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Abstract: Conjoint analysis is a research technique for measuring consumer preferences, 
and it is a method for simulating consumers’ possible reactions to changes in current 
products or newly introduced products into an existing competitive market. One of the 
most critical steps in Conjoint analysis application is experimental designs construction. 
The purpose of an experimental design is to give a rough overall idea as to the shape of 
the experimental response surface, while only requiring a relatively small number of 
runs. These designs are expected to be orthogonal and balanced in an ideal case. In 
practice, though, it is hard to construct optimal designs and thus constructing of near 
optimal and efficient designs is carried out.  

There are several ways to quantify the relative efficiency of experimental designs. The 
choice of measure will determine which types of experimental designs are favoured as 
well as the algorithms for choosing efficient designs. In this paper it is proposed the 
algorithm which combines one standard and one non-standard optimality criteria. The 
computational experiments were made, and results of comparison with algorithm 
implemented in commercial package SPSS confirm the efficiency of the proposed 
algorithm.  

Keywords: Conjoint analysis, experimental design, efficiency, optimality criteria, algorithm, 
MCON software. 

1. INTRODUCTION 

Attractiveness of the preference measuring techniques and its usage in practice 
has been rapidly increased in the last few years. The practical significance of these 
techniques derives from their widespread use for new product or concept development 
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and valuation studies in such diverse areas as marketing, transport and financial services 
etc. In marketing research, for example, preference measuring techniques may provide an 
answer to questions as to which product will be successful or which attributes of a 
product drive the purchase decision and may thus serve as a valuable aid for managerial 
decision. One method that has become particularly popular in this context is Conjoint 
analysis. 

Conjoint analysis is a decomposition method which assumes that 
product/services can "break-down" into their attributive components and which implies 
the study of joint effects of products' variety attributes on their preference. 

In Conjoint analysis, respondents have to evaluate a set of alternatives that are 
represented by factorial combinations of the levels of certain attributes. In traditional 
Conjoint approach, the alternatives have to be rank ordered or rated on some graded 
scale. It is assumed that these preference judgments are based on the overall utility values 
of the considered profile's levels. These unknown parameters are then estimated from the 
data. If the data consists of ranking techniques from linear programming, non–metric 
versions of ANOVA can be used. Metric conjoint analysis comprises variants of conjoint 
analyses that use rating scales. Here, the utility values are usually estimated by the least 
squares procedures. Because of the metric response format and the linear relationship 
between preference judgments and attributes it is especially this type of conjoint analysis 
that can be readily applied to the optimal design theory techniques. 

The quality of statistical analysis heavily depends on the alternatives presented 
in the experimental design. An experimental design is a plan for running an experiment. 
Experiments are performed to study the effects of the factor levels on the dependent 
variable. The factors of an experimental design are variables that have two or more fixed 
values or levels of the factors. In Conjoint analysis, the factors are the attributes of the 
hypothetical products or services, and the response is either preference or choice.  

Using all combinations of attribute levels, i.e. a full factorial design, the number 
of evaluations required from every respondent soon becomes prohibitively large along 
with the number of attributes and/or levels increased. To deal with this problem, the 
application of formal experimental designs was suggested. Green (1974) as well as Green 
et al. (1978) proposed the use of orthogonal arrays, incomplete block designs and 
fractional factorial designs of different resolutions to reduce the number of evaluations to 
be performed. In this reduction process the goodness of the reduced designs is especially 
important. This goodness is named efficiency.   

There are several ways to quantify the relative efficiency of experimental 
designs. The choice of measure will determine which types of experimental designs are 
favoured as well as the algorithms for choosing efficient designs. This paper proposes 
algorithm which combines two types of efficiency measures to constructing experimental 
designs.  

The paper is organized as follows. Section 2 illustrates some of the fundamental 
concepts in Conjoint experimental design including standard factorial designs, as well as 
fractional factorial designs, orthogonal arrays and nonorthogonal designs. Design 
terminology introduces while design efficiency explains. Some standard algorithms for 
constructing efficient experimental designs are presented too. In Section 3 it is proposed 
the new algorithm which combines one standard and one non-standard optimality criteria 
for constructing efficient experimental designs. Finally, results of comparing algorithm 
efficiency with the efficiency of algorithm implemented in SPSS are presented in Section 
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4. The computational experiments confirm the efficiency of proposed new algorithm. In 
Section 5 conclusions are given. 

2. CONJOINT EXPERIMENTAL DESIGN 

The design of experiments is a fundamental part of Conjoint analysis. 
Experimental designs are used to construct the hypothetical products or services. A 
simple experimental design is the full-factorial design, which consists of all possible 
combinations of the factors levels. These combinations in Conjoint analysis are referred 
as profiles or concepts. For example, with five factors, two at two levels and three at 
three levels (denoted as 2233), there are 108 possible combinations. In a full-factorial 
design, all main effects, two-way interactions, and higher-order interactions are estimable 
and uncorrelated. The problem with a full-factorial design is that it is, for more practical 
situations, too cost-prohibitive and tedious to have subjects rate in all possible 
combinations. For this reason, researchers often use fractional-factorial designs, which 
have fewer runs than full-factorial designs. The basic difficulty is how to construct such 
fractional-factorial design which can provide worth data. In order to obtain valuable and 
reliable data, two basic principles must be taken into account: orthogonality and balance. 

A design is orthogonal if all effects can be estimated independently from all 
other effects, and it is balanced when each level occurs equally often within each factor, 
which means the intercept is orthogonal to each effect. In ideal case experimental design 
is orthogonal and balanced, hence optimal [7]. This is the case in full-factorial designs.  

However, orthogonal designs are available for only a relatively small number of 
very specific problems. They may not be available from the following reasons [6]: 

When an orthogonal design is not available, nonorthogonal designs must be 
used. The measure of experimental design's quality is referred as "efficiency". In efficient 
experimental designs both variance and covariance of estimated parameters are minimal. 
Some orthogonal designs are not always more efficient than the other orthogonal or 
nonorthogonal designs. 

Before the design is used, it must be coded [3]. One standard coding is the 
binary or dummy variable or (1, 0) coding. Another standard coding is effects or 
deviations from means or (1, 0,-1) coding. However, for evaluating design efficiency, an 
orthogonal coding is the most appropriate. This is because standard no orthogonal coding 
such as effects or binary is generally correlated, even for orthogonal designs. One of the 
standard ways to orthogonally coding data is Chakravarty's coding [3]. The other method 
is called the Helmert’s procedure [11].  

2.1. Optimality Criteria 

Efficiencies are measures of design goodness. An optimality criterion is a single 
number that summarizes how good a design is, and it is maximized or minimized by an 
optimal design. In order to generate an efficient design, specific methodology was 
developed. Efficient designs can be efficient for one criterion and less efficient for 
another one. There are some standard criteria for measuring efficiency of experimental 
design in Conjoint analysis [7]. Two general types are: information-based criteria and 
distance-based criteria.  



M. Kuzmanović / The Algorithm for Constructing Efficient Conjoint Experimental Designs 66

Consider the linear model where consumers provide utility scores, yj, for each 
profile:  

1 1 2 2α β β β ε= + + + + +…j j j m mj jy x x x  (1) 

for  j = {1,...,n}, where ijx  are independent variables. In matrix notation equation (1) can 
be written as y = α + βX + e. Let X is the orthogonally coded design matrix of 
independent variables. The information-based criteria such as D- and A-optimality are 
both related to the information matrix 'X X  for the design. This matrix is important 
because it is proportional to the inverse of the variance-covariance matrix for the least-
squares estimates of the linear parameters of the model. Roughly, a good design should 
"minimize" the variance 1( ' )−X X , which is the same as "maximizing" the information 

'X X . D- and A-efficiency are different ways of saying how large ( ' )X X  or 1( ' )−X X  
are. 

For the distance-based criteria, the candidates are viewed as comprising a point 
cloud in p-dimensional Euclidean space, where p is the number of parameters in the 
model. The goal is to choose a subset of this cloud that "covers" the whole cloud as 
uniformly as possible or that is as broadly "spread" as possible.  

D-optimality is based on the determinant of the information matrix for the 
design, which is the same as the reciprocal of the determinant of the variance-covariance 
matrix for the least-squares estimates of the linear parameters of the model.  

1( ' ) 1/ | ( ' ) |−=X X X X  (2) 

The determinant is thus a general measure of the size of 1( ' )−X X . D-optimality 
is the most common criterion for computer-generated optimal designs.  

A-optimality is based on the sum of the variances of the estimated parameters 
for the model, which is the same as the sum of the diagonal elements, or trace, of 

1( ' )−X X . Like the determinant, the A-optimality criterion is a general measure of the 

size of 1( ' )−X X .  
For both criteria, if a balanced and orthogonal design exists, then it has optimum 

efficiency; conversely, the more efficient a design is, the more it tends toward balance 
and orthogonality. Assuming an orthogonally coded X: 

 A design is balanced and orthogonal when 1( ' )−X X  is diagonal. 

 A design is orthogonal when the sub matrix of 1( ' )−X X , excluding the row 
and column for the intercept, is diagonal; there may be off-diagonal nonzero 
for the intercept. 

 A design is balanced when all off-diagonal elements in the intercept row 
and column are zero. 

 As efficiency increases, the absolute values of the diagonal elements get 
smaller. 

For appropriate coded matrix X , measures of efficiency can be scaled to bi in 
interval 0 to 100. For Helmert’s coded data (matrix) it is more appropriate to use A 
optimality criterion: 
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When data are coded by Chakravarty's procedure, it is more appropriate to use D 
optimality criterion: 

1 1/

1100
| ( ' ) |−− = ×

X X p
D

D eff
N

 (4) 

In the equations (3) and (4), p is number of parameters in model. The total 
number of parameters to be estimated is given by the formula: total number of levels – 
number of attributes + 1. DN  is number of runs (profiles) in fractional factorial design 
specified by the user. It is suggested, when possible, including between two to three 
times the numbers of runs as parameters estimated. However, design efficiency is not the 
only reason for including two to three times as many runs as parameters to be estimated. 
All real-world respondents answer conjoint questions with some degree of error, so those 
observations beyond the minimum required to permit utility estimation are needed to 
refine and stabilize utility estimates. 

These optimality criteria measure the goodness of the design relative to 
hypothetical orthogonal designs that may be far from possible, so they are not useful as 
absolute measures of design efficiency. Instead, they should be used relatively, to 
compare one design to another for the same situation. Efficiencies that are not near 100 
may be perfectly satisfactory. 

2.2. Come Standard Algorithms for Constructing Efficient Conjoint Designs 

As mentioned above, finding exact optimal designs is hard. Finding exact 
optimal designs in general requires solving a large nonlinear mixed integer programming 
problem, as the number of feasible designs explodes rapidly as the number of factors and 
levels increases. But we live in the real world, and we don’t need absolute best design, 
but the one that is good enough. This is where approximation algorithms come in.  

One of most simple algorithms for generating information-efficient designs is 
Dykstra’s (1971) sequential search method [6]. The method starts with an empty design 
and adds candidate points so that the chosen efficiency criterion is maximized at each 
step. This algorithm is fast, but it is not very reliable in finding a globally optimal design. 
Also, it always finds the same design. 

A typical approximation algorithm seeks to locate a good solution by the 
following sequential process [12]: 

1. Choose initial feasible solution (random/greedy) 
2. Modify solution slightly (random/greedy) 
3. Repeat 2. until finished, then report best solution seen 
Random methods modify the current solution in some random way, and this 

change is accepted or rejected via some decision routine. Even worse solutions may be 
accepted under certain decision routines. Simulated annealing is an example of a random 
approximation algorithm.  
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Greedy methods modify the current solution in a way that improves the score; as 
they are seeking to improve every iteration score for of the process they are frequently 
referred to as hill climbing algorithms. 

One large class of pure greedy algorithms for generating efficient designs is the 
exchange algorithms. Exchange algorithms hill climb by adding new design points and 
removing the existing design points to improve the objective. There are both Rank-1 and 
Rank-2 exchange algorithms, and these classifications are based on how the algorithm 
changes the points in the current candidate design matrix [12]: 

Rank-1: Choose points to add and delete sequentially (Wynn, DETMAX) 
Rank-2: Choose points to add and delete simultaneously (Fedorov, modified 
Fedorov, k-exchange, kl-exchange) 
 

Although the Mitchell and Miller (1970) simple exchange algorithm is slower 
than Dykstra's, it is a more reliable method. It improves the initial design by adding a 
candidate point and then deleting one of the design points, stopping when the chosen 
criterion ceases to improve. The DETMAX algorithm of Mitchell (1974) generalizes the 
simple exchange method. Instead of following each addition of a point by a deletion, the 
algorithm makes excursions in which the size of the design may vary. These algorithms 
add and delete points one at a time. 

The next two algorithms add and delete points simultaneously, and for this 
reason they are usually more reliable for finding the truly optimal design; but because 
each step involves a search over all possible pairs of candidate and design points, they 
generally run much slowly. The Fedorov (1972) algorithm simultaneously adds one 
candidate point and deletes one design point. Cook and Nachtsheim (1980) define a 
modified Fedorov algorithm that finds the best candidate point to switch with each design 
point. The resulting procedure is generally as efficient as the simple Fedorov algorithm in 
finding the optimal design, but it is up to twice as fast.  

The standard philosophy in approximation algorithms is that many small steps 
are generally better than fewer but larger steps. This is precisely the idea behind the 
coordinate-exchange algorithm, which follows the procedure: 

1. Choose k least critical points 
2. Examine each point for the best coordinate to exchange 
3. Make this best coordinate exchange. 
 

The coordinate exchange algorithm of Meyer and Nachtsheim (1995) does not 
use a candidate set [13]. Instead it refines an initial design by exchanging each level with 
every other possible level, keeping those exchanges that increase efficiency. In effect, 
this method uses a virtual candidate set that consists of all possible runs, even when the 
full-factorial candidate set is too large to generate and store. 

Some researchers have proposed nonstandard algorithms and criteria for 
constructing efficient experimental design [6]. Steckel, DeSarbo, and Mahajan (SDM) 
(1991) proposed using computer-generated experimental designs for conjoint analysis in 
order to exclude unacceptable combinations from the design. They considered a 
nonstandard measure of design goodness based on the determinant of the (m-factor × m-
factor) correlation matrix (|R|) instead of the customary determinant of the (p-parameter 
× p-parameter) variance matrix 1( ' )−X X . The SDM approach represents each factor by a 
single column rather than as a set of coded indicator variables. 
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3. THE PROPOSED ALGORITHM 

The basic idea behind the algorithm proposed here is to generate random initial 
design and than remove and add points simultaneously in order to obtain more efficient 
design. The algorithm has the following features: 

1. The variables (attribute levels) may be numeric or symbolic. 
2. The number of runs is specified arbitrary by the user.  
3. The user has control over how much effort is expended by the algorithm, 

and can if desired monitor the progress of the search. It is not necessary to 
specify initial points for the search. 

4. The algorithm combines two measures of design goodness: A-efficiency 
and P-value. 

Optimality criterion A-efficiency we discussed earlier. There are at least two 
reasons for using P-value as the second optimality criterion. First, it enables faster 
convergence to the optimal solution. Second, it is observed that two designs with the 
same A-efficiency can be differentially balanced. Thus, this criterion serves to choose a 
better balanced one.  

P-value presents the return of F probability distribution. That is probability that 
there are not significant differences between the variances of columns in coded matrix X. 
In other words, P-value can be used to determine whether parameters in orthogonally 
coded matrix X have different degrees of diversity. P can take any value in interval [0,1]. 
Low values of P indicate that design has great unbalanced attribute levels. This value will 
be low even if some of attributes have perfect balanced levels, while some other have 
extreme unbalanced levels. By improving of balance in sense of quantity and 
homogeneity, the P-value is also increased. If P-value is equal to one, it can mean either 
all levels are completely balanced or there are unbalanced levels which are consistently 
distributed. 

The algorithm is based on the following: The solution will be accepted (change 
will be made) only if it is equally good or better then the existing one, considering the 
least one of the criteria. The underlying rationality is: Existence of unbalance has an 
impact on efficiency but still serves as guideline to detect the list of appropriate and 
inappropriate candidates while enabling convergence to the better solution (design). 
 
The algorithm proceeds as follows: 

 
Step 0 (Initialization): 
Specify the number of iterations (NI) and number of runs (profiles) dN  
Set A efficiency to zero, 0,=iA  and set 0=i  
Step 1 (Generation of initial solution): 
Randomly generate initial solution 0X  ( ×dN p  matrix)   
Step 2 (Calculation of initial solution efficiency) 
Calculate , ,i i iA F P  for initial matrix 0X  
Step 3 (Estimation of initial solution efficiency) 
IF 0 100=A  and 1=P  design 0X  is optimal. GO TO Step 5.  
ELSE set i =1. Go to Step 4  
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Step 4: (Iterative procedure for finding better solution) 
a) Detect the worse balanced column in matrix Xi  (i.e. column with high 

value of absolute sum of elements) 
b) Generate the list of candidate rows for excluding from existing (current) 

design (LE). Good candidates are those which levels affect on existing of 
unbalance 

c) Generate the list of candidate rows for adding to the design (LA). Good 
candidates are those rows that can improve balance of design 

d) Choose randomly one row from LE list and remove from the design.  
IF list LE is empty, GO TO Step 4a. 

e) Choose randomly one row from LA list and add to the design. One 
candidate can be considered once in the current iteration.  
IF list LA is empty, GO TO Step 4a. 

f) Solve and i iA P  
g) IF 1−≥i iA A  or 1−≥i iP P  make exchange. Current solution (design) is 

matrix Xi .  GO TO Step 4h. ELSE GO TO Step 4e. 
h) IF i = NI or IF 100=iA  and 1=P , GO TO Step 5.  

ELSE Set i = i + 1, GO TO Step 4 
Step 5: Efficient experimental design is current matrix Xi . END. 
 

Since the initial design has been generated randomly, each time we start the 
procedure, different design for the same date will be obtained. If the procedure will 
repeat several times, the best suitable solution (design) can be chosen. 

4. COMPUTATIONAL EXPERIMENTS 

The algorithm proposed in previous section was implemented in Visual Basic 
Application as the procedure for experimental design constructing, in the software named 
MCON. This software consists of: 

1. Form for data input (attributes and attribute levels defining)  
2. Module for orthogonal data coding according to Helmert's procedure. 
3. Procedure for experimental designs construction.  
4. Procedure for solving part-worths of attributes' levels and attributes' 

importance. 
5. Module for market simulation. 
 
The power of the proposed algorithm and MCON software was tested on 

numerous examples. Using A-optimality and attribute levels' balance criteria, the 
efficiency of constructed designs ware compared with efficiency of the designs 
constructed by SPSS Conjoint algorithm. 

The following examples present some of the results. 
 

Example 1. Let us consider an example with five attributes with 3, 4, 3, 2, and 2 levels 
respectively. Here full-factorial design consists of 144 profiles (3x4x3x2x2=144). 
Saturated design consists of 10 profiles ((3+4+3+2+2)–5+1=10), while recommended 
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number of profiles in design is between 15 and 30. The features of designs constructed by 
proposed algorithm as well as of those constructed by SPSS algorithm are shown in 
Table 1. 

 

Table 1: Experimental results for Example 1 
SPSS MCON Number 

of profiles 
F 

critical A F P A F P 
12 2.0333    85.0155 0 1 
14 2.0185    82.5527 0.0490 0.99994 
15 2.0126    86.0423 0.0545 0.09999 

89.0611 0.0117 0.99999 16 2.0076 91.7611 0.52500 0.83607 88.3294 0.0406 0.99999 
92.7027 0.0268 0.99999 18 1.9990    88.4320 0.1068 0.99893 

20 1.9929    89.7209 0.0346 0.99998 
92.0730 0.1296 0.99999 24 1.9833    90.2650 0 1 
94.4193 0.0001 1 25 1.9814 89.6047 0.50625 0.85094 90.0875 0.2065 1 
94.0762 0.0171 0.99999 32 1.9717 91.7611 1.08500 0.37365 92.7915 0.0061 0.99999 

 
The first column in the Table 1 shows the number of profiles in experimental 

design arbitrarily chosen. The second column contains F-critical values for designs with 
various numbers of profiles. This value serves for testing hypothesis of variance 
diversity. Column A shows values of the designs' A-efficiency. Column F indicates 
existence of unbalance in design. When this value is equal to zero, the design is 
completely balanced. Column P-value indicates uniformity of unbalance in experimental 
design. If this value is near to 1 it means that the design is uniformly balanced. 

As it can be seen from Table 1, MCON software has constructed high efficient 
and well-balanced designs, no matter whether the dimensions of design are specified. 
Efficiency of all of constructed designs is greater than 82%, while for some of them 
(designs with 18 and 24 profiles) have reached A-efficiency greater than 90%. In all of 
these designs, very low and uniformly distributed unbalance of attribute levels exists (F is 
close to 0 and P value is close to 1). Especially, design with 12 profiles is completely 
balanced with high efficiency (85%), while completely balanced design with 24 profiles 
reaches efficiency greater than 90%.   

Most efficient design, constructed by MCON software consists of 25 profiles. 
A-efficiency of this design is equal to 94.42% and design has only one unbalanced level. 

In other hand, SPSS has constructed only the designs with specific number of 
profiles (16, 25 and 32). These designs are high A-efficient but tend to be highly 
unbalanced. 

Furthermore, highly efficient designs constructed by SPSS are those with 16 and 
32 profiles. Their A-efficiency is 91.76%, but both of them are extremely unbalanced. 
Moreover, only the 16-profiles design constructed by SPSS is more A-efficient than that 
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one constructed by MCON. Actually, for 25 and 32-profile designs, MCON was 
constructing more efficient and better balanced designs. 
 

Example 2: Let us now consider somewhat larger five attributes example with 2, 2, 3, 4, 
and 4 levels respectively. Here full-factorial design consists of 192 profiles; saturated 
design consists of 11 profiles, while recommended number of profiles is between 20 and 
33. Results of comparisons of SPSS designs with MCON designs are given in Table 2. 
 

Table 2: Experimental results for Example 2 
SPSS MCON Number 

of profiles 
F 

critical A F P A F P 
12 1.9660    72.0015 0.03718 0.99999 

84.4061 0.00713 1 16 1.9428 96.1538 0.25424 0.98526 81.0580 0.00891 1 
91.3267 0.01090 1 24 1.9207    88.7010 0 1 

25 1.9190 87.7639 0.82474 0.59388 91.2385 0.00028 1 
93.1203 0.00418 1 28 1.9146    89.1572 0.00418 1 
93.8371 0.00458 1 32 1.9101 96.1538 0.52542 0.85587 92.5821 0.00366 1 

36 1.9066    94.1552 0 1 
 
Again, MCON software has constructed high efficient and well-balanced 

designs, no matter the dimensions of design are, while SPSS had constructed only the 
designs with specific number of profiles.  

Efficiencies of all of the designs constructed by MCON software, except of 
design with 12 profiles, are greater than 84%, while for most of them have reached A-
efficiency greater than 90%. Highly efficient designs constructed by MCON software is 
36-profiles design. Its A-efficiency is equal to 94.15%, and it is completely balanced. 24-
profiles design is completely balanced, too, but its A-efficiency is somewhat less 
(88.7%). 

Highly efficient designs constructed by SPSS are again those with 16 and 32 
profiles. Their A-efficiency is 96.15%, but both are more unbalanced than the designs 
constructed by MCON software. Particularly, MCON software was construct well-
balanced 25-profiles design with efficiency equal to 91.24% (against the efficiency of 
design constructed by SPSS which is equal to 87.7%). 

According the experimental results presented above, following conclusions can 
be derived: 
 

SPSS Conjoint can construct only the designs with specific number of profiles, but often 
in practice there is a need for various dimensions of designs. This weakness of SPSS 
procedure is result of orthogonal design nature. Another effect of using ovly 
orthogonality as criteria for constructing experimental design in SPSS procedure is that 
these designs are often extremely unbalanced. 
 

Proposed Algorithm can construct the high efficient and well-balanced designs with 
arbitrary number of profiles. Constructed designs are always better balanced and in many 
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cases has higher A-efficiency than designs constructed by SPSS. This is results of using 
additional optimality criteria, P-value. 

 
 

6. CONCLUSION 

Conjoint analysis has been widely used method for measuring customer 
preferences since 1970s. This method is based on the idea that customers' decisions 
depend on all tangible and intangible product features.  

One of the fundamental steps in performing Conjoint analysis is the construction 
of experimental designs. These designs are expected to be orthogonal and balanced in an 
ideal case. In practice, though, it is hard to construct optimal designs and thus 
constructing of near optimal and efficient designs is carried out. Efficient designs are 
typically nonorthogonal; however they are efficient in the sense that the variances and 
covariances of the parameter estimates are minimized.  

There are several ways to quantify the relative efficiency of experimental 
designs. The choice of measure will determine which types of experimental designs are 
favoured as well as the algorithms for choosing efficient designs. In this paper we have 
presented some standard optimality criteria for measuring design efficiency, as well as 
some widely used algorithms for constructing such efficient designs. These algorithms 
are typically approximate and can be random or greedy, sequential or simultaneous. 

We have proposed a simultaneous algorithm which combines two optimality 
criteria: standard criterion named by A-efficiency, and nonstandard criterion, P-value in 
ANOVA. The algorithm was implemented in Visual Basic application, as the procedure 
in MCON software. The computational experiments were made and results are compared 
with results of SPSS procedure. The obtained results confirm the proposed algorithm 
effectiveness. The results show that it is very useful to use two optimality criteria to find 
efficient experimental design. The designs obtained by the proposed algorithm are not 
just highly efficient but they are also well-balanced. 
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