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Abstract: The entropy model has attached a good deal of attention in transportation 
analysis, urban and regional planning as well as in other areas. This paper shows the 
equivalance of entropy maximization models to geometric programs. To provide a better 
understanding of this entropy based transportation model they are analyzed by geometric 
programming. Dual mathematical programs and algorithms are also obtained and are 
supported by an illustrative example. 

Keywords: Entropy, primal and dual geometric programming, unconstrained optimization, 
Lagrange multiplier, sequential minimization. 

1. INTRODUCTION 

Entropy models are emerging as valuable tools in the study of various social and 
engineering problems of spatial interaction. In the study of transportation problems or 
more precisely spatial interaction problems the researcher is often confronted with 
phenomena, which are a pairing of two locations. These pairing may be, for example, 
home and business location for a worker, home and school location for a student, home 
and shopping center locations for a housewife, warehouse and retail shops for a 

                                                 
1 Formerly it was Bengal Engineering College (D.U.) 
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company, origin and destination of a central business district of a transport system etc. In 
general while we may have some idea about the number of people who live, work, go to 
school or shop in various locations it is very difficult to acquire information on the 
pairing of locations caused by the various social transactions. Since there are many such 
pairing compatible with the generally available data it makes sense to choose the most 
probable set of pairings. This is the ‘Principle of Insufficient Reason’ of Laplace and the 
resulting problem is the maximization of entropy with respect to the available 
information or data. 

Wilson, Webber [17], [18] pioneered in the use of entropy models in the study 
of spatial interaction. Entropy models are commonly used to find the most probable 
numbers of pairings xij between locations i and j given the numbers Oi of origins in 
location i and Dj , of destination in location j, for all locations. In equation form: 

∑ =
j

iij OX , ∀ i, (1) 

j
i

ij DX =∑ ,  ∀j (2) 

The corresponding entropy, which we want to maximize is: 

∏
ji

ijX
X

,
!

!  (3) 

where X=∑∑
j i

ijX =∑
i

iO =∑
j

jD . 

 

In addition to the Oi and Dj we know the cost of a transaction i to j, cij. We also 
add this information to the model in the form of the cost equation: 

∑∑
j i

ijij Xc =C∗ (4) 

where C∗ is a fitting parameter to be chosen according to the needs by the model maker. 
For our purpose, we replace equation (4) with a Lagrange multiplier γ to the logarithm of 
the objective function (3) so that the fitting parameter C∗can then be dropped and γ can 

perform its function. Let us introduce a new parameter τij= ijce  γ− . Combining these 
conditions the Xij we seek are the solution of the following problem 
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iij OX   ∀ i, (5) 

j
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ij DX =∑    ∀j, (6)  

0≥ijX   ∀i,j. 
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Dacey and Norcliffe [5] consider a variation of Problem-I. There flexible 
entropy model relaxes the equations (5) and (6) to inequalities: 

∑ ≤
j

iij OX   ∀ i,  (7)  

j
i

ij DX ≤∑    ∀j, (8)  

It is no longer required that ∑
j

jD = X or ∑
i

iO = X so that for the entropy 

function the following constraints must be added 

∑∑
j i

ijX = X (9) 

Replacing (5), (6), (7), (8) and adding (9) the flexible entropy model is: 
 

Problem-II: 

Maximize  ∏ ⎟⎟
⎠
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ijX
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!
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subject to     ∑ ≤
j

iij OX   ∀ i, (10) 

j
i

ij DX ≤∑    ∀j,  (11)  

∑∑
j i

ijX = X 

0≥ijX   ∀i,j. 

In fact, instead of replacing both the equalities (5) and (6) by inequalities a more 
appropriate model might be to replace only one set of equalities by inequalities since the 
model is symmetric with respect to these sets of equations. Let us replace the first set (5) 
by inequalities. This will give us the following problem: 
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j
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0≥ijX   ∀i,j.  
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Now when the quantities Oi, Dj, τij are known to us, Problem-III seems to be the 
best model to handle. To forecast the effects of initial interaction there is no reason to 
assume that homes Oi or jobs Dj will be fully occupied. This should be left to the model 
to determine. The model to be here is Problem-II. Again to study the effect of a factory 
starting up or a new housing development on a community Problem-III is suitable for 
application. 

We will use the theory of geometric programming to analyse these three entropy 
problems. Duffin, Peterson and Zener [4], Braighter and Philips [2] developed geometric 
programming to solve a class of problems called Posynomial problems. In the following 
section we shall represent a brief description of the theory of geometric programming.    

2. DISCUSSION OF GEOMETRIC PROGRAMMING 

In this section we present an analysis of posynomial programs using the theory 
of geometric programming. A usual posynomial program has the mathematical form: 

 
Problem-IV: 

Minimize )(0 pψ    
subject to  1)( ≤pqψ , for q = 1,2,.........,t 

)...,,.........,( 21 mpppp = >0 

∑ ∏
∈ =

=
][ 1
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m
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ijl
jiq pcpψ  

where the coefficients ci >0 but the exponent ijl are arbitrary real numbers. The index set 
[q], q = 1,2,.........,t are arbitrary partition of the integers i to n. i.e. the total number of 
terms in the objective function and constraints. The positivity being required by the 
coefficients ci in the functions of posynomial form means that the name posynomial is an 
abbreviation of positive polynomial. 
 
The dual of Problem-IV is: 

 

Problem-V: 
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For feasible points of Problem-IV and Problem-V   p and ε ,  ≤)(εΦ )(0 pψ . 
At the optimality the solution to Problem-IV and Problem-V are related by the 

following equations: 

⎪
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 (14) 

 
 

3. ANALYSIS OF THE ENTROPY MODELS 

To apply geometric programming to the entropy models it is first necessary to 
apply the Stirling approximation NN eN!N −≈  to the objective functions and to 
introduce certain variable transformation to convert Problems I, II and III into the form of 
Problem-V. When this is done correctly Problem-I becomes: 
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Problem-II takes the form: 
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Problem-III takes the form: 
 

Problem-VIII: 
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Now we are in a position to determine the geometric programming dual to the 
entropy models. In fact the dual of Problem-VI is: 

 

Problem-IX:  
Minimize ∏∏ −−

j

jD
j

i

iO
i uv  

subject to ∑∑ ≤
i j

jiij uv 1τ  (15) 

i      0 ∀>iv  
j      0 ∀>ju  

 
The dual of Problem-VII is: 

 

Problem-X:                                                                       
Minimize X

j

jD
j

i

iO
i wuv −−− ∏∏  

subject to 1ij i j
i j

v u wτ ≤∑∑  (16) 

1 0      iv i≥ > ∀  
1 0      ju j≥ > ∀  
 

The dual of Problem-VIII is: 
 

Problem-XI:                                                                       
Minimize ∏∏ −−

j

jD
j

i
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i uv  

subject to ∑∑ ≤
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jiij uv 1τ  (17) 

1 0      iv i≥ > ∀  
0      ju j> ∀  
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Now we observe that /ij ij
i j

τ τ∑∑  is the a priori probability of a trip going from i 

to j. The dual problems IX, X and XI seek maximum likelihood estimators of the a posteriori 
probabilities of a trip going from i to j with the additional information of the Oi and Dj. 
Therefore to solve the original entropy problems I, II and III we look at the optimality 
condition (14) between problems VI, VII, VIII and IX, X, XI. We can easily see that the 
problems VI and IX and problems VIII, XI are related at the optimality by the relation 

X

X ij = jiij uvτ   ∀i,j (18) 

whereas Problems VII, X is joined by 

X

X ij = jiij uvτ w  ∀i,j  (19) 

We can use (18) in (5) and (6) which gives us the following relationship in the 
uj‘s and vi ‘s  

X
Oi = jij

j
i uv τ∑   ∀i (20) 

X
D j = iij

i
j vu τ∑   ∀j (21) 

Also using (18) in (12) and (13) gives us the following relationships 

X
Oi = jij

j
i uv τ∑   or  1=iv  ∀i (22) 

X
D j = iij

i
j vu τ∑   ∀j (23) 

For the problems VIII and X we combine (19) with (10) and (11) to generate the 
following relationships 

X
Oi = jij

j
i uwv τ∑   or 1=iv ∀i (24) 

X
D j = iij

i
j vwu τ∑  or 1=ju  ∀j (25) 

w =
1−

∑∑ ⎥
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⎢
⎣

⎡

i j
jiij uvτ  (26)  

If the inequalities (12) are equalities at the optimum for the problem-III, the 
relationships reduce to those for the problem-VI and problem-IX. At the other extreme if 
all inequalities hold strictly at the optimum, then   

1=iv  ∀i    and    
X

D j = ij
i

ju τ∑  ∀j. 

Therefore 

∑
=

i
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j
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D
u

τ
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Using (27) in (18) the solution is    

∑
=

i
ij

jij
ij

D
X

τ

τ
    ∀ i,j    

Exactly in the similar manner with the pair of Problem-VII and Problem-X if the 
inequalities (10), (11) in Problem-II hold with equality the relationships (24)-(26) reduce 
to (20),(21) the conditions for problem-I. If all inequalities are strict then we have 
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1=ju         ∀j               
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So that the solution is 

∑
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ij

ij
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X
X

,
τ

τ
                              

To determine the solutions for the entropy models in general we must 
concentrated to algorithm which is easier to work with the uj‘s and vi ‘s rather than the 
Xij’s and to use equations (18),(19) to determine Xij’s from the knowledge of uj‘s and vi ‘s. 
The primal problem has only one constraint and through duality its Lagrange multiplier is 
found. Thus the primal problem is equivalent to an unconstrained optimization problem. 

 

Algorithm I: To solve Problem-I we may use the following algorithm 

Step-1: Set n = 0 and =n
ju

X
D j  

Step-2: Set n to n+1 and =n
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⎟
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Step-4: Test of feasibility- n
ii

n
jij

j

n
i eOuxv +=∑ τ  ∀i  

where n
ie is the error in the ith constraint. If n

ie  is less then a predetermined tolerance 
for all i, then go to step-5 otherwise go to step-6. 
 

Step-5: Test of optimality: n
i

n
i

i

n ved log∑=  

where d is the difference between the logarithms of the objective functions for Problem-IX 
and Problem-VI. If nd  is less than a predetermined tolerance, stop. Otherwise go to step-6. 

Step-6: Set n to n+1 and  =n
ju

1

1

j

n
j

n
j

u
u

−

−∑
  and repeat step-2. 
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Algorithm II: For Problem-X we developed the following algorithm 

Step-1: Set n = 0 and =n
iv 1 ∀i,   =nw 1  

Step-2: Set n to n+1 and =n
ju
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Step-4: =nw
∑∑
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jiij uvτ
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Step-5: Cheek the feasibility-   
n
ii

n
jij

j

nn
i eOuwXv +≤∑ τ   ∀i      

n
jj

n
iij

i

nn
j fDvwXu +≤∑ τ    ∀j      

where 0  &   0 ≥≥ n
j

n
i fe are the error in the ith and jth inequality respectively. If 

n
j

n
i fe   , are less than a predetermined tolerance then go to step-5 otherwise go to step-6. 

 

Step-6: Cheek the optimality:          

n
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i
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where nd  is the difference between the logarithm of the objective functions of Problem-
X and Problem-VIII. If n

j
n
i fe   ,  and nd  are less than a predetermined tolerance, stop. 

Otherwise go to step-2. 
The algorithm for the solution of other entropy problem discussed in this paper 

is similar. Now we are in a position to prove the convergence for the algorithm to solve 
the entropy problem. Let us prove the convergence to solve the entropy problem. Let us 
prove the convergence to solve the Problem-X. The proofs of the convergence for the 
other are similar. 

The Lagrangian of the logarithm of Problem-X is 

L(u, v, w ; λ) = -
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−+−− ∑∑∑∑
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jiij

j
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i
ii wuvwXuDvO 1log loglog τλ  

The partial derivative of the Lagrangian is 

∑+−=
∂
∂

j
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i

i
u

v
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v
L τλ  
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∑+−=
∂
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w
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w
L ∑∑+−=

∂
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The optimality conditions resulting from the duality theory of geometric 
programming show that λ = X, sequential minimization of the Lagrangian over u then v 
then w produces a convergent algorithm. The minimization over u keeping v, w fixed gives 

=ju
⎪
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⎪
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∑
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  (28) 

The minimum over v for fixed u, w is attained at v for 

=iv
⎪
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⎪
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⎜⎜
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∑
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 (29) 

Also the minimum over w for fixed u, v is attained at  

=w
∑∑

i j
jiij uvτ

1  (30) 

(28), (29) and (30) are 2, 3, 4 of the algorithm. We use conditions developed by geometric 
programming to determine when we are close to optimality. These are Step 5 and 6. 

 
 

4. NUMERICAL RESULTS 

To illustrate the preceding any models (take model-I) consider the example 
 

Maximize X
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ijX

ij

ij X
X
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0
∏ ⎟
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⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ τ
ε

ε

     

subject to ∑ =
≠1

1 3
i

iX , ∑ =
≠2

2 3
i

iX , ∑ =
≠3

3 2
i

iX , ∑ =
≠4

4 2
i

iX   

∑ =
≠1

1 2
j

jX , ∑ =
≠2

2 2
j

jX , ∑ =
≠3

3 3
j

jX , ∑ =
≠4

4 3
j

jX  

10 =ε , 0≥ijX        for  i, j =  1,2,3,4        

where  221 =τ , 431 =τ ,  341 =τ , 
712 =τ , 332 =τ ,  442 =τ ,  
613 =τ ,  323 =τ ,  843 =τ ,   
414 =τ ,  224 =τ ,  534 =τ . 
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Use Algorithm I to solve the above numerical problem is as follows: 
  

First iteration result: 
 

3.00
1 =u , 04878.01

1 =v , 34078.01
1 =u ,  

3.00
2 =u , 12500.01

2 =v , 24405.01
2 =u , 

2.00
3 =u , 09677.01

3 =v , 12899.01
3 =u ,  

2.00
4 =u , 08108.01

4 =v , 18432.01
4 =u ,  

83335.012 =X , 85195.021 =X , 31909.131 =X , 82891.041 =X , 
35404.013 =X , 48372.023 =X , 70852.032 =X , 79152.042 =X , 
35965.014 =X , 46081.024 =X , 87256.034 =X , 83672.043 =X , 

45295.01
1 =e , 20353.01

2 =e , 09984.01
3 =e , 54285.01

4 =e , 38829.31 −=d  
 

Similarly second iteration, we get  
 

37942.02
1 =u , 05579.03

1 =v , 34327.03
1 =u , 

27173.02
2 =u , 12499.03

2 =v , 19722.03
2 =u , 

143624.02
3 =u , 08931.03

3 =v , 14074.03
3 =u , 

20522.02
4 =u , 08891.03

4 =v , 21746.03
4 =u , 

06122.112 =X , 94845.021 =X , 35548.131 =X , 01204.141 =X , 
48078.013 =X , 53853.023 =X , 72806.032 =X , 96638.042 =X , 
45799.014 =X , 51301.024 =X , 91645.034 =X , 02157.143 =X  

00000089.02
1 −=e , 0000007.02

2 −=e , 00000013.02
3 −=e , 00000011.02

4 −=e .  
 
and third iteration 

 
37942.04

1 =u , 05579.05
1 =v , 34327.05

1 =u , 

27173.04
2 =u , 12499.05

2 =v , 29582.05
2 =u , 

14362.04
3 =u , 08931.05

3 =v , 14674.05
3 =u , 

20522.04
4 =u , 08891.05

4 =v , 21746.05
4 =u , 

15531.112 =X , 85868.021 =X , 22631.131 =X , 91560.041 =X , 
47115.013 =X , 52774.023 =X , 79262.032 =X , 05207.142 =X , 
48530.014 =X , 54359.024 =X , 97109.034 =X , 00110.143 =X  

3
1 0.11177e = − , 3

2 0.07508e = ,  3
3 0.009968e = ,  3

4 0.03122e =  . 
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5. CONCLUSION 

In this paper we have analyzed variety entropy models by geometric 
programming. In all cases the effect of the constraints on the solution Xij was 
multiplicative in terms of the dual variables vi and uj. The parameter ijτ  which capture the 
a priori probability of an interaction between i and j is the other important key factor. If 
there are m×n variable ijτ  in the entropy problem there are m+n variables in the 
geometric dual problems. Therefore duality provides us with a substantial saving in the 
number of variables and hence much simpler problem to solve. Finally the algorithm is 
developed using pair of primal and dual problems and are relatively simple to program. 
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