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Abstract: Inventory of differential units of a deteriorating item purchased in a lot and 
sold separately from two shops under a single management is considered. Here 
deterioration increases with time and demands are time- and price-dependent for fresh 
and deteriorated units respectively. For the fresh units, shortages are allowed and later 
partially-backlogged. For the deteriorated units, there are two scenarios depending upon 
whether initial rate of replenishment of deteriorated units is less or more than the demand 
of these items. Under each scenario, five sub-scenarios are depicted depending upon the 
time periods of the two-shops. For each sub scenarios, profit maximization problem has 
been formulated and solved for optimum order quantity and corresponding time period 
using genetic Algorithm (GA) with Roulette wheel selection, arithmetic crossover and 
uniform mutation and Generalized Reduced Gradient method (GRG). All sub-scenarios 
are illustrated numerically and results from two methods are compared.  

Keywords: Deteriorating item, two shops problem, time dependent demand, single period 
inventory model, genetic algorithm.  

1.  INTRODUCTION  

Since the development of EOQ model by Harris (1915), the researchers have 
formulated and solved the different types of inventory models. Detailed reviews on the 
development in this area can be obtained in Hadley and Whitin (1963), Naddor (1966), 
etc. In reality, there are many situations where the demand rate depends on time. The 
demand of some items especially seasonable products like garments, shoes, mangoes, 
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tomatoes etc., is low at the beginning of the season but increases as the season progresses 
i.e., changes with time. Donaldson (1991), Wee and Wang (1999), Chang and Dye 
(1999), Bhunia and Maiti (1998) and others developed their inventory models with time 
varying demand. 

One of the most important assumptions in classical inventory models is that the 
lifetime of an item is infinite while it is in storage. But, in inventory management, the 
decay of the items plays an important role. In reality, some of the items are either 
damaged or decayed or vaporized or affected by some other factors, i.e., they do not 
remain in a perfect condition to satisfy the demand. The rate of deterioration of an item 
may be constant, time dependent or stock dependent. Some items, which are made of 
glass, china clay or ceramic, are often broken during their storage period and in this case, 
the deterioration rate depends upon the size of the total inventory. The decaying items 
such as photographic film, electronic goods, fruits and vegetables etc. gradually lose their 
utility with time. In the existing models, it is generally assumed that the deteriorated units 
are complete loss to the inventory management. But, in reality, it is not always true. 
There are some perishable items (e.g., fruits, vegetables, food grains, etc), which have a 
demand to some particular customers even after being partially deteriorated. This 
phenomenon is very common in the developing countries where majority of people live 
under poverty line. In business, the partially affected items are being immediately and 
continuously separated from the lot to save the fresh ones, otherwise the good ones will 
be affected by getting in contact with the spoiled ones. These damaged units are sold 
from the adjacent secondary shop. Here, the fresh/good units may be sold with a profit 
while the deteriorated ones are usually sold at a lower price, even incurring a loss, in such 
a way that the management makes a profit out of the total sales from the two shops. 

For the solution of decision-making problems, there are some inherent 
difficulties in the traditional direct and gradient-based optimization techniques used for 
this purpose. Normally, these methods (i) are initial solution dependent, (ii) get stuck to a 
sub optimal solution, (iii) are not efficient in handling problems having discrete variables, 
(iv) can not be efficiently used on parallel machines and (v) are not universal, rather 
problem dependent. To overcome these difficulties, recently genetic algorithms (GAs) 
are used as optimization techniques for decision making problems. GAs[Goldberg(1989), 
Davis(Ed)(1991), Michalewicz(1992)] are adaptive computational procedures modeled 
on the mechanics of natural genetic systems. They exploit the historical information to 
speculate on new offspring with expected improved performance [Goldberg(1989), Pal et 
al(1997)].These are executed iteratively on a set of coded solutions (called population) 
with three operators: selection/reproduction, crossover and mutation. An iteration of 
these three operators is known as a generation in the parlance of GAs. Since a GA works 
simultaneously on a set of coded solutions, it has very little chance to get stuck at local 
optima. Here, the resolution of the possible search space is increased by operating on 
potential solutions and not on the solutions themselves. Further, this search space needs 
not to be continuous. Recently, GAs have been applied in different areas like neural 
network [Pal et al (1997)], travelling salesman [Forrest (1993)], scheduling [Davis (Ed) 
(1991)], numerical optimization [Michalewicz (1992)], pattern recognition [Gelsema 
(1995)], etc.  

In this paper, an inventory model for a deteriorating item, especially fruits, 
vegetables, etc., comprising both good and damaged products and purchased in a lot is 
formulated under the assumption that the demand of the good units is time dependent 
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whereas the deteriorated ones  having only selling price dependent demand. Demand of 
the good unit linearly increases with time till the shortages occur and after that, gradually 
decreases during the shortage period. It is also assumed that at the beginning, a lot of the 
item including fresh and damaged units are received at the primary shop and the damaged 
ones are spotted, separated and transferred to other place known as secondary shop. Only 
good products are sold from the primary shop. Also during the sale at the primary shop, 
as the time progresses, some fresh units are damaged and these spoiled ones are spotted 
and transferred to the secondary shop continuously. These damaged units are sold at the 
reduced price. Shortages are allowed and fully backlogged at the primary shop but not in 
the secondary shop. In the primary shop, shortages are met by the fresh units specially 
purchased at higher price at the end of the cycle.  There may be two cases for the present 
model depending upon the rate of initial replenishment of deteriorated units to the 
secondary shop being greater than or less than its demand rate. Again under each case, 
there may be five scenarios in the secondary shop depending upon the time periods of the 
two shops. The time period of the secondary shop may be equal, less than and greater 
than the time period of the primary shop. When it is less, it may occur before, after or 
exactly at the time of occurrence of the shortages at the primary shop. The time period of 
the secondary shop may be equal, less than or greater than that of the primary shop. 
Depending upon all these criteria, five different scenarios are observed for each case. For 
each scenario, inventory model has been formulated taking both primary and secondary 
shops into account. To achieve the maximum profit out of the total proceeds from two 
shops, the problem has been solved for optimum order quantities and the corresponding 
time periods using Genetic Algorithm and a gradient based optimization method (GRG). 
All the sub-scenarios of the model have been numerically illustrated and results are 
compared. 

2. NOTATIONS AND ASSUMPTIONS  

To develop the inventory model of a deteriorating item for both primary and 
secondary shops under a single management, the following notations and assumptions are 
used: 

 

For the primary shop:  
(i) Lead time is considered to be negligible. 
(ii) Replenishment rate is infinite. 
(iii) c is the purchasing cost per item .  
(iv) Shortages are allowed at the primary shop but backlogged by the specially purchased 
goods at a higher price, c′  per unit item at the end of the cycle, where ( 1)c m c m′ ′ ′= > .   
(v) 1t  is the time of shortage point. 
(vi) The demand rate, D(t) for good units is linear function of time t i.e.,   

 1 0

1 1

, during no shortage period
( )

( ) ( ), during shortage period
d t

D t
D t t t
d

δ
+⎧= ⎨ − −⎩

 

where 0 1, , .0d d δ >  
(vii) The rate of deterioration, ( )tθ is linearly dependent on time, t i.e., ( ) , 0.t at aθ = >  
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(viii) The inventory holding and shortage costs per unit per unit time are 1pC  and 2 pC  
respectively and the replenishment cost is 3 pC  per period. 
(ix) 2t  is the time period of the primary shop. 
(x) 1p  is the selling price per unit item of the primary shop. 
 
For the Secondary shop: 
(i) Lead time is considered to be negligible. 
(ii) Shortages are not allowed. 
(iii) The demand rate, λ  of deteriorating units is dependent on the selling price, 

2 1 1, 0 1p r c r= < < , where 2p  is the selling price of the deteriorating units and 

2 and, 0 0.pλ α β α β= − > >   
(iv) 1 2,s sC C are the holding cost per unit item per unit time and the set up cost per 
replenishment period respectively. 
(v) The rate of deterioration θ ′ is assumed to be constant. 
(vi) 3t  is the time period of the secondary shop. 
 

3. MODEL FORMULATION 

It is assumed that initially after the arrival of a lot of S units, deteriorated units 
that are a certain fraction (say μ ) of the initial lot size are separated and transferred to 
the secondary shop. Therefore, the on-hand inventory level in the primary shop is  
(1– μ )S at t=0 and up to 2t t= , it gradually declines mainly to meet up the demand of 
fresh units and partially due to deterioration of the units which are continuously 
transferred to secondary shop for sale. The stock level reaches zero at time 1t t=  and 
then shortages are allowed and continue up to the time 1t t=  when next lot arrives. At 

2t t= , the maximum shortage level let is 1S . These 1S  fresh units are specially purchased 
at a higher price at the end of the cycle. The geometrical representation of the model is 
given in Figure 1. 

At the secondary shop, the deteriorating units are sold and shortages are not 
allowed. In this shop, initially the amount of stock is Sμ . Depending upon the rate of 
deterioration, here two cases may arise. In the first case, rate of replenishment of 
deteriorating units is initially less than the demand per unit time and the inventory level 
gradually declines up to the time 1t t=  with the stock level 2S . During this period, 
demand is met up partly from the current deteriorating units received from the primary 
shop and partly from the stock. After 1t t= , demand is met up fully from the stock as the 
primary shop goes to shortages at 1t t=  and inventory level gradually declines to zero at 

3t t= . In this situation, three separate sub-scenarios may arise in the secondary shop 
depending upon the cases when the time period 3t  of the secondary shop is equal, less 
than, or greater than 2t . When 3 2t t> , the stock at 2t  in the secondary shop is 3S . When 
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3 2t t< , there may be another three different sub-scenarios depending upon 3 1t t< , 3 1t t>  
and 3 1t t= . The geometrical representations of the sub-scenarios are given in Figures 2-6.  

In the second case, replenishment rate is initially greater than the demand rate 
and gradually increases up to the time t t′=  when the stock attains a level 4S . As the 
amount of replenishment gradually declines, we assume that after time t t′= , the 
demand rate is greater than the rate of replenishment and demand is met up partly from 
currently deteriorated units received from the primary shop and partly from the stock. 
This process continues up to 1t t=  when stock attains a level 2S . After 1t t= , supply of 
the deteriorated items stops as shortages start by that time at the primary shop. The 
inventory level 2S  gradually declines to zero at time 3t t=  (say). As before, in this case 
also, there may be five sub-scenarios that are depicted in the Figures 7-11. 
 
3.1. Primary Shop: 

The differential equations governing the instantaneous state of inventory q(t) 
(Figure 1) at the primary shop are:     

1

1 1 1 2

{ ( ) ( ) ( )} if 0( )
{ ( ) ( )} if

t q t D t t tdq t
D t t t t t tdt
θ

δ
− + ≤ ≤⎧

= ⎨− − − ≤ ≤⎩
 (1) 

with boundary conditions:  

1

1 2

(1 ) if 0
( ) 0 if

if

S t
q t t t

S t t

μ− =⎧
⎪= =⎨
⎪− =⎩

 (2) 

 
 
 
 
 
 
 
 
 
 
  
 
 
 
The solution of the equation (1) is:  

                 (1-μ)S 

0 t1 

t2 

 S1 

Figure 1. 
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1 0 1
1

2 2
2 1 1 1 2

( ){ ( ) ( )} if 0
( )( )

( ) ( ) if
2

d d t F t F t t t
f tq t

d t t t t t t tδ

+ −⎧ ≤ ≤⎪⎪= ⎨
⎪ − − − ≤ ≤⎪⎩

 (3) 

where f(t), F(t) and 2d  are given by  

2

2
1 0( ) ( )

at
f t d d t e= +  (4) 

0

( ) ( )
t

F t f u du= ∫  

2 1 0 1( )d d d tδ= + +  (5) 

From the boundary conditions, we get: 

1( )
1
F tS

μ
=

−
 (6) 

2 2
1 2 2 1 2 1( ) ( )

2
S d t t t tδ= − − −  (7) 

Total number of deteriorating items during 2(0, )t is 
1

20
1 1 1

0

( ) ( ) (1 ) ( )
2

t

d
dS t q t dt S d t tθ μ= = − − +∫  (8) 

The holding cost over the period 2(0, )t is 
1

1
0

( )
t

hp pC C q t dt= ∫  (9) 

The shortage cost during the period 2(0, )t is 

2

1

2 ( )
t

sp p
t

C C q t dt= − ∫  

2 2 2 3 32
2 2 1 1 2 1 2 1 2 1{( )( ) ( ) ( )}

2 2 6p

d
C d t t t t t t t t

δ δ
= − − − − − + −  (10) 

Hence, the total profit of the inventory system for the period 2(0, )t is given by  

1 2 1 1 1 1 3 1( , ) (1 )p hp sp p dZ t t p S p S cS c S C C C p Sμ ′= − + − − − − − −  (11) 

 
3.2. Secondary Shop: 

Scenario-1: Initially, ( ) ( )t q tθ λ< . 
Sub-scenario 1a: 
In this case, the time period of the secondary shop is equal to the time period of the 
primary shop, i.e., 3 2t t= . The differential equations describing the inventory level I(t) 
(Fig. 2) are given by  
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1

1 2

( ) ( ) if 0 , ( ) ( )( ) ( )
if

t q t t t t q tdI t I t
t t tdt

θ λ θ λ
θ

λ
− ≤ ≤ <⎧′+ = ⎨− ≤ ≤⎩

 (12) 

with boundary conditions:  

2 1

2

if 0
( ) if

0 if

S t
I t S t t

t t

μ =⎧
⎪= =⎨
⎪ =⎩

 (13) 

 
 
  
 
 
 
 
 
 
 
 
 
 
The solution of the equation (12) is: 

2

1

( )
1 2

( ) ( 1) if 0
( )

{ 1} if

t t t

t t

aR t e e Se t t
I t

e t t t

θ θ θ

θ

λ μ
θ

λ
θ

′ ′ ′− − −

′ −

⎧ + − + ≤ ≤⎪⎪ ′= ⎨
⎪ − ≤ ≤
⎪ ′⎩

 (14) 

where R(t) is given by 
0

( ) ( )
t

uR t uq u e duθ ′= ∫  (15) 

From the boundary conditions (13), we get  

1 1 1
2 1( ) ( 1)t t tS aR t e e Seθ θ θλ μ

θ
′ ′ ′′− − −= + − +

′
 (16) 

Total number of deteriorating items during 2(0, )t  is  

2

11 12
0

( ) ( )
t

dS I t dt I Iθ θ′ ′ ′= = +∫  (17) 

where 
1

1 1
11 1 1

0

1( ) (1 ) { ( 1)} ( )
t

t tSI I t dt e t e aV tθ θμ λ
θ θ θ

′ ′− −= = − − + − +
′ ′ ′∫  (18) 

  μS 

0      t1     t2(=t3) 

   S2 

Figure 2: (sub-scenario-1a) 
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2

2 1

1

( )
12 2 1

1( ) { 1} ( )
t

t t

t

I I t dt e t tθλ
θ θ

′− −⎡ ⎤= = − − −⎢ ⎥′ ′⎣ ⎦∫  (19) 

Here V(t) is given by  
0

( ) ( )
t

uV t R u e duθ ′−= ∫  (20) 

The holding cost over the period 2(0, )t  is 
2

1 1 11 12
0

( ) ( )
t

hs s sC C I t dt C I I= = +∫  (21) 

The cycle length 2t   is given by 2
2 1

1 log(1 )St t θ
θ λ

′
= + +

′
 (22) 

Hence, the return from the secondary shop during the period 2(0, )t  is given by  

1 2 2 2 3( , ) ( )s d d hs sZ t t S S p S p C Cμ ′= + − − −  (23) 

where the expressions of S , dS  and '
dS  are substituted from (6), (8) and (17) 

respectively. 
 

Sub-scenario-1b: 
In this case, the time period of the secondary shop is less than the time period of the 
primary shop, i.e., 3 2t t< . Differential equations and expressions can be obtained by 
replacing 2t  by 3t  in sub-scenario-1a. The instantaneous state of inventory is shown in 
Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sub-scenario-1c: 
In this case, the time period of the secondary shop is greater than the time period of the 
primary shop, i.e., 3 2t t> . Here the differential equations describing the inventory level 
I(t) (Fig. 4) are given by equation (12) and the boundary conditions are the same as (13) 
except at 2t t= . At 2t t= , 3( )I t S= . The solutions of the differential equations are the 
same as equations (14) when 10 t t≤ ≤  and another solution for 1 2t t t≤ ≤  is as follows 

 μS 

    t2 

   S2 

t1     t3 

Figure 3. (sub-scenario-1b) 
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2 2( ) ( )
3( ) { 1}t t t tI t e S eθ θλ

θ
′ ′− −= − +

′
 (24) 

 
 
 
 
 
 
 
 
 
 
 
 

Here 2S  can be obtained by equation (16). Total number of deteriorating items during 

2(0, )t  is 11 12( )dS I Iθ′ ′= +  where 11I  is obtained by equation (18) and 12I  is as follows 

2 1 2 1( ) ( )3
12 2 1

1 { 1} ( ) { 1}t t t tSI e t t eθ θλ
θ θ θ

′ ′− − −⎡ ⎤= − − − + −⎢ ⎥′ ′ ′⎣ ⎦
 (25) 

The holding cost over the period 2(0, )t  is 1 11 12( )hs sC C I I= + . The cycle length 2t  is 
given by 

2
2 1

3

1 log(1 )St t
S

λ θ
θ λ θ

′+= + +
′ ′+

 (26) 

Hence, the return from the secondary shop during the period 2(0, )t  is given by 

1 2 3 2 2 3 2 3( , ) ( )s d d hs sZ t t S S S p S p C C p Sμ ′ ′= + − − − − +  (27) 

where 2 1 2 1, 0 1p m p m′ = < < . 
 

Sub-scenario-1d: 
In this case, the time period of the secondary shop is equal to the time of shortage point 
of the primary shop, i.e., 3 1t t= . The differential equations describing the inventory level 
I(t) (Fig. 5) are given by  

( ) ( ) ( ) ) )dI t I t t q t
dt

θ θ λ′+ = −  if 10 t t≤ ≤  (28) 

with boundary conditions: 

1

0
( )

0
S at t

I t
at t t

μ =⎧
= ⎨ =⎩

  (29) 

  μS 

  S2

0      t1     t2 (<t3) 

 S3

Figure 4: (sub-scenario-1c) 



 S.K. Mondal, J.K. Dey, M. Maiti / A Single Period Inventory Model 

 

84

 
 
 
 
 
 
 
 
 
 
 
 
 
The solution of the equation (28) is the same as the first equation of (14).  
From the boundary conditions, we get  

1 1 1
1( ) ( 1) 0t t taR t e e Seθ θ θλ μ

θ
′ ′ ′′− − −+ − + =

′
 (30) 

Total number of deteriorating items during 1(0, )t  is 11dS Iθ′ ′=  where 11I  is same as (18) 
and the holding cost over the period 1(0, )t  is 1 11hs sC C I= . Hence, the return from the 
secondary shop during the period  1(0, )t  is given by equation (23). 

 
Sub-scenario-1e: 
In this case, the time period of the secondary shop is less than the time of shortage point 
of the primary shop, i.e., 3 1t t< . The differential equation describing the inventory level 
I(t) (Fig. 6) and boundary conditions are the same as equations (28) and (29) respectively 
only replacing 1t  by 3t . The solution of the differential equation, the boundary equation, 
number of deteriorating items and holding cost are the same as the sub-scenario-1d only 
replacing 1t  by 3t . Hence, the return from the secondary shop during the period 3(0, )t  is 
given by (23). 
 
 
 
 
 
 
 
 
 
 
 

0     t1 (=t3)     t2 
Figure 5: (sub-scenario-1d) 

  μS 

  μS 

    t2 t3 t1 

Figure 6: (sub-scenario-1e) 

0
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Scenario-2: Initially, ( ) ( )t q tθ λ>  
 
Sub-scenario-2a:  
In this case, the time period of the secondary shop is equal to the time period of the 
primary shop, i.e., 3 2t t= . The differential equations describing the inventory level I(t) 
(Fig.-7) are given by  

1

1 2

( ) ( ) 0 , ( ) ( )
( )

( ) ( ) ( ) , ( ) ( )

t q t if t t t q t
dI t

I t t q t if t t t t q t
dt

if t t t

θ λ θ λ
θ θ λ θ λ

λ

′− ≤ ≤ >
′ ′+ = − ≤ ≤ <

− ≤ ≤

⎧
⎪
⎨
⎪
⎩

 (31) 

with boundary conditions :  

4

2 1

2

0

( )

0

S if t
S if t t

I t
S if t t

if t t

μ =⎧
⎪ ′=⎪= ⎨ =⎪
⎪ =⎩

 (32) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The solutions of the equations (31) are  

2

'

( ) ( )
4 1

( )
1 2

( ) ( 1) 0

( ) { ( ) ( )} { 1}

{ 1}

t t t

t t t t t

t t

aR t e e Se if t t

I t a R t R t e e S e if t t t

e if t t t

θ θ θ

θ θ θ

θ

λ μ
θ

λ
θ

λ
θ

′ ′ ′− − −

′ ′ ′ ′ ′− − −

′ −

⎧ + − + ≤ ≤⎪ ′
⎪
⎪ ′ ′= − + − + ≤ ≤⎨
⎪
⎪ − ≤ ≤⎪ ′⎩

 (33) 

From the boundary conditions, we get 

           μS       S3 
      S2 

t1 t2 (=t3) t/0 

θ(t)q(t)>λ 

θ(t)q(t)<λ 

Figure 7: (sub-scenario-2a)
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1 1 1( ) ( )
2 1 3{ ( ) ( )} { 1}t t t t tS a R t R t e e S eθ θ θλ

θ
′ ′ ′ ′ ′− − −′= − + − +

′
 (34) 

4 ( ) ( 1)t t tS aR t e e Seθ θ θλ μ
θ

′ ′ ′ ′ ′′ ′− − −′= + − +
′

 (35) 

1 0 1( ){ ( ) ( )}/ ( )at d d t F t F t f tλ ′ ′ ′ ′= + −  (36) 

Total number of deteriorating items during 2(0, )t  is 
2 1 2

1

11 12 13
0 0

( ) ( ) ( ) ( ) ( )
t t tt

d
t t

S I t dt I t dt I t dt I t dt I I Iθ θ
′

′

′ ′ ′= = + + = + +∫ ∫ ∫ ∫  

where 11I  is obtained from equation (18) only replacing 1t  by t′  and 13I  have same 
expression as in (19) and 12I  can be obtained by 

1

1 1

12 1

( ) ( )4
1

{ ( ) ( )} ( )( )

1
[ {1 } ( )] {1 }

t t

t t t t

a
I a V t V t R t e e

S
e t t e

θ θ

θ θ

θ
λ
θ θ θ

′ ′ ′− −

′ ′ ′ ′− −

′ ′= − + −
′

′+ − − − + −
′ ′ ′

 (37) 

The holding cost over the period 2(0, )t  is 1 11 12 13( )hs sC C I I I= + +  and the cycle length 

2t  is given by (22). Hence, the return from the secondary shop during the period 2(0, )t is 
given by (23). 

 
Sub-scenario-2b: 
In this case, the time period of the secondary shop is less than the time period of the 
primary shop, i.e., 3 2t t< . Differential equations and expressions can be obtained from 
Sub-scenario-2a only replacing 2t  by 3t . The instantaneous state of inventory is shown 
in Figure 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

           μS 

t/ t1 t3 t2 

      S4       S2 

θ(t)q(t)>λ 

θ(t)q(t)<λ 

Figure 8: (sub-scenario-2b) 
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Sub-scenario-2c: 
In this case, the time period of the secondary shop is greater than the time period of the 
primary shop, i.e., 3 2t t> . Here the differential equations describing the inventory level 
I(t) (Fig.-9) are given by equations (31) and the boundary conditions are same as (32) 
except at 2t t= . At 2t t= , 3( )I t S= . The solutions of the differential equations are same 
as equations (33) when 0 t t′≤ ≤ , 10 t t≤ ≤  and other solution for 1 2t t t≤ ≤  is as follows 

2 2( ) ( )
3( ) { 1}t t t tI t e S eθ θλ

θ
′ ′− −= − +

′
 

All boundary conditions are same as equations (34), (35) and (36). The total number of 
deteriorating items during 2(0, )t  is 11 12 13( )dS I I Iθ′ ′= + +  where 11I  is obtained from 
equation (18) only replacing 1t  by t′  and 12I  have same expression as in (37) and 13I  is 
same as the expression of (25) only changing 4S  by 3S . The holding cost over the period 

2(0, )t  is 1 11 12 13( )hs sC C I I I= + + . The cycle length 2t  is obtained from equation (26). 
Hence, the return from the secondary shop during the period 2(0, )t  is given by the 
equation (27). 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
Sub-scenario-2d: 
In this case, the time period of the secondary shop is equal to the time of shortage point 
of the primary shop, i.e., 3 1t t= . The differential equations describing the inventory level 
I(t) (Fig.-10) are given by the first two equations of (31) with boundary equations 

4

1

0

( )

0

S if t
I t S if t t

if t t

μ =
′= =

=

⎧
⎪
⎨
⎪⎩

 (38) 

0 t/ t1 t2 (<t3) 

      S4            μS 

     S2 
S3 

θ(t)q(t)>λ 

θ(t)q(t)<λ 

Figure 9: (sub-scenario-2c)
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The solutions of these equations are same as the first two equations of (33). The 
boundary equations are same as (34)-(36). The number of deteriorating items and total 
holding cost are 11 12( )dS I Iθ′ ′= +  and 1 11 12( )hs sC C I I= +  where 11I  is same as (18) only 

replacing 1t  by 't  and 12I  is same as (37). The expression for return is same as (23).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sub-scenario-2e:  
In this case, the time period of the secondary shop is less than the time shortage point of 
the primary shop, i.e., 3 1t t< . Differential equations and expressions can be obtained 
from Sub-scenarion-2d only replacing 1t  by 3t . The instantaneous state of inventory is 
shown in Figure 11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Total Average Profit: 
Therefore, the total average profit (Z) of the system from two shops for Sub-scenarios 
(1a)-(2e) is given by 

           μS       S4 

t1 (=t3) t2 t/0 

θ(t)q(t)>λ 

θ(t)q(t)<λ 

Figure 10: (sub-scenario-2d) 

 

0 

           μS 

t/ t1 t3 t2 

      S4 

θ(t)q(t)>λ 

θ(t)q(t)<λ 

Figure 11: (sub-scenario-2e)
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2

p sZ Z
Z

t

+
=  (39) 

where pZ  and sZ  have different expressions for different Sub-scenarios, pZ  is a 

function of 1 2,t t  and sZ  is a function of  (i) 1 2,t t   (ii) 1 2 3, ,t t t  (iii) 1 2,t t  (iv)  1 2,t t  (v) 

1 2 3, ,t t t  (vi) '
1 2, ,t t t  (vii) '

1 2 3, , ,t t t t , (viii) '
1 2, ,t t t  (ix) '

1 2, ,t t t  and (x) '
1 2 3, , ,t t t t  for the 

sub-scenarios-1a-2e respectively. 
 
4a. Implementing GA 

Total average profit Z given by (39) is maximized through the implementation of GA in 
the following way.  
 
4a.1 Parameters: 

Firstly, we set the different parameters on which this GA depends. All these are the number 
of generation (MAXGEN), population size (POPSIZE), probability of crossover (PXOVER), 
probability of mutation (PMU). There is no clear indication as to how large should a 
population be. If the population is too large, there may be difficulty in storing the data, but 
if the population is too small, there may not be enough string for good crossovers. In our 
experiment, POPSIZE = 50, PXOVER = 0.2, PMU = 0.2, MAXGEN = 5000.  
 
4a.2 Chromosome representation: 

An important issue in applying a GA is to design an appropriate chromosome 
representation of solutions of the problem together with genetic operators. Traditional 
binary vectors used to represent the chromosome are not effective in many physical non-
linear problems. Since the proposed problem is non-linear, hence to overcome the 
difficulty, a real - number representation is used. In this representation, each chromosome 

iV  is a string of n number of genes ijG  (i=1,2,..,POPSIZE and j=1,2,..,n ) where these n 

number of genes respectively denote the number of decision variables among t′ , 1t , 2t  
and 3t , the value of n depends on the sub-scenarios(1a-2e)given in section 3.2. 
 
4a.3 Initial population production:  

To initialize the population, we first determine the dependent and independent variables 
and then their boundaries. Here, the dependency and independency of the variables are 
different for different sub-scenarios. Since all variables are related to time, here the 
boundaries of all independent variables are assumed to be (0,12.0). For each chromosome 

iV , every gene ijG , which represents the independent variable, is randomly generated 

between its boundary ( , )k kLB UB  where kLB  and kUB  are the lower and upper bounds 
of that variable and the gene ijG  which is the dependent variable, are generated from 
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different conditions for different sub-scenarios given in section 3.2, until it is feasible, 
i=1,2,..,POPSIZE.  
 
4a.4 Evaluation:  

Evaluation function plays the same role in GA as that which the environment plays in 
natural evolution. The evaluation function EVAL for each chromosome iV  is defined as  
 EVAL( iV )=objective function value for iV .    
 
4a.5 Selection: 

This selection process is based on spinning the roulette wheel POPSIZE times, each time 
we select a single chromosome for the new population in the following way: 
 

(a) Calculate the fitness value ( )iEVAL V  for each chromosome iV  (i=1,2,..,POPSIZE). 

(b) Find the total fitness of the population as 
1

( )
POPSIZE

i
i

f EVAL V
=

= ∑ .  

(c) Calculate the probability of selection b
ip  for each chromosome iV  as 

( ) /b
i ip EVAL V f= .  

(d) Calculate the cumulative probability iq for each chromosome iV  as 
1

i
b

i i
j

q p
=

=∑ . 

(e) Generate a random real number r in (0, 1). 
(f) If 1r q<  then the first chromosome is iV  otherwise select the i-th chromosome iV  
( 2 i POPSIZE≤ ≤ ) such that 1i iq r q− < ≤ . 
(g) Repeat steps (e) and (f) POPSIZE times and obtain POPSIZE copies of   
chromosomes. 
 
4a.6 Crossover operation: 

The exploration and exploitation of the solution space is made possible by exchanging 
genetic information of the current chromosomes. Crossover operates on two parent 
solutions at a time and generates offspring solutions by recombining both parent solution 
features. After selection of chromosomes for new population, the crossover operation is 
applied. Here, the whole arithmetic crossover operation is used. It is done in the 
following way: 
(a) Firstly, we generate a random real number r in (0, 1). 
(b) Secondly, we select two chromosomes kV  and lV  randomly among population for 
crossover if r PXOVER< . 
(c) Then two offspring '

kV  and '
lV  are produced as follows:  
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'

'

(1 )

(1 )
k k l

l k l

V c V c V

V c V c V

= ∗ + − ∗

= − ∗ + ∗
 

where [0,1]c ∈ . 
(d) Repeat the steps (a),(b) and (c) POPSIZE/2 times. 
 
4a.7 Mutation operation:  

Mutation operation is used to prevent the search process from converging to local optima 
rapidly. Unlike crossover, it is applied to a single chromosome iV . Here, the uniform 
mutation operation is used, which is defined as follows: 

mut
ijG =random number from the range (0, UPB)  

where UPB is upper boundary to the corresponding gene. 
 
4a.8 Termination:   

If number of iteration is less than or equal to MAXGEN then the process continues, 
otherwise it terminates.  
 

The basic structure of GA is described as follows: 
 

 

lg ()

0

( )

( )

( min )

1

( ) ( 1)

( ) ( )

Genetic A orithm

begin

t

initialize Population t

evaluate Population t

while not ter ation condition

begin

t t

select Population t from Population t

alter by crossover and mutation Population t

evaluate Po

←

← +

−

( )pulation t

end

write the optimum result

end
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 4b. Advantages of GA 

The advantages of GA [Goldberg (1989)] include the followings: 
 

(i)  Simple: The algorithm is easy to develop and validate. 
(ii) Efficient: The algorithm is parallel, using the resource of a whole population instead 
of a single individual. During the evolution, the different individuals can exchange 
information by crossover. External information is introduced by mutation. Hence the 
algorithm is efficient. Even if it begins with a very poor original population, it will 
progress rapidly towards satisfactory solutions. 
(iii) Global optimum: Use of population, crossover and mutation leads the results 
toward the global optimum instead of trapping into local peaks. 
(iv) Domain independent: The algorithm is a parametric method, suitable in a wide 
range of applications. It does not require pre-knowledge about data distribution, 
continuity or the existence of derivative. 
 
 

5. NUMERICAL ILLUSTRATION  

To illustrate the model, we consider: 

1 1 3

1 2 3 1 0 1

0.81, 0.5, 40, 0.16, 16, 0.22, 0.01, 5.0, 9.1,
0.85, 4.5, 100, 0.2, 75, 40, 0.8, 1.24, 0.8.

s s

p p p

r C C c p
C C C a d d m m

θ α β μ
δ

′= = = = = = = = =
′= = = = = = = = =

 

The optimal values of 1 2 3 1 2 3 4, , , , , , , andt t t t S S S S S′   along with the average maximum 
average profit have been calculated for different sub-scenarios by GA and GRG (using 
standard software package “Student LINGO/PC release 3.1 version”) and results are 
displayed in Table 1. 
 
 

6. DISCUSSION  

Table-1 gives the optimum values using genetic algorithm. From the table-1, it 
is observed that in the first case, when replenishment rate of deteriorated items is less 
than the demand rate, the scenario-1e gives more profit than the other four scenarios. The 
next preferable scenarios are 1d, 1b, 1a and 1c respectively. In the second case, when the 
replenishment rate is initially more and then gradually reduces to an amount less than the 
demand rate, the scenario-2e is better than the others. The next preferable scenarios are 
2d, 2b, 2a and 2c respectively. 
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Table 1: Result for the model 
Sub-
scenarios 

Methods 
1

t

t

′
 2

3

t

t
 

1

S
S

 2

3

S
S

 4S  ($)Z  

GA - 
1.84 

2.05 
2.05 

238.18 
32.39 

3.35 
- 

- 259.88 1a 

GRG - 
1.83 

2.02 
2.02 

236.29 
29.04 

3.01 
- 

- 259.80 

GA - 
1.75 

2.03 
1.77 

220.14 
40.89 

0.23 
- 

- 261.45 1b 

GRG - 
1.75 

2.04 
1.7 

220.70 
41.36 

0.32 
- 

- 261.39 

GA - 
1.91 

2.20 
- 

252.72 
44.25 

6.13 
1.53 

- 257.02 1c 

GRG - 
1.91 

2.19 
- 

253.15 
42.64 

6.21 
1.77 

- 256.93 

GA 
 

- 
1.74 

1.98 
1.74 

218.74 
34.50 

0.00 
- 

- 261.75 1d 

GRG - 
1.74 

1.98 
1.74 

218.74 
35.02 

0.00 
- 

- 261.75 

GA - 
1.90 

2.16 
1.74 

251.44 
38.73 

0.00 
- 

- 263.24 1e 

GRG - 
1.90 

2.16 
1.74 

251.44 
39.90 

0.00 
- 

- 263.24 

GA 1.54 
1.86 

2.15 
2.15 

243.63 
42.24 

4.36 
0.00 

7.31 259.21 2a 

GRG 1.45 
1.80 

1.93 
- 

230.44 
18.95 

1.97 
0.00 

4.93 258.48 

GA 1.45 
1.80 

2.09 
1.93 

230.44 
43.11 

1.97 
- 

4.93 260.68 2b 

GRG 1.54 
1.86 

2.15 
2.15 

243.63 
42.56 

4.36 
- 

7.31 259.19 

GA 1.54 
1.86 

2.02 
- 

243.63 
22.90 

4.36 
1.97 

7.31 256.72 2c 

GRG 1.58 
1.91 

2.27 
- 

252.71 
54.97 

6.12 
0.44 

9.10 256.06 

GA 1.36 
1.74 

1.98 
1.74 

218.74 
35.02 

0.0 
- 

3.00 261.75 2d 

GRG 1.37 
1.74 

1.99 
1.74 

218.74 
36.61 

0.00 
- 

2.99 261.73 

GA 1.31 
1.71 

1.95 
1.65 

213.02 
34.15 

0.00 
- 

2.13 262.27 2e 

GRG 1.29 
1.75 

1.97 
1.66 

220.71 
31.73 

1.60 
- 

3.29 262.26 
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7. CONCLUSION  

Here, for a retailer, after purchasing in a lot, the sale of both good and 
deteriorated items from two shops under a single management has been considered and 
solved via genetic algorithm. This phenomenon is very common in the developing 
countries like INDIA, BANGLADESH, and NEPAL etc. In these countries, there is a 
market for both fresh and deteriorated units. Hence, a realistic and common problem 
faced by the retailers has been investigated and optimum decisions are presented. These 
results are applicable for the products like fruits, vegetables etc. which are sold to the 
retailers in a lot. Present methodologies can be extended to other inventory models with 
All Unit Discount (AUD), Incremental Quantity Discount (IQD), fixed time horizon etc. 
These models can also be formulated and solved in probabilistic, fuzzy and fuzzy-
stochastic environments and solved via genetic algorithm. 
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