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Abstract: This paper is a response for the paper of Dohi, Kaio and Osaki, that was 
published in RAIRO: Operations Research, 26, 1-14 (1992) for an EPQ model with 
present value. The purpose of this paper is threefold. First, the convex and increasing 
properties for the first derivative of the objective function are proved. Second, we apply 
the Newton method to find the optimal cycle time. Third, we provide some numerical 
examples to demonstrate that the Newton method is more efficient than the bisection 
method. 
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1. INTRODUCTION 

The Newton method and the bisection method are the two most popular methods 
to find the zero of an equation. Wan and Chu [15] demonstrated that the Newton method 
is better than the bisection method for EOQ inventory models with present value. The 
purpose of this paper is extended discussion for EPQ inventory models. For the 
application of the bisection method, we need a lower bound and an upper bound for the 
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optimal solution. On the other hand, when utilizing Newton method, we only need one 
bound. Only an upper bound is required for minimization of monotonically increased 
convex function. For decreasing and convex function, we need a lower bound. Therefore, 
intuitively the Newton method should be more easily applied by researchers. However, 
the explanation of Newton method is more complicated than the bisection method. Hence, 
many researchers still preferred to use the bisection method. Chung and Tsai [7] studied 
Goswami and Chaudhuri [12] to reveal that Newton method may diverge with an 
improper starting point so that an approximated solution of the first derivative could not 
satisfy constraints. Hence, the analytical structure of the objective function should be 
examined case by case in order to validate the legitimacy of the Newton method. 
Moreover, how to decide an appropriate starting point must be checked to insure a fast 
convergent sequence to the optimal solution. Several papers, for examples, Dohi et al. 
[10], Cormier and Gunn [9], Chu et al. [1] Chung et al. [3], and others have applied 
Newton method in order to derive the optimal solution. Dohi et al. [10] did not explain 
how to select a starting point to execute the Newton method. Chung [2] also considered 
the EPQ inventory model of Dohi et al. [10]. He disapproved of using the Newton 
method first and then adopted a bisection algorithm to compute the optimal cycle time. 
Chung et al. [5] revised Chung [2] to prepare a simple bisection algorithm and obtain the 
optimal cycle time without unnecessary assumptions. Chung [2] and Chung et al. [5] 
considered that the iterative sequence spanned by Newton method may not converge to 
an optimal solution when the first derivative has two roots. There are six other papers, 
Dohi et al. [11], Chung et al. [6], Chung and Lin [4], Chung and Tsai [8], Huang and 
Chung [13], and Moon et al. [14] that have referred to Dohi et al. [10], but none of them 
provided further discussion of the Newton method for the optimal solution. In this paper, 
we will show that Newton method is applicable to this kind of EPQ inventory model of 
Dohi et al. [10], with any starting point. Under the consideration of the speed of modern 
computer, it is unnecessary to consider a good starting point to accelerate the 
convergence of the iterative procedure. We compare numerical examples in Dohi et al. 
[10], Chung [2] and Chung et al. [5], to illustrate that the Newton method is efficient to 
derive the optimal solution and under a small threshold, the Newton method outperforms 
both bisection methods suggested in Chung [2] and Chung et al. [5] in order to illustrate. 

2.  REVIEW OF PREVIOUS RESULTS 

To be compatible with Dohi et al. [10], we apply the same notation and 
assumptions for a deterministic production inventory model without shortage under the 
condition of present value. The notations used in this paper are listed below. D is the 
demand rate; H is the holding cost; K is the order cost; r is the interest rate; S is the 
production rate, with S > D; and ( )rTC t  is the present value of total cost. With the 
following assumptions, the EPQ model with infinite planning horizon is developed. A 
single item is considered and the replenishment lead time is assumed to be zero. There is 
no shortage. The beginning and ending inventory level are both zero. Since the interest 
rate, r is assumed stable over the time, so the replenishment cycle, say 0t , is constant 
over time. 0 d st t t= +  where dt  is the production period and st  is the consumption 
period.  
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Let us recall the Eq. (4) of Dohi et al. [10], the present value of total costs over the entire 
time horizon is expressed as 

( )
( )( )

( )
2 1 exp 1 exp

1 expr

H r D tK S D r t
Sr

TC t
r t

⎧ ⎫⎛ − ⎞⎛ ⎞+ − − − −⎨ ⎬⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎩ ⎭=
− −

.              (1) 

Hence, in Eqs (5) and (6) of Dohi et al. [10], they obtained that 

( ) ( )
( )( )

( )2
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rdTC t r t

t
d t r t

ξ
−

=
− −

                                   (2) 

where 

( ) ( )
exp exp 1 exp

r S D tHD rDt HS rD tt rK
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ξ
⎛ ⎞−⎛ ⎞ − ⎛ − ⎞⎛ ⎞ ⎛ ⎞= − − − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

. (3) 

In Theorem 1 of their paper, they derived that, with the condition S > D, ξ(t) is a strictly 
increasing and continuous function. According to ( )0 0rKξ = − <  and ( )ξ ∞ = ∞ , they 

obtained that there is a unique solution, say *t , for ( ) 0tξ = . 

3.  OUR ANALYTICAL APPROACH 

In the following, we begin to develop some properties for ( )tξ  to derive that 

( ) ( )
exp 1 1 exp

r S D tS D S D rDtt HD HD
S S S S

ξ
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and 
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2 2
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S S S S
ξ
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   (5) 

Recall the properties of exponential function, we know that ( ) 0tξ ′ >  so ( )tξ  

is an increasing function, for 0t > . Moreover, ( ) 0tξ ′′ >  then ( )tξ  is a convex 
function, for 0t > . We summarize our findings in the next Theorem.  

 
Theorem 1. Under the condition S D> , for 0t > , ( )tξ  is an increasing and a 
convex function.  

 
To find the optimal solution for the objection function, ( )rTC t , that is to solve 
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( )
0

 
rdTC t

d t
= . According to Eq (2), since exponential function is always positive, we 

have to consider the solution of the following equation 

( ) 0tξ = .                                                      (6) 

The traditional approach is to discuss how to select a good starting point as close 
to the optimal cycle time, *t , as possible. On the other hand, if we really understand the 
properties of ( )tξ  being continuous and convex, then we will demonstrate that 

selecting any starting point will converge to the desired optimal cycle time, *t .  
We will apply the Newton method to find the solution of ( ) 0tξ = . If we 

arbitrarily select a positive number, say 1t , then there cases may happen: Case (a) 

( )1 0tξ = , Case (b) ( )1 0tξ > , and Case (c) ( )1 0tξ < . 

For Case (a), 1t  is the optimal solution so we already find it as *
1t t= . 

For Case (b), we will show that there exists a decreasing sequence with  

( )
( )1

j
j j

j

t
t t

t

ξ

ξ+ = −
′

                                                (7) 

for 1,2,...j = and *
1j jt t t+< < . 

If we can show that *
2 1t t t< <  then it yields that ( )2 0tξ >  and *

3 2t t t< < . 

By induction, it will imply that *
1j jt t t+< <  for 1,2,...j = . We assume that ( )y t  is 

the tangent line of ( )tξ  with the tangent point ( )( )1 1,t tξ  so that 

( ) ( ) ( )( )1 1 1y t t t t tξ ξ ′= + − .                                       (8) 

We will show that ( ) ( )y t tξ≤  and if 1t t≠ , then ( ) ( )y t tξ< . We compute 

( ) ( )
( ) ( ) ( )( )1 1 1

t y t

t t t t t

ξ
ξ ξ ξ

−
′= − − −

 

( )( ) ( )( )1 1 1t t t t tξ α ξ′ ′= − − −  

( )( )( )1 1t t tξ β α′′= − − ,                                           (9) 

where α  is derived from Mean Value Theorem with α  is between t and 1t , and β  
is again derived from Mean Value Theorem with β  is between α  and 1t . We 
consider the relations among t, 1t  and α  to divide the problem into following three 
cases: Case (1) 1t t> , Case (2) 1t t= , and Case (3) 1t t< . 

For Case (1), 1t t> , then 1t tα< <  to imply that 1 0tα − >  and 1 0t t− > , 
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hence according to Eq (9), it yields that ( ) ( ) 0t y tξ − > . 

For Case (2), 1t t= , since ( ) ( )1 1y t tξ= , it shows that ( ) ( )1 1 0t y tξ − = . 
For Case (3), 1t t< , then 1t tα< <  to imply that 1 0tα − <  and 1 0t t− < , 

therefore based on Eq (9) again, it derives that ( ) ( ) 0t y tξ − > . 
We combine our results in the next lemma. 

 
Lemma 1. If f(t) is an increasing and a convex function and y(t) is the tangent line of f(t) 
with tangent point ( )( )1 1,t f t , then ( ) ( )f t y t>  for 1t t≠ . 

 
According to Eq. (7), 2t  is the intersection of the tangent line, ( )y t , with 

tangent point, ( )( )1 1,t tξ , with the x-axis so ( )2 0y t = . From Lemma 1, it shows that 

( ) ( )2 2 0f t y t> =  so *
2t t< . 

On the other hand, using Eq (7) again, and ( )1 0tξ ′ > , under the condition of 

Case (b) ( )1 0tξ > , such that 2 1t t< . Consequently, it derives that *
2 1t t t< < . We 

summarize our findings in the next lemma. 
 

Lemma 2. If ( )f t  is an increasing and a convex function, and we select a point, say 

1t , with ( )1 0f t >  then the Newton method will generate a decreasing sequence, ( )nt  

with *
1n nt t t+< <  for 1,2,...n = . 

 
Now we consider Case (c), under the constraint ( )1 0tξ < , and we apply the 

Newton method of Eq. (7), then we will prove that ( )2 0tξ > . 
Owing to Eq (7), we recall that 

( )
( )

( )
( )

1 1
2 1 1

1 1

t t
t t t

t t
ξ ξ
ξ ξ

−
= − = +

′ ′
.                                      (10) 

From ( )tξ  increases then ( ) 0tξ ′ >  and then ( )1 0tξ ′ > . Under the 

condition of ( )1 0tξ < , hence, Eq (10) implies that 2 1t t> . From Lemma 1, 

( ) ( )2 2 0t y tξ > = . Therefore, ( )nt  for 2t ≥ , becomes a decreasing sequence, 
*

1n nt t t+< <  for 2,3,...n = . 
Now, we consider the decreasing sequence, ( )nt  for 2,3,...n = , to prove that is 

indeed convergent to *t . From the completeness axiom of real number, the bounded 
below decreasing sequence with *

1n nt t t+< <  for 2,3,...n = , then it must converges to 

its most lower bound, say tΦ , as lim nn
t tΦ

→∞
= . According to Eq (7), it yields that 
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( )
( )1lim lim n

n nn t
n

t
t t

t
ξ
ξ+→∞ →∞

⎛ ⎞
= −⎜ ⎟⎜ ⎟′⎝ ⎠

                                       (11) 

We know that ( )tξ  and ( )tξ ′  are both continuous functions so that they can 
interchange with the limit to imply that 

( )
( )
t

t t
t

ξ

ξ

Φ
Φ Φ

Φ
= −

′
.                                              (12) 

Based on Eq (12), it obtains that ( ) 0tξ Φ = . On the other hand, from the strictly 

increasing property of ( )tξ , we know that ( )tξ  has a unique root at *t . Hence, 
*t tΦ =  and *lim nn

t t
→∞

= . We summarize our findings in the next theorem. 

 
Theorem 2. If we select a point, say 1t , as the starting point for the Newton method of 

an increasing and a convex function, ( )f t ,with unique zero at *t  then the decreasing 

sequence, ( ) 2n nt ≥  will converge to *t . 
 

Based on the above discussion, since ( )tξ  is an increasing and a convex function with 

( )0 0ξ <  and ( )ξ ∞ = ∞ , so ( )tξ  has a unique root, say *t . In Theorem 2, we prove 

that ( ) 2n nt ≥  will converge to *t  that is independent of the starting point 1t . However, 

if we select the starting point that satisfies ( )1 0tξ >  that will accelerate the 
convergence. Therefore, we develop an algorithm to find the optimal cycle time. We will 
use a threshold, say ε , to control the iterated computation for the Newton method. 
Step 1: Given ε > 0 as the threshold, and pick a point, say 1t  with ( )1 0tξ >  as the 

starting point for the Newton method. 

Step 2: To assume that 
( )
( )

1
1

1

j
j j

j

t
t t

t

ξ

ξ
−

−
−

= −
′

 for 2,3,...j =  

Step 3: To define that ( ) ( ){ }1min : r j r jn j TC t TC t ε−= − <  

Step 4: To accept that the optimal cycle time is nt  and optimal value is ( )r nTC t . 
Since the computer computation ability is improved so that the computation step 

is no longer an important issue for researchers. We will demonstrate this fact by the CPU 
time for our numerical examples. 
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4. NUMERICAL EXAMPLES 

    We consider the following example, with the data of parameters, r = 0.3, S 
= 9, K = 36.5, H = 60.5 and D = 3 that is related to examples in Dohi et al. [10], Chung 
[2] and Chung et al. [5]. For example 1, we take ε = 0.001, with the starting point, 1 1t = , 

then after two iteration, it shows that *
4 0.766429t t= =  and ( )4 334.0771rTC t = . 

 
Table 1: The Newton method for ε = 0.001 

 k=1 k=2 k=3 k=4 
tk  1 0.795012 0.766965 0.766429 
( )ktξ  7.852 0.844 1.55×10-2 5.66×10-6 

TCr(tk) 345.5118 334.2920 334.0772 334.0771 
 
For example 2, we take 0.000001ε = , with the starting point, 1 1t = , then after three 

iteration, it shows that *
5 0.766429t t= =  and ( )5 334.0771335rTC t = . 

 
Table 2: The Newton method for 0.000001ε =  

 k=1 k=2 k=3 k=4 k=5 
tk  1 0.795012 0.766965 0.766429 0.766429 
( )ktξ  7.852 0.844 1.55×10-2 5.66×10-6 8.52×10-13 

TCr(tk) 345.5118109 334.2920631 334.0772119 334.0771335 334.0771335 
 
From the above three examples, it reveals that the Newton method is an efficient method 
to find the optimal solution. Moreover, the value of ε will slightly influence the iteration 
number and computer CPU seconds.  

Here, we consider the impact of different starting point to list the results in the 
next table.  
 
Table 3: The effect of arbitrary starting point 

Item Initial value Step Time 
1 t1 =0.1 6 0.047 
2 t1 =1 3 0.027 
3 t1 =2 4 0.031 
4 t1 =20 10 0.051 
5 t1 =200 46 0.094 

 
Based on Table 3, we may say that the Newton method is an effective method 

for finding the optimal solution that is independent of the starting point.  
Next, we compared the Newton method with the bisection method. First, in 

Chung [2], under the restriction 2S D≥ , he found an upper bound, 
( )

* 2
U

KSt
HD S D

=
−

, 
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and took zero as the lower bound for *t . On the other hand, in Chung et al. [5], they 

tried to improve the bisection method to derive an upper bound, 2
U

S KT
S D HD

=
−

 and 

a lower bound, 
2

2
2 1

LT
HD S Dr r
K D S

=
⎛ ⎞+ + + −⎜ ⎟
⎝ ⎠

. 

To compare it with bisection method, we take the upper bound of Chung [2] as 
our starting point for the Newton method to list the iteration number in the next table. 

 
Table 4: Comparison of iteration numbers 

Method ε =10−3 ε =10−6 
Newton method 2 3 

Bisection [2] 8 20 
Bisection [5] 7 18 

 
From Table 4, it demonstrates that when the accuracy is emphasized then the 

Newton method is more efficient than the bisection method. 

5. CONCLUSIONS 

    In this paper, when the objective function is increasing and convex, we 
prove that the Newton method is efficient to find the root of the objective function. Based 
on numerical examples that are related to Dohi et al. [10], Chung [2] and Chung et al. [5], 
we show that Newton method with arbitrary starting point will generate a very fast 
converge sequence to the optimal solution.  
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