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Abstract: Two new methods of the fourth order for the simultaneous determination of 
multiple zeros of a polynomial are proposed. The presented methods are based on the 
fixed point relation of Laguerre's type and realized in ordinary complex arithmetic as 
well as circular complex interval arithmetic. The derived iterative formulas are suitable 
for the construction of modified methods with improved convergence rate with negligible 
additional operations. Very fast convergence of the considered methods is illustrated by 
two numerical examples. 
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1. INTRODUCTION 

The problem of solving nonlinear equations and systems of equations is one of 
the most important problems in the theory and practice, not only of applied mathematics 
including the theory of optimizations but also in many branches of engineering sciences, 
physics, computer science, astronomy, finance, and so on. As noted in [5], [6], [8], [9], 
[15], [16], [18], [23], Laguerre's method belongs to the most powerful methods for 
solving polynomial equations. The convergence characteristics of this method were 
extensively investigated in literature; references mentioned above are devoted to this 
subject. This method possesses local cubic convergence to a simple zero and excellent 
behavior in the case of polynomials with real zeros only. Two modifications of 
Laguerre's method, which enable simultaneous determination of all simple zeros of a 
polynomial and possess the convergence rate at least four, were proposed in [9]. In 
addition, the implementation on parallel computers and the comparison of these modified 
methods with other methods were given. Computationally verifiable initial conditions 
that guarantee the convergence of the basic simultaneous method were studied in [23]. 
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Another modifications of Laguerre's method for finding simple zeros, having 
improved convergence speed and a very high computational efficiency, were presented in 
[22] in ordinary complex arithmetic. A new method of Laguerre's type for the 
simultaneous inclusion of simple polynomial zeros, realized in circular complex interval 
arithmetic, was proposed in [18]. 

In this paper we derive a new fixed point relation of Laguerre's type which is 
concerned with multiple zeros of a polynomial (Section 2). This relation is used for the 
construction of new iterative methods for finding complex approximations to multiple 
zeros (Section 3) as well as complex circular intervals containing polynomial zeros 
(Section 4).  A discussion on the construction of modified methods with very fast 
convergence is given, together with some numerical examples. 

The aim of this paper is to present in short new methods of Laguerre's type and 
point to some modifications having a high computational efficiency. Convergence 
analysis is given in a concise form, leaving details to the forthcoming papers. 

2. FIXED POINT RELATION OF LAGUERRE'S TYPE 

Let  be a monic polynomial of degree n with multiple zerosP 1,..., νζ ζ  ( nν ≤ ) 
of the respective multiplicities 1,..., νµ µ , 
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Proof:  Starting from the factorization (2.1) and using the logarithmic derivative we find 
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Now, by (2.3) and (2.4), we obtain 
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From the identity (2.2) we derive the following fixed point relation of Laguerre's 
type 
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assuming that two values of the square root have to be taken in (2.5). The name comes 
from the fact that, neglecting the term iϕ  in (2.5), we obtain the third order method for 
finding a multiple zero, 
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actually the counterpart of Laguerre's method which was known to Bodewig [4] (see, 
also, [8]).  From this reason, all methods derived from the fixed point relation (2.5) will 
be called Laguerre-like methods, shorter (L). 

The fixed point relation (2.5) is suitable for the construction of iterative methods 
for the simultaneous finding multiple zeros of a given polynomial in ordinary complex 
arithmetic as well as complex interval arithmetic. In this paper we will give an outline of 
these two approaches, which lead to new algorithms for finding multiple zeros of a 
polynomial. 
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3. SIMULTANEOUS METHOD IN ORDINARY COMPLEX 
ARITHMETIC 

Let 1,...,z zν be mutually distinct approximations to the zeros 1,..., νζ ζ with the 
multiplicities 1,..., ,νµ µ respectively. We will not consider here the problem of 
determination of the order of multiplicity; the reader interested in this topic may find 
several efficient procedures in [10]-[12], [14], [26], [27]. However, we have used some 
of these procedures in practical realization of numerical examples, three of them are 
presented in this paper. 

Substituting the exact zeros appearing in the sums 1,i∑  and  by their 
approximations, we obtain the sums 
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which are some approximations to 1,i∑  and 2,i∑ . Then 
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is an approximation to iϕ  and the relation (2.5) becomes 
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Here  is a new approximation to the zero ˆiz iζ  ( i Iν∈ ). 

Let (0) (0)
1 ,...,z zν be initial approximations to the zeros 1,..., νζ ζ of . Based on 

the relation (3.2) we can construct the following iterative method of Laguerre's type for 
finding multiple zeros of a polynomial, 
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where the index  is related to the -th iterative step. 0,1,...k = k
 There are two values of the (complex) square root in (3.3). We have to choose a 

"proper" sign in front of the square root in such a way that a smaller step is 
taken. A practical criterion for the choice of the proper value between two values of a 

( 1) ( )| |k k
i iz z+ −
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square root was studied in [22]. In the sequel we will use the symbol ∗  to indicate the 
selection of the proper value of the square root involved in the presented iterative 
formula and expressions appearing in the convergence analysis. 

 

Remark 1: If all zeros of P  are simple ( 1 2 ... 1nµ µ µ= = = = ), then the iterative method 
(3.3) reduces to the Laguerre-like simultaneous method presented in [9]. 

 

Using the already calculated approximations in the current iteration (Gauss-
Seidel approach or serial mode), we can modify (3.3) to obtain the Laguerre-like single-
step method 
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Now we will prove that the order of convergence of the simultaneous method 
(3.3) is four. For the sake of brevity, we give only a qualitative analysis. 
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Having in mind this approximation, we start from the iterative formula (3.3) written in 
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wherefrom 
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which proves the assertion of Theorem 3.1.   
 

A more precise convergence theorem that involves the separation of zeros and 
their closeness to the initial approximations may be expressed as follows: 
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hold for every 1,...,i ν= , then the total-step method (3.3) is convergent with the 
convergence order equal to four. 

 

The proof of this theorem is extensive but elementary and can be found in [25]. 
 

Using the approach of Alefeld and Herzberger [2], the following theorem can be 
proved for the single-step method (3.4): 
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with more rapid convergence than the basic method (3.3). Similarly, taking ,H if  instead 
of iϕ  in (2.5) we obtain the iterative method with Halley's corrections which converges 
faster than the method (3.9). It is worth noting that the increase of the convergence rate in 
both cases is obtained with negligible number of additional calculations (since 

 are already evaluated for all ( ), '( ), ''( )i iP z P z P zi i Iν∈ ), which means that these 
methods possess very high computational efficiency. Further acceleration of the 
convergence rate of the three discussed Laguerre-like methods can be obtained by 
applying Gauss-Seidel approach (single-step mode). An extensive study of these 
improved methods, together with detailed convergence analysis, is given in [25]. 

 

Example 1. We have performed a lot of numerical experiments and found that the 
iterative methods (3.3) and (3.4) demonstrated very fast convergence even for crude 
approximations. To provide approximations (of very high accuracy) in the third iteration, 
we have applied the programming package Mathematica 5.0 with multi-precision 
arithmetic. For illustration, we present a numerical example which are concerned with 
the zeros of the polynomial 
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= + − + + +  
To compare the obtained results, we also tested several methods of the fourth order: 
Euler-like method (E), Ostrowski-like method (O) and Halley-like method (H). These 
methods, presented in [24], belong to the same class since they have the similar structure 
and the same order of convergence. Besides, we also tested single-step variants of these 
four methods. 

The exact zeros of the above polynomial are 1 1ζ = − , 2 3ζ = , 3 iζ = −   and 

4,5 1 2iζ = − ±    with the multiplicities 1 4µ = , 2 3µ = , 3 4 5 2µ µ µ= = = . The following 
complex numbers were chosen as starting approximations to these zeros:  
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(0)
1 0.7 0.3z i= − + ,   ,    , (0)

2 2.7 0.3z i= + (0)
3 0.3 0.8z i= −

(0)
4 1.2 2.3z i= − − ,    . (0)

5 1.3 2.2z i= − +
 

To control the measure of closeness of approximations in reference to the exact zeros, we 
have calculated Euclid's norm 
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In the presented example we have  for the initial approximations. The 
measure of accuracy   is displayed in Table 1. The denotation 
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Table 1: The entries   in the first three iterations ( )ke ( 1, 2,3k = )
     E-norms (L) (E) (O) (H) 

total-step methods 

(1)e  
(2)e  
(3)e  

1.62(-2)  
1.18(-9)  
6.08(-38)  

6.32(-2)  
8.80(-7)  
4.96(-26 )  

2.39(-2)  
1.47(-8 )  
8.08(-34)  

5.72(-2)  
1.54(-6)  
2.20(-26)  

single-step methods 

(1)e  
(2)e  
(3)e  

1.38(-2)  
1.95(-10)  
2.35(-43)  

1.51(-2)  
1.03(-9)  
5.72(-40)  

1.54(-2)  
3.48(-10)
1.18(-42)  

1.99(-2)  
2.02(-9)  
2.40(-38)  

 
 

Example 2. Laguerre-like method (3.3) was applied to detect different zeros of the 
polynomial  

3 2( ) ( 1)( 1.9) ( 2) ( 2.1)P z z z z z= + − − − 2  

which has a simple zero  and multiple zeros 1.9 ,  and 2.1 . These multiple zeros 
make a cluster [  which is an additional difficulty. We started from 4 initial 
approximations equidistantly spaced on the circle | |

1− 2
1.9, 2, 2.1]

10z =  (Aberth's approach [1]). It is 
evident that these approximations are rather far from the sought zeros. Despite this 
inconvenient situation, after 8 iterations the method (3.3) produced reasonably good 
approximations which can be further refined: 

(8)
1 2.100462 0.000592z i= + ,       ,   (8) 6

2 1.900007 7.13 10z i−= − ×

(8)
3 0.999157 0.003604z i= − − ,     . (8)

4 2.000267 0.000018z i= −
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4. SIMULTANEOUS METHOD IN CIRCULAR COMPLEX 
ARITHMETIC 

Let 1,...,Z Zν  be closed disks in the complex plane such that each of them 
contains one and only one zero of , that is, P i iZζ ∈  (i I )ν∈ . Let midiz = iZ  and 

rad ir = iZ  denote the center and radius of the disk iZ , which is often written in the 
parametric notation as { ; }i iZ z r= . Using the inclusion isotonic property, we obtain 

, ,
1 1

1:
( )

j
i i j

j j i ji j
j i j i

S
z Zz

λ
ν ν

λ λλ

µ
µ

ζ= =
≠ ≠

⎛ ⎞
∑ = ∈ = ⎜ ⎟⎜ ⎟−− ⎝ ⎠

∑ ∑   ( 1, 2)λ = . (4.1) 

Since , the inverse set iz Z∉ j ) 1( i jz Z −−  is also a closed disk so that each of the sets ,iSλ  
( ; 1, 2i Iν )λ∈ =  is a disk. According to (4.1) we have 

2 2
2, 1, 2, 1,:i i i i i

i i

n nn F nS
n n

ϕ
µ µ

= ∑ − ∑ ∈ = −
− − iS , 

where iF  is a disk. Using again the inclusion property, from the fixed point relation (2.5) 
we find 
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2 2
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δ δ δ
µ

µ
δ δ δ

µ µ

∈ −
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⎢ ⎥⎝ ⎠⎣ ⎦

= −
⎡ ⎤⎛ ⎞⎛ ⎞−

+ − − +⎢ ⎥⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
i

 (4.2) 

We recall that the square root of a disk { ; }Z c r=  ( | | )ic c e θ=  not containing 0  (that is, 
) is the union of two disks (see [7]), | |c r>

( ) ( )1/ 2 1/ 21/ 2 / 2 1/ 2 / 2 1/ 2: {| | ;| | | | } { | | ;| | | | }.i iZ c e c c r c e c c rθ θ= − − − − −U  (4.3) 

For more details about the properties of complex circular arithmetic see the books [3] and 
[21]. 

Let us assume that the denominator of (4.2) does not contain the origin, and then 
the set on the right hand side of (4.2) defines a closed disk. This suggests the following 
iterative method of Laguerre's type in complex circular arithmetic for the inclusion of all 
(simple or multiple) zeros of a given polynomial P  starting from initial disks 

(0) (0)
1 ,...,Z Zν , 

( )
( 1) ( )

1/ 2
2( ) ( ) ( ) ( )

1, 2, 1,

*

k k
i i

k k ki
i i i

i

nZ z
n

n F
µ

δ δ δ
µ

+ = −
⎡ ⎤⎛ ⎞− ⎡ ⎤+ − −⎢ ⎥⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦

k
i

, (4.4) 
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where the index  is related to the -th iteration and the disk 0,1,...k = k ( )k
iF  is given by  

2
2

( )
( ) ( ) ( ) ( )

1 1

1 jk
i j k k k k

j jii j i j
j i j i

nF n
nz Z z Z

ν ν µ
µ

µ= =
≠ ≠

⎛ ⎞⎛ ⎞ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟ −− −⎜ ⎟⎝ ⎠ ⎝ ⎠
∑ ∑ , 

( )k
iz = mid ( )k

iZ    ( )i Iν∈ . 

The symbol * points to the selection of the "proper disk" between two disks obtained by 
(4.3). A computationally verifiable criterion for the selection of a proper disk was stated 
in [7] (see, also, [18]). 

Under suitable initial conditions which take into consideration the distribution 
and size of initial inclusion disks (see [19]), in each iteration the simultaneous interval 
method (4.4) enables the inclusion ( )k

i iZζ ∈  for all νIi ∈ . In this way an automatic 
computation of rigorous error bound (given by the radii of resulting inclusion disks) on 
approximate solutions is provided, which is the main advantage of circular arithmetic 
methods. 

Let     (0) (0) (0){ ; }i i iZ z r=  and 

(0) (0) (0) (0)

,
min{| | }i j ji j

i j

z z rρ
≠

= − − ,      ( ) ( )

1
maxk k

jj
r r

ν≤ ≤
= ,      

1
min jj ν

µ µ
≤ ≤

= . 

The order of convergence of the iterative interval method (4.4) is four, which is evident 
from the following theorem. 

 
Theorem 4.1. Let the interval sequences  ( ){ }k

iZ ( 1,..., )i ν=  be defined by the iterative 
formula (4.4). Then, under the condition  

(0) (0)4( )n rρ µ> − , (4.5) 

for each 1,...,i ν=  and  we have  0,1,...k =

o1   ( )k
i iZζ ∈ ;  

o2   
( )( )4( )

( 1)
3

(0) (0)

9

5
3

k
k

n r
r

r

µ

ρ

+
−

<
⎛ ⎞−⎜ ⎟
⎝ ⎠

. 

A dozen-page proof of this theorem may be found in [19] and will be omitted to save a 
space. We note that the initial conditions (4.5) depend only on the available initial data: 
separation of the initial disks (expressed by the quantity (0)ρ ) and their size. This fact is 
of great practical importance. 

More details about iterative methods for the simultaneous inclusion of 
polynomial zeros may be found in [17] and references cited there. 
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Improved methods (II) 
 
It is worth noting that  the convergence of  the interval method (4.4) can be 

accelerated without  additional calculations  by employing the  correction approach  
which consists of using  "Schröder's disks" , ( ) / '( )N j j j j jZ Z P z P zµ= −  instead of the 

disks jZ  in the sums  and  (see, e.g., [21, Ch. 6]). In this manner we obtain the 
modified method of the form (without the iteration index) 

iS ,1 iS ,2
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2
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i i
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i i i N i
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nZ z
n

n F
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⎢ ⎥⎝ ⎠⎣ ⎦

)i I  ( , (4.6) ν∈

where  the disk ,N iF  is given by 
2

2

,
1 1, ,

1 j
N i j

j ji N j i i N j
j i j i

nF n
z Z n z Z

ν ν µ
µ

µ= =
≠ ≠

⎛ ⎞⎛ ⎞ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟− − −⎜ ⎟⎝ ⎠ ⎝ ⎠
∑ ∑ . 

The -order of convergence of the modified method (4.6) is R 2 7 4.646+ ≅  or even , 
depending on the type of the inversion of a disk used in the calculation of 

5
,N iF . Note that 

the total-step methods (4.4) and (4.6) can be further accelerated by using already 
calculated disks in the current iterative step (single-step mode). 

 

Remark 2. If all zeros of a polynomial  are simple, then the Laguerre-like interval 
method (4.4) reduces to the interval method for simple zeros proposed and studied in 
[18]. 

P

 

Example 3. To find the circular inclusion approximations to the zeros of the polynomial 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

12 11 10 9

8 7

5 4

2

( ) 2 3 16 6 26 38

101 58 120 131 250 76

72 20 84 432 864 292

504 432 864

P z z i z i z i z

i z i z i z

i z i z i z

z iz

= − − + − − −

+ − − − + −

− + − − + −

− + +

6

3
 

we implemented Laguerre-like method (4.4). For comparison purpose, we also applied 
the interval Euler-like method (E), Ostrowski-like method (O) and Halley-like method 
(H) which have a similar structure and have the same order of convergence. The explicit 
formulas that define the last three methods can be found in [13]. In addition, we also 
tested the corresponding single-step variants of these four methods. 

The zeros of P  are 1 1,ζ = −  2 2 ,iζ =  3 1 ,iζ = +  4 1 ,iζ = −  5 3iζ = −  of the 
multiplicities 1 2,µ =  2 3,µ =  3 2,µ =  4 2,µ =  5 3,µ = respectively. The initial disks 

were selected to be , with the centers:  (0) (0){ ;0.6i iZ z= }
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(0)
1 1.2 0.2z i= − + ,       ,      , (0)

2 0.1 2.3z i= − + (0)
3 1.2 0.8z i= +

(0)
4 0.8 1.2z i= − ,          . (0)

5 0.2 2.8z i= −
 

The maximal radii of the inclusion disks produced in the first three iterative steps are 
given in Table 2.  
 
Table 2: The radii of inclusion disks in the first three iterations 

total-step methods 
 1k =  2k =  3k =  
( )L  
( )E
( )O  
( )H   

1.33( 2)−  
3.18( 2)−  
9.86( 3)−  
2.92( 2)−  

        1.57(-  10)
1.33(-9)  

  5.91(-11) 
9.21( 9)−  

        3.53(-46)
        2.96(-43)
        6.44(-46 )
        1.01( 36)−  

single-step methods 
 1k =  2k =  3k =  
( )L  
( )E
( )O  
( )H  

          1.0  4( 2)−
          1.3  8( 2)−
          6.45  ( 3)−
          1.5     5( 2)−

      2.27( 12)−  
      4.66( 11)−  
      2.64( 12)−  
      2.51( 10)−  

      3.58( 52)−  
      6.08( 47)−  
      2.08( 51)−  
       1.15( 42)−  

 
From Table 2 and a number of numerical experiments we can conclude that two 

iterative steps of the presented Laguerre-like method (4.4) are usually sufficient in 
solving most practical problems when initial approximations are reasonably good and 
polynomials are well-conditioned. The third iteration demonstrates spectacularly fast 
convergence producing extremely tight circular approximations, rarely required in 
practice at present. 

Furthermore, from Tables 1 and 2 we note that theoretical results related to the 
convergence order of the considered methods, mainly well match the convergence 
behavior of these methods in practice. A more detailed comparative analysis for interval 
methods may be found in [20]. Besides, a number of numerical examples (including the 
presented examples) show that the proposed Laguerre-like methods belong to the most 
powerful iterative methods with the convergence order equal to four. 
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