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Abstract: This paper presents a decision model that uses empirical Bayesian estimation 
to construct a server-dependent M/M/2/L queuing system. A Markovian queue with a 
number of servers depending upon queue length with finite capacity is discussed. This 
study uses the number of customers for initiating and turning off the second server as 
decision variables to formulate the expected cost minimization model. In order to 
conform to the reality, we first collect data of interarrival time and service time by 
observing a queuing system, then apply the empirical Bayesian method to estimate its 
traffic intensity. In this research, traffic intensity is used to represent the demand for 
service facilities. The system initiates another server whenever the number of customers 
in the system reaches a certain length N and removes the second server as soon as the 
number of customers in system reduces to Q. Associating the costs with the opening of 
the second server and the waiting cost of customers, a relationship is developed to obtain 
the optimal value of N and Q to minimize cost. The mean number of customers in the 
system and the queue length of customers are derived as the characteristic values of the 
system. Model development and the implications of the data are discussed in detail.  

Keyword: Empirical Bayesian estimation, server-dependent queuing system, traffic intensity. 

1. INTRODUCTION 

The waiting line of service system is a widespread phenomenon. Customers 
always wish not to have to wait and to receive service as soon as possible. As customers 
put a higher value on their time, waiting is regards as a proportionally greater waste.  
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Hence, managers face the challenge: how to reduce waiting time and achieve customer 
satisfaction? In order to shorten the wait time, the number of servers must be increased, 
which at the same time increases the cost of providing services. However, when the 
demand declines, servers will be idle and resources are wasted, which incur unnecessary 
cost. It is a critical issue for managers to decide how to allocate servers or resources in an 
efficient way in order to reduce unnecessary facility cost, idle cost, the cost of losing 
customers, and to meet the variation of demand.  

For instance, the operations of Postal Remittances and Savings Banks (PRSB) in 
Taiwan face fierce competition under the trends of financial liberalization and 
internationalization. Customers not only focus on the quality of merchandise but also 
emphasize the invisible service while making use of postal or financial services. In order 
to provide better quality of service and reduce customers’ waiting time would increase 
the cost of personnel. Decision makers face the dilemma of obtaining a balance point 
between providing good quality of service and controlling costs to keep them reasonable.  
Similarly, the speed of passengers go through an immigration terminal usually influences 
the reputation of an airport.  Travelers’ assessment mostly comes from their waiting time.  
If managers are able to measure the gain and loss between customer waiting and facility 
costs, it is possible to raise customers’ satisfaction and at the same time contain the costs 
of doing so then they are successful at service facility requirement planning.   

The main objective of this study was to establish an evaluation model as a 
reference for service facility requirement planning. In daily life, it is common to meet all 
sorts of queues for service, such as the queue for tickets at a cinema, queues of cars 
waiting to be filled up at a gas station, or even the transfer of network image – all these 
are situations for the implementation of queuing theory. The number and allocation of 
servers serving the queue is a problem of service facility requirement planning. In the 
practical procedure of planning, decision makers may base their plain on the regular flow 
rate of customers and the expected service rate, or their subjective judgment, to decide 
the required amount of service requirement and the number of facilities or servers 
needed. There is a need for an objective and effective model to aid managers to operate 
systems optimally. This research wishes to implement the empirical Bayesian approach 
to estimate the service requirement based on the actual operation of queuing. It then 
constructs a server-dependent queuing system. The controllable system initiates another 
server whenever the number of customers in system reaches a certain length and turns off 
the second server whenever the number of customers in system reduces to a certain 
length. The specific objectives of this research includes:  

1. Consider the randomness of customer arrival and service time and incorporate 
the empirical Bayesian approach to estimate the amount of service required. 

2. Construct a server-dependent M/M/2/L queuing system. The system initiates 
another server whenever the queue length in front of first server reaches a 
certain length N and closes the second server whenever the queue length in front 
of first server reduces to a certain length Q. To analyze the system 
characteristics such as the expected number of customers in system, the 
probability of server being idle, etc. 

3. Use N and Q as decision variables to construct a model to minimize the 
expected cost associated with the opening of the second server and the waiting 
of customers. 
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2. LITERATURE REVIEW 

In this section we first explain the reason for using traffic intensity to define the 
amount of service requirement, then organize how to apply the empirical Bayesian 
approach to discover the estimator of traffic intensity.  Finally we describe the system 
characteristics and development of a server-dependent queuing system and discuss the 
related references. 

 
2.1. Traffic intensity vs. the amount of service required 

The definition of traffic intensity ρ  is the ratio of arrival rate over service rate.  
It is an important reference of queuing system and represents the utilization or proportion 
of the server being occupied. This study utilizes traffic intensity as the indication of the 
amount of service required. The larger traffic intensity means a larger arrival rate or a 
lower service rate. When 1ρ ≥ , it means the arrival rate is at least equal to the service 
rate but it can also exceed the service rate. Obviously a single server is unable to cope 
with the amount of service requirement. After a period of time, the system will blow up 
(Winston, 1994). Queues happen due to the uncertainty of the tempo at which customers 
will be arriving and the variation of service time. There is no waiting time only when 
customers arrive at a fixed interval and service time is a constant. In reality, customers 
arrive at random intervals that are unknown in advance and so is the time needed to serve 
a customer.  In order to avoid the assumption that the arrival rate and the service rate as 
known, this research applies the empirical Bayesian method to estimate the traffic 
intensity of a queuing system, which can meet the actual randomness and uncertainty and 
make the model proposed by this study be more reasonable.   

 
2.2. Empirical Bayesian approach 

The empirical Bayesian method is based upon a given prior distribution. When a 
suitable amount of observation values is collected, the prior distribution is used to 
calculate the posterior distribution. It also applies the concept of maximum likelihood to 
obtain the estimation of parameters. This section first aims to differentiate the Bayesian 
and empirical Bayesian methods of estimation, then discusses various methods of 
statistical analysis for a queuing system, and finally investigates the advantages and 
adaptability of empirical Bayesian estimation. 

Suppose that 1, , nX X…  are independent random variables, each having a 
probability density function given by  

1 2 1
( , ...... ) ( )

n

n ii
g x x x f xθ θ

=
= Π  if i iX x= , 1, ,i n= …  (prior distribution) 

where θ  is unknown. Further, suppose that θ  has the density function ( )p θ . The joint 
distribution of 1, 2 ...... nx x x  and θ  is 

1 2 1 2 1
( , ...... , ) ( , ...... ) ( ) ( ) ( )

n

n n ii
q x x x g x x x p f x pθ θ θ θ θ

=
= = Π  
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The marginal probability density of 1 2, ...... nx x x  is 

1 2 1 2( , ...... ) ( , ...... )n nk x x x q x x x dθ= ∫  

We have the conditional density of θ  given 1, , nX X…  is given by 

1 2
1 2

1 2

( , ...... , )
( , ...... )

( , ...... )
n

n
n

q x x x
h x x x

k x x x
θθ =  (posterior density function) 

Table 1 illustrates the difference between empirical Bayesian and Bayesian 
methods in. It shows that the Bayesian method assumes the prior distribution and 
parameters are known. For the empirical Bayesian method, the compound function of 
prior distribution is designated such as the most common choice exponential distribution 
in queuing theory, but the parameters (θ ) are unknown. 

 
Table 1: The difference between Bayesian and Empirical Bayesian 

θ

)ˆ()(~)ˆ,( θλλθλ PXfXP ⋅

Prior 
distribution

Posterior 
distribution

Bayesian )( θλP Known, )()(~),( θλλθλ PXfXP ⋅
known

θ

)( θλP Known,

unknown

Method

Empirical
Bayesian

θ

)ˆ()(~)ˆ,( θλλθλ PXfXP ⋅

Prior 
distribution

Prior 
distribution

Posterior 
distribution
Posterior 

distribution

BayesianBayesian )( θλP Known, )()(~),( θλλθλ PXfXP ⋅
known

θ

)( θλP Known,

unknown

Method

Empirical
Bayesian

 
 
This research used traffic intensity as the indication of the amount of service 

required. The accuracy of estimation has a major influence on the model of cost analysis 
constructed subsequently. Mcgrath et al. (1987) applied a Bayesian approach to queuing 
and pointed out the specification of uncertainty in the estimation of parameters. 
Thiruvaiyaru et al. (1992) described the advantages of the empirical Bayesian approach 
on parameter estimation in queuing systems and concluded that the empirical Bayesian 
approach seeks to combine the logical advantages of the Bayesian techniques with the 
objective practicality of the frequentist approach.  

Other researches that implements empirical Bayesian approach include: Armeto 
et al. (1994) who emphasized the Bayesian prediction in M/M/1 queues; Wiper (1998) 
has implemented empirical Bayesian estimation to Erlang distribution; again Sohn (1996) 
has concluded that the traffic intensity estimated by empirical Bayesian approach holds 
the minimal mean square error.  

 
2.3. Server-dependent queues 

The major difference of a server-dependent queue from a general queuing 
system is that the number of servers depends upon the queue length. It was first brought 
to notice by Singh (1970) that a queuing system could operate in such a way that a new 
service facility is provided whenever the queue in front of the server reaches a certain 
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length. Garg et al. (1993) extended the concept and developed the queue M/M/2 with a 
number of homogeneous or heterogeneous servers depending on the queue length. In a 
two server heterogeneous system, the service rate for the first and the second server are 
different. They also proposed the conditions for gaining the maximum profit – that the 
second server should be applied at queue length N. Yamashiro (1996) revised the model 
of Garg et al. (1993) and assumed that a queue with finite capacity is applicable 
(M/M/2/L). Dai (1999) proposed the finite capacity M/M/3/L queuing system where the 
number of servers changes depending on the queue length. Bansal et al. (1994) has 
investigated the factors of cost for activating the second server. 

Most of previous researches focused on turning on the second server when 
queue length reached N. Some of them are set up so that the first server should not be 
initiated until queue reach length N. Researchers such as Sapna (1996) analyzed the 
optimal N value for activating the first server under Gamma distribution; Wang et al. 
(1995) considered the server with unexpected failure to derive the non-reliable M/M/1/L 
system; Wang et al. (15)[11] drew Erlang distribution into the non-reliable server in a 
finite and infinite M/H2/1 queuing system. Hsie (1993) took into account that for a M/M/1 
system, when there is no one to serve, the server would be turned off to reduce idling 
cost. The above studies all used the optimal queue length N as the decision variable – to 
decide when to turn on the first server, and constructed the objective function for the 
minimum expected cost.  

Wang et al. (1999) and Dai (1999) added cost in the objective function. This 
research quantifies customers’ waiting cost and considers the cost of activating the 
second server, and its idle cost to build the model of minimum expected cost. Yamashiro 
(1996), Wang et al. (1995), Garg et al. (1993) and Dai (1999) didn’t describe how to 
acquire the traffic intensity ρ . This study estimates ρ  by the empirical Bayesian 
approach.  Besides, in order to fit the most conditions, we set up a system where the first 
server is always operating. This study also brings in Wang’s (2000) idea and treats the 
queue length for turning off the second server, as a decision variable.   

3. RESEARCH METHOD  

This paper applies the empirical Bayesian approach to estimate the demand for 
service and constructs a server-dependent queuing system, then employs the queue length 
for activating and closing the second server as decision variables to construct the model 
of minimum expected cost for a decision maker. In part one we used simulation to 
produce numerical data or we collect observational data and referred the traffic intensity 
estimated by the empirical Bayesian approach proposed by Thiruvaiyaru (1992) to 
indicate of the required amount of service. Next, we derived the probabilities of each 
state for a M/M/2/L server-dependent queuing system. Finally, we add in the parameters 
of cost and combine the first two parts to solve the optimal queue length N for starting a 
second server and the optimal queue length Q for turning off the second server. We first 
introduced the method to apply the empirical Bayesian approach and obtain observational 
data to generate the estimation of traffic intensity.  
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3.1. Empirical Bayesian estimator of traffic intensity 

Thiruvaiyaru (1992) supposed there are H independent M/M/1 queues in which 
the interarrival times { , 1,...,ikU i n= } of the first n customer, and the service times 
{ , 1, ...,jkV j m= } of the first m customers are observed for 1,...,k H= . Given the arrival 
rate kλ , { , 1,...,ikU k H= } are i.i.d exponential ( kλ ) random variables; that is 

1
( ) exp{ }

k

n
n

U k k k ikk
i

f u uλ λ λ
=

= − Σ   

where  

( , 1,..., )k ikU i n ′= =U  

Also, given the service rate kμ , { , 1,..., }jkV j m=  are i.i.d. exponential ( kμ ) random 
variables; that is, 

1
( ) exp{ }

k

m
m

k k k jkk
j

f v vμ μ μ
=

= − ΣV    

where  

( , 1,..., )k jkV j m ′= =V  

The arrival rates 1{ ,..., }Nλ λ  are assumed to be i.i.d. 1 1( , )Gamma α β  (prior distribution) 
and the service rates 1{ ,..., }kμ μ  are assumed to be i.i.d. 2 2( , )Gamma α β  (prior 
distribution). Also, the two sequences 1{ ,..., }Nλ λ  and 1{ ,..., }kμ μ  are assumed to be 
independent of each other. The empirical Bayesian estimator is derived as 

1 21

2 11

ˆˆ( )( )
ˆ

ˆˆ( 1)( )

m
jjEB

n
ii

n V

m U

α β
ρ

α β
=

=

+ +
=

+ − +
Σ

Σ
 

where 1α̂ , 2α̂ , 1̂β , 2β̂  are the one-step maximum likelihood estimators of 1α , 2α , 1β , 2β , 

respectively. First, let ˆˆ ˆ( , )l l lα β ′=η , 1, 2l =  be the one-step Maximum likelihood 

estimators of ( , ) ,l l lα β ′=η 1, 2l = , respectively. Let 11
1 1

H n
ik

k i

U
m

Hn= =
=ΣΣ  and 

2

21
1 1

H n
ik

k i

U
m

Hn= =
= ΣΣ , 

we can calculate 11 1 1( 1)m β α= −  and 2
21 1 1 12 ( 1)( 2)m β α α= − − . The moment 

estimators 1 1( , )α β��  of 1α , 1β  are 

2 2
1 21 11 21 112( ) 2 )m m m mα = − −�  

2
1 11 21 21 11( 2 )m m m mβ = −�  
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Again, let 12 1 1 ( )H m
jkk jm V Hm= == Σ Σ  and 2

22 1 1 ( )H m
jkk jm V Hm= == Σ Σ , we obtain the 

moment estimator of 2 2( , )α β : 

2 2
2 22 12 22 122( ) ( 2 )m m m mα = − −�  

2
2 22 12 22 12( 2 )m m m mβ = −�  

Then, the one-step maximum likelihood estimators of ( , )l l lα β ′=η , 1,2l =  are given by 

1ˆ ( ) ( )l l l lW S−= − ⋅η η η η� � � , 1,2l =  

where the marginal likelihood function is 

1
1
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H

n k k
k

L f x x f f
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= = Π U V  

1 2

1 2

1 1 2 2
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β α β α
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Γ Γ⎢ ⎥+ +⎣ ⎦

Π Σ Σ
 

and 

( , )l l lα β ′=η �� � , 1,2l =  

and 

1

ln ln( ) ,
l l

l
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L LS
η η

α β
=

′
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η
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L L
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3.2. Server-dependent M/M/2/L queuing system 

The major objective of this section is to establish a server-dependent M/M/2/L 
queuing system with finite capacity L. This system has been set up so that the first server 
is always on. When the number of customers in the system reaches N, the second sever 
would be activated to release the congestion in the system; when the number of 
customers in systems reduces to Q, it signifies the status of overcrowding has ceased so 
we can turn off the second server to cut cost. The number of waiting line is only one as 
shown in Figure 1. 
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Figure 1: Server-dependent queuing system with single waiting line 

The assumptions, parameters and variables used in the model are defined as follows: 
 

Assumptions: 

1. The service rule is FCFS. 
2. The interarrival time of customers is assumed to be exponential distribution with 

unknown parameters. 
3. The service time for each customer is assumed to be exponential distribution 

with unknown parameters. 
4. The service system could provide two servers at most, but at least one server 

should remain on to serve customers. 
5. The system has finite capacity L and L>>N. 
6. The service rates of two servers are identical. 
7. 1 2ρ< < . 

 
Definition of symbols 

1. λ :  arrival rate of customers 
2. μ :  service rate of server 

3. ρ :  traffic intensity
λ
μ

=  

4. i :  number of servers in service, 1, 2i =  
5. j :  number of customers in system, 0...j L=  
6. (1, )P j : the steady-state probability of only one server is providing service as the 

number of customers in system is j , where 0,1, 2,..., , 1,..., 1j Q Q N= + −  
7. (2, )P j : the steady-state probability of two servers are both providing service as the 

number of customers in system is j , where 1, 2,..., , 1,... 1,j Q Q N N L L= + + + −  
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Based upon the above assumptions and symbols, this research constructed a 
server-dependent M/M/2/L system.  The rate diagram of birth and death process is shown 
as Figure 2 and the flow balance equations are as follows: 
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Figure 2: Rate diagram for M/M/2/L queuing system 

(1,0) (1,1)P Pλ μ=  

( ) (1, ) (1, 1) (1, 1)P j P j P jλ μ λ μ+ = − + +  where 1 1j Q≤ ≤ −  

( ) (1, ) (1, 1) (1, 1) 2 (2, 1)P Q P Q P Q P Qλ μ λ μ μ+ = − + + + +  

( ) (1, ) (1, 1) (1, 1)P j P j P jλ μ λ μ+ = − + +  where 1 2Q j N+ ≤ ≤ −  

( ) (1, 1) (1, 2)P N P Nλ μ λ+ − = −  

( 2 ) (2, 1) 2 (2, 2)P Q P Qλ μ μ+ + = +  

( 2 ) (2, ) (2, 1) 2 (2, 1)P j P j P jλ μ λ μ+ = − + +  where 2 1Q j N+ ≤ ≤ −  

( 2 ) (2, ) (2, 1) 2 (2, 1) (1, 1)P N P N P N P Nλ μ λ μ λ+ = − + + + −  

( 2 ) (2, ) (2, 1) 2 (2, 1)P j P j P jλ μ λ μ+ = − + +  where 1 1N j L+ ≤ ≤ −  

(2, 1) 2 (2, )P L P Lλ μ− =  

To solve the above birth-death flow balance equations, we begin by expressing all the 
(1, )P j ’s and (2, )P j ’s in terms of (1,0)P . 

1. 1i =  (only one server is providing service)  

(1, ) (1,0)P j P= , 0j =  

(1, ) (1,0)¡jP j Pρ= ⋅ ,1 j Q≤ ≤  (1) 
1 1( )(1, ) (1,0)¡

(1 )

j N

N QP j Pρ ρ ρ
ρ

− −

−

⋅ −= ⋅
−

, 1 1Q j N+ ≤ ≤ −  (2) 
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2. 2i =  (two servers both provide service)  

(1 ) [1 ( ) ]
2(2, ) (1,0)¡

(2 ) (1 )

N j Q

N QP j P

ρρ ρ

ρ ρ

−

−

⋅ − ⋅ −
= ⋅

− ⋅ −
, 1Q j N+ ≤ ≤  (3) 

(1 ) [1 ( ) ] ( )
2 2(2, ) (1,0)¡

(2 ) (1 )

N N Q j N

N QP j P

ρ ρρ ρ

ρ ρ

− −

−

⋅ − ⋅ − ⋅
= ⋅

− ⋅ −
, 1N j L+ ≤ ≤  (4) 

3. The steady-state probabilities must sum to 1 
2

1 0
( , ) 1

L

i j
P i j

= =
=ΣΣ  (5) 

Substituting (1), (2), (3), and (4) into (5) yields  
1 11

0 1

1

1

( )(1,0) (1,0)
(1 )

(1 ) [1 ( ) ]
2 (1,0)

(2 ) (1 )

(1 ) [1 ( ) ] ( )
2 2 (1,0) 1

(2 ) (1 )

j NQ N
j

N Q
j j Q

N j Q
N

N Q
j Q

N N Q j N
L

N Q
j N

P P

P

P

ρ ρ ρρ
ρ

ρρ ρ

ρ ρ
ρ ρρ ρ

ρ ρ

− −−

−
= = +

−

−
= +

− −

−
= +

⋅ −⋅ + ⋅
−

⋅ − ⋅ −
+ ⋅

− ⋅ −

⋅ − ⋅ − ⋅
+ ⋅ =

− ⋅ −

Σ Σ

Σ

Σ

       

Thus 

2

{(2 ) ( ) (1 ) ( ) [1 ( ) ]}1 2 2(1,0) 1
1 (2 ) (1 )

N L N N Q

N Q

N Q
P

ρ ρρ ρ ρ ρ

ρ ρ ρ

− −

−

⎧ ⎫⋅ − ⋅ − + ⋅ − ⋅ ⋅ −⎪ ⎪⎪ ⎪⋅ − =⎨ ⎬− − ⋅ −⎪ ⎪
⎪ ⎪⎩ ⎭

 

We can solve for (1,0)P , which is the steady-state probability of no customer in the 
system: 

1

2

{(2 ) ( ) (1 ) ( ) [1 ( ) ]}1 2 2(1,0)
1 (2 ) (1 )

N L N N Q

N Q

N Q
P

ρ ρρ ρ ρ ρ

ρ ρ ρ

−
− −

−

⎧ ⎫⋅ − ⋅ − + ⋅ − ⋅ ⋅ −⎪ ⎪⎪ ⎪= −⎨ ⎬− − ⋅ −⎪ ⎪
⎪ ⎪⎩ ⎭

(6) 

Then (6) can be used to determine ( )1,P j , ( )2,P j .  Each of them is a function 
of traffic intensity ρ , and the decision variables N, Q. Now we can incorporate the 
parameters of costs and formulate an NLP to minimize the sum of expected costs due to 
customer waiting and server operating. 
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Formulation of objective function 

Next we construct an objective function of minimizing expected cost for the 
M/M/2/L controllable queuing system. The definitions of parameters are as follows: 

Ec : expected cost 

sC : the fulltime operating cost for second server 

iC : the fulltime idle cost for second server 

LC : the penalty cost for system being fully loaded 

eC : the penalty cost for system being empty 

onC : the start up cost for turning the second server on back and forth 

offC : the shut down cost for turning the second server off back and forth 

wC : the average waiting cost for each customer (we assume the expected 
waiting cost is proportional to the queue length) 
 

The expected cost function is given by  

1

1

0

1

1

0

( , ) (2, )

[0, ( 1)] (1, )

[0, ( 2)] (2, )

(1, )

(2, )
(1, )

(1,0)
(2, )

L

s
Q

N

w
j

L

w
j Q

N

i
j

on

off

e

L

Ec N Q C P j

C Max j P j

C Max j P j

C P j

C P N
C P Q

C P
C P L

ρ
+

−

=

= +

−

=

= ⋅

+ ⋅ − ⋅

+ ⋅ − ⋅

+ ⋅

+ ⋅
+ ⋅

+ ⋅
+ ⋅

Σ

Σ

Σ

Σ
 (7) 

Next substituting 1i =  into (1) and (2) yields the sum of probability of one server 
( ( )1,P j , 0, , , , 1j Q N= −… … ) in system:  

1 11 1 1

0 0 1 0 1

( )(1, ) (1, ) (1, ) [ ] (1,0)
(1 )

j NQ QN N N
j

N Q
j j j Q j j Q

P j P j P j Pρ ρ ρρ
ρ

− −− − −

−
= = = + = = +

⋅ −= + = ⋅ + ⋅
−Σ Σ Σ Σ Σ    

where 
1

0

1(1,0) (1,0)
1

QQ
j

j
P Pρρ

ρ

+

=

−⋅ = ⋅
−Σ  

1 1 1 2 11

1

( ) [( 1) ( ) ](1,0) (1,0)
(1 ) ( 1)( )

j N Q N Q N QN

N Q N Q
j Q

N Q Q NP Pρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ

− − + + + +−

−
= +

⋅ − − − ⋅ + − ⋅ +⋅ = ⋅
− − −Σ  
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Then substituting 1i =  into (1) and (2) yields the sum of ( )1,j P j⋅ , 
0, , , , 1j Q N= −… … :  

1 1

0 0 1

1 11

0 1

(1, ) (1, ) (1, )

( )[ ] (1,0)
(1 )

QN N

j j j Q

j NQ N
j

N Q
j j Q

j P j j P j j P j

j j Pρ ρ ρρ
ρ

− −

= = = +

− −−

−
= = +

⋅ = ⋅ + ⋅

⋅ −= ⋅ ⋅ + ⋅ ⋅
−

Σ Σ Σ

Σ Σ
 

where 
2 1

2
0

[ ( 1) ](1,0) (1,0)
( 1)

Q QQ
j

j

Q Qj P Pρ ρ ρρ
ρ

+ +

=

⋅ − + ⋅ +⋅ ⋅ = ⋅
−Σ  

and  
1 11

1

( 1) ( ) (2 1) ( 1) ( 1) ( )

( ) (1,0)
(1 )

(1,0)
( )( 1)

j NN

N Q
j Q

Q N Q N Q Q N Q N Q N

Q N

P

N N Q Q P

ρ ρ ρ
ρ

ρ ρ ρ ρ ρ ρ
ρ ρ ρ

− −−

−
= +

+ + + + + + + + +

⋅ − ⋅ =
−

− + − − += ⋅
− + −

Σ
 

Substituting 2i =  into (3) and (4) yields the sum of probability ( )2,P j , for 
1, , , 1, ,j Q N N L= + +… …  

1 1 1
(2, ) (2, ) (2, )

L N L

j Q j Q j N
P j P j P j

= + = + = +
= +Σ Σ Σ  

where 

1
(2, )

N

j Q
P j

= +
Σ

1

(1 ) [1 ( ) ]
2 (1,0)¡

(2 ) (1 )

N j Q
N

N Q
j Q

P

ρρ ρ

ρ ρ

−

−
= +

⋅ − ⋅ −
= ⋅

− ⋅ −∑  

( ) ( 1 )

( )

( 2 2 2 ) (1 ) (1,0)
( 2)( 2)(1 )

N Q N Q N

N Q

N N Q Q Pρ ρ ρ ρ ρ ρ
ρ ρ ρ

− + + −

−

− − + + + − −= ⋅
− − + −

 

and  

1
(2, )

L

j N
P j

= +
=Σ  

=
1

(1 ) [1 ( ) ] ( )
2 2 (1,0)¡

(2 ) (1 )

N N Q j N
L

N Q
j N

P

ρ ρρ ρ

ρ ρ

− −

−
= +

⋅ − ⋅ − ⋅
⋅

− ⋅ −∑  

( 1) ( ) ( 1) ( ) ( 1) ( ) (2 1)

2

( 1)( 2 2 2 (1,0)
( 2) ( )

Q L N L Q N Q L N L N Q N

Q N Pρ ρ ρ ρ ρ
ρ ρ ρ

+ + − + + − + + − + +− − − += ⋅
− − +
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Then substituting 2i =  into (3) and (4) yields the sum of ( )2,j P j⋅ , for 
1, , , 1, ,j Q N N L= + +… …  

1 1 1
(2, ) (2, ) (2, )

L N L

j Q j Q j N
j P j j P j j P j

= + = + = +
⋅ = ⋅ + ⋅Σ Σ Σ  

where 

1
(2, )

N

j Q
j P j

= +
⋅Σ

1

(1 ) [1 ( ) ]
2 (1,0)

(2 ) (1 )

N j Q
N

N Q
j Q

j P

ρρ ρ

ρ ρ

−

−
= +

⋅ − ⋅ −
= ⋅ ⋅

− ⋅ −Σ  

2 2 1 2 2 2

2 2 2 2 2

2 2 1 2 2 3

1 2 3

3

(8 8 8 4) (2 6 2 )

4( ) (5 5 5 4)

(1 ) 2 ( )

2
(1,0)

2 ( 2) ( )

N Q Q N Q N N

N Q N Q

Q N N N Q

Q N N

Q N

N N Q N

Q Q N N Q Q N N

N Q Q N N

N
P

ρ ρ
ρ ρ

ρ ρ
ρ

ρ ρ ρ

+ + − + − +

+ + +

− + + + +

+ − +

⎡ ⎤+ − + + + ⋅
⎢ ⎥
+ + − − + − − − −⎢ ⎥
⎢ ⎥+ − ⋅ ⋅ + − + +⎢ ⎥
⎢ ⎥− ⋅ ⋅⎣ ⎦= ⋅

⋅ − ⋅ −
 

and 

1
(2, )

L

j N
j P j

= +
⋅ =Σ

(1 ) [1 ( ) ] ( )
2 2 (1,0)

(2 ) (1 )

N N Q j N

N Qj P

ρ ρρ ρ

ρ ρ

− −

−

⋅ − ⋅ − ⋅
⋅

− ⋅ −
 

1 1 1 1 2

2 1 1 2 1

2 2 2

3

( 1) 2 ( 1) 2 2

2 2(1 ) 2 (1 )

2
( 1) (1,0)

( 2) ( )

Q L Q L N L Q L N L Q L

Q L L N Q N Q N N

N Q Q N N

Q N

L L L

L N N

N N
P

ρ ρ ρ
ρ ρ ρ

ρ ρ
ρ

ρ ρ ρ

− + − + − + + + − + +

− + + + + − + +

+ + − +

⎡ ⎤+ ⋅ − + ⋅ + ⋅ ⋅
⎢ ⎥
− ⋅ ⋅ + + − +⎢ ⎥
⎢ ⎥− + ⋅⎣ ⎦= − ⋅ ⋅

− ⋅ −
 

Then we rewrite (7) as function of traffic intensity ρ , and decision variables N, Q. ρ  is 

estimated by empirical Bayesian estimator ˆ EBρ  and substituting ˆ EBρ  into (6), we obtain 

( )ˆ 1,0P : 

1

2

ˆ ˆˆ ˆ ˆ ˆ{(2 ) ( ) (1 ) ( ) [1 ( ) ]}1 2 2ˆ(1,0)
ˆ ˆ ˆ1 (2 ) (1 ( ) )

EB EB
EBN EB EB EB L N N Q

EB EB EB N Q

N Q
P

ρ ρρ ρ ρ ρ

ρ ρ ρ

−
− −

−

⎧ ⎫
⋅ − ⋅ − + ⋅ − ⋅ ⋅ −⎪ ⎪⎪ ⎪= −⎨ ⎬− − ⋅ −⎪ ⎪

⎪ ⎪⎩ ⎭

 

The expected cost minimization model is as follows: 



 P.-C. Lin / Application of Empirical Bayesian Estimation to the Optimal Decision 204

1

1

0

ˆˆ ˆ( ) (1 ) [1 ( ) ]
2 ˆˆ( , ) (1,0)

ˆ ˆ(2 ) [1 ( ) ]
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Σ

Σ
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1 11

1

1
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j
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−
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⋅
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−
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Σ

Σ
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1 11

1 1
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ˆ ˆ 2(2 ) (1 ( ) )
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i EB N Q
j j Q
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P

C P P

C

ρ ρ ρ
ρ ρ

ρ ρ ρρ
ρ

ρ ρ ρ
ρ

−
−

−

− −−

−
= = +

−

− ⋅ − ⋅ ⋅
− ⋅ −

⎡ ⎤⋅ −+ ⋅ ⋅ + ⋅⎢ ⎥−⎣ ⎦
⋅ − ⋅ −+ ⋅
− ⋅ −
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ˆ (1,0)
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ˆˆ( ) (1,0)

ˆ ˆ ˆ ˆ( ) (1 ) [1 ( 2) ]ˆ ˆ(1,0) ( ) (1,0)
ˆ ˆ 2(2 ) (1 ( ) )

EB N Q
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EB N EB EB N Q EB
L N

e L EB EB N Q
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C P
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ρ
ρ
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ρ ρ

−
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−

−

⋅

+ ⋅ ⋅
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− ⋅ −

  

It is hard to solve the above NLP analytically and prove its feasible region is a 
convex set which possesses the optimal N* and Q* and minimizes the expected cost 
globally. Thus, we applied a numerical method to explore how changes in the NLP’s 
parameters change the optimal solution.   

4. SENSITIVITY ANALYSIS 

In this section we illustrate some the results obtained in previous sections with a 
hypothetical queuing experiment.  First we applied Monte Carlo simulation to generate 
random data for five queues and the one-step maximum likelihood estimator ( 1 1̂ˆ ,α β ) = 

(58.19542203, 11.31472722), ( 2 2
ˆˆ ,α β ) = (28.31890446, 6.954543058). The empirical 

Bayesian estimator of traffic intensity ˆ EBρ =1.294695872. 
Next, we perform numerical analysis to determine: 

 The influence of changing sC  on the minimum expected cost and optimal 
N*, Q* as onC = offC = 0 and onC = offC = 25, respectively. 
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 The impact of changing iC  on the minimum expected cost and optimal N*, 
Q* as onC = offC = 0 and onC = offC = 25, respectively. 

 The impact of changing the average waiting cost for each customer wC  on 
the minimum expected cost and optimal  N*, Q* as onC = offC = 25 

 The influence of LC  and eC  on the minimum cost respectively. 
 The impact of changing onC  and offC  on the minimum expected cost and 

optimal N*, Q* while sC  = 0, eC  = 0 and sC = 150, eC = 250, respectively. 
 The influence of traffic intensity on the optimal solution. 
 The influence of system capacity L on the optimal solution. 

 
We sum up the following results: 

 When there is no start up and shut down cost for the second server, in order 
to attain the minimum cost the second server will be turned on and off 
frequently.  As the fulltime operating cost for second server gets higher, the 
second server won’t provide service readily.   

 When the fulltime idle cost for second server gets larger, the second server 
should be kept busy most of the time. As long as the average waiting cost for 
each customer becomes larger, the system had better not to keep customer 
wait so the second server should be turns on sooner. 

 We found the variation of penalty cost for system being fully loaded and 
empty reveal no significant impact on the minimum cost. However, the 
penalty cost for system being fully empty did change optimal N* and Q* 
significantly.   

 If there were no cost for the second server to offer service, the second server 
would be turned on as soon as possible.  However, the start up cost and shut 
down cost would prevent the second server from being turned on and off.   

 The higher the traffic intensity is, the sooner the second server should be 
turned on to cease the congestion.   

 When the system capacity L  is big enough, it makes no influence on the 
optimal solution. 

Table 2 presents the special case in which only one parameter is non-zero to 
validate the accuracy of the proposed model. Finally we sum up the effect of increasing 
parameters on the decision variables in Table 3. 

 
Table 2: The special case in which only one parameter is non-zero 

 
EBρ̂ =1.2947, L=50 

sC  iC  wC  LC  eC  onC  offC  N* Q* Ec 

150 0 0 0 0 0 0 49 47 32.22 
0 100 0 0 0 0 0 2 0 43.02 
0 0 1 0 0 0 0 2 0 0.76 
0 0 0 500 0 0 0 2 0 ≈ 0.00 
0 0 0 0 500 0 0 49 47 ≈ 0.00 
0 0 0 0 0 100 100 49 0 2.16 
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Table 3: The effect of increasing parameters on the decision variables 
Parameter 

sC  iC  wC  onC , offC  eC  LC  
Decision 
variable 

N* Q* N* Q* N* Q* N* Q* N* Q* N* Q* 

Effect + + - - - - + - + + - - 
 
 

5. CONCLUSIONS  

This paper applies the empirical Bayesian approach to estimate the demand for 
service and constructs a server-dependent queuing system, then employs the queue length 
as decision variables for activating and closing the second server to construct an NLP 
model of minimum expected cost for a decision maker. Associating the costs with the 
opening of the second server, the start up and shut down cost for turning on and off the 
second server, and the waiting of the customers, a relationship is developed to obtain the 
optimal value of N and Q to minimize cost. We also performed a sensitivity analysis to 
discuss how changes in the NLP’s parameters ( sC ; iC ; LC ; eC ; onC ; offC ; wC ) affect 
the optimal solution. From the numerical analysis, we conclude that (1) the fulltime 
operating cost for the second server and the penalty cost for system being empty increase 
would cause larger N* and Q*; (2) the fulltime idle cost for the second server, the 
average waiting cost for each customer, and the penalty cost for system being fully 
loaded increase would cause smaller N* and Q*; (3) the start up and shut down cost for 
turning the second server on and off back and forth increase would cause larger N* but 
smaller Q*. The results of the evaluation model present a reference for service facility 
requirement planning. 
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