 
relations of B are contained in relevant atomic relations of A, while the opposite does not 
hold. 
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COMPARABILITY 
 

A classical case: Two relations A and B are comparable if BA ⊂ or AB ⊂ . In the 
opposite case, they are incomparable BnonA ⊂ and AnonB ⊂ . 

A fuzzy case: Two fuzzy relations A and B are comparable if 1 1( ,..., ) ( ,..., )n nA x x B x x≤  

or 1 1( ,..., ) ( ,..., )n nB x x A x x≤  for 1( ,..., ) n
nx x X∀ ∈ . 

An I-case:  Two I-relations A and B are comparable only if all relevant atomic relations of 
A are relevant atomic relations of B or vice versa.  

Comment: Relations may satisfy the condition for a fuzzy case and be incomparable in I-
case; the opposite is not possible. Thus, the fuzzy condition is just a necessary condition, 
but not a sufficient one for a real case. 
 
DISJOINT RELATION 
 

A classical case: If two relations A and B have not a single common element, then they 
are referred to as disjoint relations. 
A fuzzy case: There is not a single element of the universal relation for which the values 
of membership functions of relations A and B are simultaneously larger than zero. 
An I-case: Two I-relations A and B are disjoint if they haven’t any one relevant atomic 
relation in common.  
Comment: The disjoint of relations, in I-case, does not imply the impossibility of their 
being possessed simultaneously by the same tuples (element) of universal relation 
(quantitative context, nX ). 
 
UNION OF RELATIONS 
 

A classical case: The union of relations A and B is the relation which contains all 
elements of relations A and B.  
A fuzzy case: The union of fuzzy relations A and B is a fuzzy relation – set of all tuples 
that belong to fuzzy relation A or fuzzy relation B, with values of membership function 
determined by a chosen S-norm and initial membership values. 
A I-case:  The union of I-relations A and B has as relevant atomic I-relations all relevant 
atomic I-relations of  I-relation A or I-relation B. (Set of relevant atomic I-relations of 
union I-relations A and B is union of their relevant atomic I-relations). 
 
INTERSECTION OF RELATIONS  
 

A classical case: The intersection of relations A and B is the relation (set of tuples) 
common to A and B. 
A fuzzy case: The intersection of fuzzy relations A and B is the fuzzy relation, set of 
tuples, that are common to A and B, with values of membership function determined by a 
chosen T-norm and initial membership values. 
A I-case:  Set of relevant atomic relations of intersection of I-relations A and B is 
intersection of relevant atomic relations of I-relation A and I-relation B. 
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COMPLEMENT  
 

A classical case: A complement to a relation A is the relation, cA , whose elements do not 
belong to the relation A, i.e., a difference between the universal relation nX and relation A. 

A fuzzy case: A complement to a fuzzy relation A is a fuzzy relation, cA , whose tuples 
have values of membership functions equal to difference between 1 (value of 
memberships of tuples in universal relation nX ) and values of  membership functions of 
corresponding tuples of fuzzy relations A. 

A I-case: A complement to I-relation A is I-relation, cA , composed of all atomic relations 
(generated by qualitative context Ω ) except those included in A. 

Comment: In a classical case and I-case, the exclusion of the third and contradiction: 
, ,c n cA A X A A∪ = ∩ = ∅  apply, whereas these do not apply generally in a fuzzy case. 

 
OPERATION ON COMPARABLE RELATIONS 
 

A classical case: The following properties hold:  

, , .c cA B A B A A B A B B A B B A⊂ ⇒ ∩ = ⊂ ⇒ ∪ = ⊂ ⇒ ⊂  

A fuzzy case: The stated properties don’t hold, in general case. 

A I-case:  The stated properties hold always. 
 
 

6. I-PREFERENCE STRUCTURES  

The above results can be illustrated on the case of preference structure. 
Preference structure is the most basic concept of preference modeling. Consider a set of 
alternatives A (objects, actions etc.) and suppose that a decision maker (DM) wants to 
judge them by pairwise comparison. Given two alternatives, the DM can act in one of the 
following three ways, [1]: 

1. DM prefers one to the other - strict preference relation (>) or (<) 
2. two alternatives are indefferent to DM- indifference relation (=) 
3. DM is unable to compare the two alternatives – incomparability relation (<>) 

For any (a, b) 2A∈ , we classify: 
 

( ) ( ),a b a b∈ > ⇔ >       DM prefers a to b ; 

( ) ( ),a b a b∈ = ⇔ =       a to b are indifferent to DM 

( ) ( ),a b a b∈ <> ⇔ <>   DM is unable to compare a and b. 

A preference structure on A is a triplet { ( ) ( ) ( )<>=> ,, } 
The binary relation ( ) ( ) ( )=∪>=≥  is called large preference relation of a given 
preference structure { ( ) ( ) ( )<>=> ,, }.  
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6.1. I-preference structures: symbolic (qualitative) level 

Qualitative context is set of primary relations ( ) ( ){ }≥≤=Ω , . Boolean algebra 
(Boolean lattice) generated by qualitative context is given in the following figure: 

 

(1)

(0)

( )= ( )< ( )> ( )<>

( )≤ ( )≥ ( )⇔ ( )c≤( )c≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>
<

( )c< ( )≠( )c<> ( )c>

 

Figure 6: Boolean lattice generated by primary relations ( ) ( ){ }≥≤=Ω ,  

Atomic relations in functions of primary relations:  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

,

,

,

.

c

c

c c

= = ≤ ∩ ≥

< = ≤ ∩ ≥

> = ≤ ∩ ≥

<> = ≤ ∩ ≥

 

 
6.2. I-preference structures: valued (qualitative) level 

Quantitative context is 2A  where A is set of analyzed alternatives. 
Intensity of atomic relations in functions of intensity primary relations 

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) 2

, , , ,

, , , , ,

, , , , ,

, 1 , , , , , , .

a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b a b a b A

= = ≤ ⊗ ≥

< = ≤ − ≤ ⊗ ≥

> = ≥ − ≤ ⊗ ≥

<> = − ≤ − ≥ + ≤ ⊗ ≥ ∈

 

Where, ⊗ is operator for generalized product [5].  
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For different generalized product operators we got the following results for 
atomic relations: 
a. Values (intensity) of atomic relations for min:=⊗  

( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )
( ) 2

, min , , , ,

, , min , , , ,

, , min , , , ,

, 1 , , min , , , ,

, .

a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b a b

a b A

= = ≤ ≥

< = ≤ − ≤ ≥

> = ≥ − ≤ ≥

<> = − ≤ − ≥ + ≤ ≥

∈

 

b. Values (intensity) of atomic relations for *:=⊗  

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( )
( ) 2

, , , ,

, , , , ,

, , , , ,

, 1 , , , , ,

, .

a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b a b

a b A

= = ≤ ∗ ≥

< = ≤ − ≤ ∗ ≥

> = ≥ − ≤ ∗ ≥

<> = − ≤ − ≥ + ≤ ∗ ≥

∈

 

c. Values (intensity) of atomic relations for ( ): max 1,0a b a b⊗ = + − , where ( ) 2,a b A∈   

( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )

, max , , 1, 0 ,

, , max , , 1, 0 ,

, , max , , 1, 0 ,

, 1 , , max , , 1, 0 .

a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b a b

= = ≤ + ≥ −

< = ≤ − ≤ + ≥ −

> = ≥ − ≤ + ≥ −

<> = − ≤ − ≥ + ≤ + ≥ −

 

One conclusion in a relatively long history of fuzzy preference structures [1] 
was that fuzzy generalizations of classical preference structures are not possible 
straightaway. All results (a. b. and c.) correspond to known results for fuzzy preference 
structures [7] but crucially new is the fact that these results are direct generalizations of 
classical result.  

 
Intensity of I-relations based on two atomic relations 

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

, , , ,

, , , ,

, , , ,

a b a b a b

a b a b a b

a b a b a b

≤ = < + =

≥ = > + =

⇔ = = + <>

 

( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( )( ) ( ) 2

, , , ,

, , , ,

, , , , , .

c

c

a b a b a b

a b a b a b

a b a b a b a b A

<⎛ ⎞
= < + >⎜ ⎟>⎝ ⎠

≥ = < + <>

≤ = > + <> ∈
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Intensity of I-relations based on three atomic relations 

( ) ( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( )( ) ( )( )

, , , , ,

, , , , ,

c

c

a b a b a b a b

a b a b a b a b

<> = = + < + >

> = = + < + <>
 

( ) ( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( ) ( ) 2

, , , , ,

, , , , , , .

c a b a b a b a b

a b a b a b a b a b A

< = = + > + <>

≠ = < + > + <> ∈
 

Universal I-relation as a  function of atomic relations 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )1 , , , , , , , .a b a b a b a b a b a b A= = + < + > + <> ∈  

The values of all other relations for all ( ) 2,a b A∈  generated by two primary 
relations ( ) ( ){ }≥≤=Ω ,  as the function of intensities of primary relations can be 
generalized in the following way too: 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )2 2

, 1 , , 2 , , ,

, , , 2 , , ,

, 1 , ,

, 1 , , , .

c

c

a b a b a b a b a b

a b a b a b a b a b

a b a b

a b a b a b A

⇔ = − ≤ − ≥ + ≤ ⊗ ≥

<⎛ ⎞
= ≤ + ≥ − ≤ ⊗ ≥⎜ ⎟>⎝ ⎠

≥ = − ≥

≤ = − ≤ ∈

 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )2 2

, , , , , ,

, 1 , , , ,

, 1 , , , ,

, 1 , , , , .

c

c

c

a b a b a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b A

<> = ≤ + ≥ − ≤ ⊗ ≥

> = − ≥ + ≤ ⊗ ≥

< = − ≤ + ≤ ⊗ ≥

≠ = − ≤ ⊗ ≥ ∈

 

Boolean lattice on valued level can be graphically represented as shown in Figure 7. 
 
 

7. CONCLUSION 

Interpolative relations (I-relation) as fuzzy relations are generalization of 
classical relations so that the value (intensity) of a relation is an element from a real 
interval [0, 1] (not only from {0, 1} as in a classical case). I-relations are consistent 
generalizations of classical relations and, contrary to fuzzy relations, all laws of classical 
relations (set-theoretical laws) are preserved in a general case. There are crucial 
differences between the theory of I-relations and the theory of fuzzy relations. All results 
based on classical relations can be directly generalized by I-relations, contrary to fuzzy 
relations. Interpolative preference structures are consistent generalization of classical 
preference structures. 
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Figure 7: Boolean lattice of relational functions based on ( )( )ba,≤  and ( )( )ba,≥  
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