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Abstract. The necessary conditions for (normal) efficient solutions to a class of multi-
objective fractional variational problems (MFP) with nonlinear equality and inequality
constraints are established using a parametric approach to relate efficient solutions of a
fractional problem and a non-fractional problem. Based on these normal efficiency
criteria a Mond-Weir type dual is formulated and appropriate duality theorems are proved
assuming (p,b) - quasi-invexity of the functions involved.
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1. INTRODUCTION

For the first results on the necessity of the optimal solutions of the variational
problems we cite the Valentine’s paper[17]. The papers of Mond and Hanson [9, 10],
Bector [1], Mond, Chandra and Husain [12], Mond and Husain [11], Smart and Mond
[16] and Preda [14] developed the duality of the scalar variational problems involving
convex and generalized convex functions. Mukherjee and Purnachandra [13], Preda and
Gramatovici [15] and Mititelu [7] established weak efficiency conditions and developed
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different types of dualities for multiobjective variational problems generated by various
types of generalized convex functions. Kim and Kim [4] used the efficiency property of
the multi-objective variational problems in the duality theory. In this paper we will
introduce the notion of normal efficient solution and establish the necessary conditions
for the normal efficiency of Valentine’s type for multiobjective variational problems.
Also, we have developed a duality of Mond-Weir type for the multiobjective fractional

variational problems that uses the notion of normal efficiency. There are used (p,b)-
quasi-invex functions.

2. NOTATION AND STATEMENT OF THE PROBLEM

Let R" be the n-dimensional Euclidean space. Throughout the paper, the
following conventions for vectors in R" will be adopted.

For vectors v=(v,...,v,), w=W,..., w,) the relations v=w,v<w, vw,
and v<w are defined as follows

v=wov=w, i=ln;v<wes v, <w, i=Ln;
viweviw, i=Ln; vEweouswand u#v.
Let I =[a,b] be a real interval and

f=frses [,) IXR"XR" — R? )k = (ky,..k,): [xR"xR" — R”,
g=(g8,) Ix R"xR" > R", h=(h,...,h): IxR"x R" - R’

be twice continuously differentiable functions.
Consider the vector-valued function f'(z, x,x) , where t €/ andx:I — R", with

derivative x with respect to 7. Denote by f, and f, the pxn matrices of the first-
order partial derivatives of the components with respect to x and x, i.e.

fo=is fosees f) @A [ = (figs frionoos /) 5 With

9 9 9 9 .
=== | and f,=|—"F,., = |,i=L2,..,p.
S (&cl 8xJ S [&CI 0%, l P

Similarly, k_, g ,h and k., g., h, denote the pxn, mxn,gxn matrices of the
first partial derivatives of k, g and /& respectively, with respect to x and x. Let
C(I, R") denote the space of piecewise smooth (continuously differentiable) functions

x with the norm ||x|| = ||x||w + ||Dx||w , where the differential operator D is given by
u=Dx < x(t)= x(a)+ja’u(s) ds,

where x(a) is a given boundary value. Therefore, D =d/ dt, except at discontinuities.
Consider the multiobjective fractional variational problem



S. Mititelu, .M. Stancu-Minasian / Eficiency And Duality 87

[(rexioya [ f@xid

a

Minimize - yees F
j k, (1, x,%) dt j k, (t,x,%) dt

(MFP) .
subject to

x(a)=a,, x(b)=b,,
g(t,x,x) <0, h(t,x,x)=0,Vtel

Assume that J‘b k,(t,x,x)dt>0 forall i=1,2,---,.p. Let

D={xeC(l, R")

x(a) = a,, x(b) = by, f(t,x,%) 0, h(t,x,¥) =0, Vt e I
be the set of all the feasible solutions to (MFP).

3. PRELIMINARIES. THE MULTIOBJECTIVE VARIATIONAL
PROBLEM

In this section we will recall some basic definitions and auxiliary results that
will be needed later in our discussion of efficiency conditions and Mond-Weir duality to
(MFP).

Consider the multiobjective variational problem

Minimize[ f(t,x,5) dr = ( [ hexsydn.. [ 1, @x0 dt)

(MP) < subject to  x(a) = a,, x(b) = b,
g(t,x,x) <0, h(t,x,x)=0, tel.

The domain of (MP) is also D.
Definition 3.1. 4 feasible solution x° € D is said to be an efficient solution of (MP) if for
all feasible solutions x € D

Lbf(t,x,)'c) dr ngf(t,xo,icO) ot = Lbf(t,x,ic) dt =j:’f(t,x°,x°) dr

Let s:/xR"xR™ - R e a scalar continuously differentiable function and
consider now the scalar variational problem
b .
Minimizej s(t,x,x) dt
(SP) { subject to x(a) = a,, x(b) = b,
g(t,x,%) <0, h(t,x,x)=0, tel

Definition 3.2. The optimal solution x° € D to (SP) is called normal if 1 #0.
According to this definition without the loss of generality, in what follows we
can take A =1.
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The following result gives the necessary Valentine’s conditions [17] for the
optimality of x°in (SP):
Theorem 3.1 (The necessary Valentine’s conditions). Let x" be a (normal) optimal
solution to (SP) and let s, g and h be continuously differentiable functions. Then there
exist a scalar A and piecewice smooth functions u°(t) and V°(t) satisfying the

conditions
As (6, x°, X))+ 1" (1) g (t,x°, ")+ 0’ (¢) ' (¢, x°,x") =
VO){= %[/15).C (&, x", )+ 1’ () g, (t,x°,53°) + 0" (O (2, x°,5°)]
w00 gt,x°,x°)=0, x°(t)=,0, Vtel, (A=1).
We have

Lemma 3.2 (Chankong, Haimes [2]). x° € D is an efficient solution to the problem
(MP) if and only if x° is an optimal solution to the scalar problem
Minimize || f(t,x,%) dt
subject to x(a) = a,, x(b) = b,
g(t,x,x) 0, h(t,x,x)=0, tel

b . b 0 -0 LT . .
J. fj(t,x,x)dtgj S x,x0)de, j=1Lp,j#i

Pi(xo)

foreach i=1,..., p.
Lemma 3.3. If x"is a (normal) optimal solution to the scalar problem P(x"), then there

exist real scalars 4, j =1,p and functions M, and v, such that

P
A (X" )4 D A S+ (1) 8, (1,X°, 5 °) + 0,0k, (1,x°,5°) =
o
d 0 -0 Z , 0 -0 , 0 .0
:E[ﬂ‘iififc(t’x s X )+Zl/1jifj;r+/u[(t) & (t,x X7 )+0,(1)' h (2, x7,X7)] 3.1
J=
i
1) g ) =0, 4 ()20, Viel
/1,'[ 20, (4, :1)>j25~

Proof: For j=1,p, j+i we define the functions @, IxR"xR" — R by

['U i)~ £,2" 8 4 0, (Lx. D] de =0,

where @, (t,x,%) 20, j=1,p,j#i
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Then x° is a (normal) optimal solution to P(x") if and only if x° is a (normal)
optimal solution to the problem

Maximize Jbﬁ(t,x,X) dt
subject to x(a)=a,,x(b)=Db,

g(t,x, %) 20, h(t,%,3) =0, ,(t,x,%) 20, j=1,p,j#i

[0/, = 02,3 + 0, (0, 0] dt =0, j=1,p, j %1

If x° is (normal) optimal to this problem then, according to an Euler’s theorem,

. T . 0 .
there exist real scalars A, , j=1,p,j#1i,suchthat x" is (normal) optimal to problem

)4
Maximize [} f(t.6.5)+ 34, [ £, 50 + 0, (1,03 |t
i B
() subject to x(a)=a,,x(b)=b,

(1, %, %) S 0, h(t, %, %) =0, ~@,(6,x, ) <0, j=1,p,j#i

If x is (normal) optimal to P(x") then there are real scalars y, and

ﬂ,i,jzﬁ,jii and the functions 4, , v, € C(/,R") and ¢, :I%R,jzﬁ,j;éi, such

Ji
that the next Valentine’s conditions are true:

y ALt x°, X0 + zp: Ll f %0 = f6,x°0, 50 + @ (6%, 0] ) +
+,u,(t)'gx(t,xo,)'co)+L),(t)'hx(t,x°,)'c°)7iaj (t)wjx(t,xo,)'co) =
s (3.2)
= %(7,{f,.x(t,xo,)'c“)+Zp:/l/.,[f/(t,x,x)—f/.(t,x“,)'co)+w/ (tx, )] b+

J#i

»
+ 1.8 g, (6, x°, 3+ 0, (1) (8,x°,X°) - Zaj (@ (1, x50 =
Jj=1
J#i

H () g(t,x",5") =0, 4, (1) 20, @, (@, (1,x",%") =0, a,(t)20

720(=1), 1,20,/j=Lp,j=i Vel

The first relation of (3.2) becomes (E)
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14
0 -0 0 -0
7. [ (t,x°, % )+Z;7,./1/.,.f/.x(t,x ,x30)+
=

J#i

p
> (1, — )@, (15", 50) + 1 (0)' g, (6,50, 30) +0,(6) h (1,x°,5°) =
Jj=1

J#i

d . z . z .
:E[)/iﬁj(t,xo,xo)+;yﬂﬁfﬁ(t,x°,x°)+]Z:;(7/,./1ﬁ _aj)fj)i(tﬂx()’x())

J#i J#i
+,u[.(t)’gi(t,xo,)'co)+Ui(t)'hx.(t,x0,5c0)

(E) is a system with n partial differential equations having p—1 coefficients 1,, p—1
coefficients «; =« (1), #(¢)a vector function with m components and v,(¢) other
vector function with ¢ components. Therefore (E) admits 2(p—1)+m+¢g infinities of
coefficients, a number greater than n. We choose a set of values for these coefficients
putting the conditions y,4,—a,(1)=0, j=1,p,j#i Then we define 4, =y, and

i

A =7,4,20,j=1,p,j#i and the system (E) becomes

P
lﬁfix(t,xo,)'co)+Zlﬁfﬂ(t,xo,fco)+,ui(t)'gx(t,x°,fc°)+Ul.(t)’hx(t,x°,5c°) =
Jj=1

J#i

=%[ﬂﬁfk(t,xo,xo)+jzp;/1ﬁfﬁ(t,x°,x°)+yi(t)‘gx(t,xo,x°)+u,.(t)’hi(t,xo,xo),
i
that is the first relation of (3.1). So, (3.2) take the form (3.1).
Definition 3.3. x° € D is said to be the normal efficient solution to (MP) if it is a
normal optimal solution to at least one of the scalar problems P(x"),i= G
Theorem 3.4. Let x" € D be a normal efficient solution to (MP). Then there exist a
vector A" € R” and piecewise smooth functions u°’:1— R" and v °:1— R that

satisfy the Valentine’s conditions

/10'fx(t,xo,jco)+,uo(t)'gx(t,xo,xo)+u°(t)hx(t,x°,5c°)=

_ d 01 0o .0 0 0 .0 0 0 .0
oY) =A@+ H Og (6 E 10" O (137,50

K1) g(t,x",x°) =0, u(t)20, Viel

2020, e'A’ =1, e=(l,..,1)'eR".

Proof: If x° is a (normal) efficient solution to (MP), according to Lemma 3.2, x° is a

(normal) efficient solution to the scalar problems P(x"), i= G According to Lemma
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3.3, for each i, there exist scalars 4, 20, (4, =1), j = G and the functions 4z and

v, that satisfy relations (3.1). Summing the relations (3.1) over i = G and denoting

P ) ,
A= A A= (A 2,) () = D (D), 0(1) = 2 0,(0)
i=1 - 2
we obtain
A [, x5 + () g, (1,x°,3") + 0(0) ' (£,x°,5°) =
=LA ) () g 5 00 (1 )]

u@®)'g(t,x°,x°)=0, u(t)=20, Vvtel
4,2 0,j=Lp (4 =1).

(3.3)

P
Upon dividing the relation (3.3) by S= 2/1/ and setting A’ =1/S,

j=1
4 (t) = u(t)/S and v°(t) = v(t)/ S , then the relations (MV) are obtained.
Let p e R and a function b: X x X — [0, ). Put

H) = [ h(t,x, ) di
Definition 3.4. The function H is said to be (strictly) (p,b) -quasi-invex at x° if there

exist vector functions 1n:IxXxX — R" with n(t,x(t),x(t))=0 for x(t)=x"(t)
and 6: X x X — R" such that for any x(x #x°), Hx)<H(") =

= b(x) [ 17 A (6" 5 + (D) B (15", 5)] de (<) £ —pb(e, ) |0 x|

4. NECESSARY EFFICIENCY CONDITIONS FOR (MFP)

Let us now consider the problem

["fxi) ar
min 2T

* j k (,x,%) dt

subject to  x(a) = a,, x(b) = b,
g(t,x,x) <0, h(t,x,x)=0, tel

b g b 0 .0
[raxmd ['f@x.id
b : = b 0 .0
[k@xsyde [ kx5 di

¥P);(x%)

,Jj=Lp,j#i.
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Denoting

[ feat 50 de AT A—
R’ ==% — :mjn < —, i=lp.
J k(t,x",x")dt | I k. (t,x,x) dt

a

problem (FP),(x") can be written as

b
fi(t,x, %) dt
min —JA“h |:= Rl.o]
. j k,(1,x,%) dt
(FPR); ysubject to  x(a) = a,, x(b) =b,
g(t,x,x) <0, h(t,x,x)=0, tel

[/ )~ RO (1 i) e 0, j =1 j %1

Consider now the problem

min ['[£,(¢,,5) ~ RK, (6., )] dr
(SPR), subject to x(a).: a,, x(b) = .bo
g(t,x,x)<0,h(t,x,%)=0, tel

['U/, (00~ ROk (e, )] dr 20, j =T p, j %4

Lemma 4.1 (Jagannathan [3]). x° € D is optimal to (FPR), if and only if x° is optimal
to (SPR), .

Theorem 4.2. x° € D is an efficient solution to (MFP) if and only if it is an optimal
solution to each of the problems (SPR),,i= G

Proof: x" is efficient in (MFP) if and only if it is optimal to the problems
(FPR),,i= G (according to Lemma 3.2 ) and also, for each i (i = G) , x" is optimal
in (FPR), if itis optimal in (SPR), (according to Lemma 4.1).

The point x” € D is a normal efficient solution to (MFP) if it is a normal
optimal solution to at least one of the scalar problems (FP),(x"), i = G, or equivalently
(SPR),,i=1p.

Now the main result of this section follows.

Theorem 4.3 (The necessary efficiency conditions). Let x° € D be a normal efficient
solution to problem (MFP). Then there exist A’ € R” and piecewise smooth functions
1’1 —R" and v°: 1 — R? that satisfy the conditions
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P

DAL x5 = Rk, (6,3, 3]+ 4 (1)' g, (1,x°, %7

i=1
p

(MFV){+ u°(t)'hx(r,x°,x°>=%{Zﬁﬁ[ﬁka,x",x‘))—R,."kl.,%(r,x“,x())]
i=1

+y°(t)'gx(t,x°,5c°)+u°(t)‘h/.((t,x°,x°)}
w(0) g(t,x°,5") = 0,u(t) 20,V e L' 2 0,i=1p, (A

1\

).

Proof: Suppose that x° is a (normal) optimal solution to (SPR),. In what follows the

proof is similar to those in Theorem 3.4, where for izﬁ , fi(t,x,x) is replaced by
£t x, %)= Rk, (t,x,%) .
We denote

E)=[ £ 5 de K, (") = [ k(62 50 de.

Then we obtain

o_EGY) —
i_K[.(xo)’ i=Lp. (4.1)

Taking the relations (4.1) into account, Theorem 4.3 becomes:
Theorem 4.4 (The necessary efficiency conditions). Let x° be a normal efficient solution
to problem (MFP). Then there exist A" e€R" and piecewise smooth functions
11— R and v °: 1 — R" that satisfy the conditions

iﬂ?[K,-(x‘))ﬁx(r,x",fc")—E(x”)k,-x<r,x°,x°>]+
+10(8)' g, (@, x°, )+ 0" (6) ' h (t,x°,%°) =
(MFV) 03y~ %{Zﬂ’io[[(i(xo)fbi(t’xo’xo)_F;(xo)k[x(taxosxo)]

1 (0)' g, (13", 5") + 0 (Oh, (12", 57)}
) g(t,x",x°)=0, p’(t)=0, Vel
A°>0, e'A’ =1.

5. MOND-WEIR DUALITY TYPE

Let {J,,...J,} be a partition of {l,..,m} and {K, ,..,K, }a partition
of{l,..., q} . We consider the functions y,ve C(/,R") and associate the multiobjective
variational problem with (MFP)
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b . b .

[ haypyd [ furi)d
. —— ., .

[ktyiyde [kt 5)de

subject to y(a)=a,, y(b)=>5,

Maximize

D ALK (), (6,3, 9) = F,(»)k, (£, y, )]+

i=1
+u(1)' g, (8, y, ) +0(0) b, (t,y,7) =
d & .
= O ALK, () 1 (6,3, 9) = F(0)k (6, . 0)]+
i=1
()" g, (8, v, ) +0(0) B, (1, v, )}
w1, (0)'g, 6y, 3) + o, Ohe (6,y.7)20, a=Lr, Viel
A20, e'A=1.

(MFD)

Denote by 7z(x) the value of problem (MFP) at x € D and let 6(y,4,7,0) be
the value of the dual (MFD) at (y,1,77,0) € A, where A is the domain of (MFD).
THEOREM 5.1 (Weak duality). Let x and (y, A4, x,v) be the feasible points of
problems (MFP) and (MFD). Assume that the following conditions are satisfied:
1. for each i:G we have F(x) >0, K;(x)>0,Vxe X.
2. foreach i= G, F,(x) is (p/,b)-quasi-invex at y and —K,(x) is (p,b)-
quasi-invex at y, all with respectto 77 and 6.

a

3. Ib[yja 0'g, (tx,%)+v, @)'he (t,x,0)]dt is  (p,,b) -quasi-invex at
y with respect to 77 and 6.

4. one of the functions of b)-c) is strictly (p,b) -quasi-invex
S ALK 0)+ AE D+ X0 20.
6. "liilen n(x) 7(x) <0 (y,/l,a;;, v) is false.
Proof: From b) it results
F(x) £ F() = beey)[ {01, (6.5.5)+ (D) £, (2.7, 3)} dr

2 (5.1)
é _Pi'b(xa)’)ng(xa)’)" 5

_Ki (x) é ~ Ki (y) N b(x,y).[:{—ﬁ ’kiy (t,y, y) - (D?])'k,} (t: Y, y)} dr (5 2)
<~ oo

By multiplying the relations (5.1) by K,(»)>0 and (4.2) by F,(y)>0, by
summing the obtained implications side by side we obtain:
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F (0K, (3) = K,()F(y) £0= b(x, )| j WKW f, .9
~E(0k, (t,y, )]+ (D) [K,(0) f;,(t, 9, )~ F,(»)k; (¢, v, )]} dt (5.3)
<—[pK,(»)+ pIE,("b(x, )6

By multiplying (5.3) by 4,,i :G,(/I 20) and by summing over i = G, we
get the result

i/li [FOK, () -K,()F(»]£0=

b(x, y)f {n Zp: LKD) 1, (6, 9) = F(0k, (&, 3, )]+
, = (5.4)
+(Dn)' Z%-[K,- W @3, 9) = FE(Dk, (4, v, )]} de

<—bx, )| 2/1,-[/);1@ () +pF ()]
According to c¢), we have

['l, ', x5y 40y ()] dr

["lu, 0'g, .y +o, ©'h @9 de=

b(x, y)Lb 'y, 'g, &y, ) +oe (O)'he J+(Dm)[u, (O'g, (& r,5) (5.5)
+Up (0)'hy (1,3, )]} dt
<—pb )|l -

By summing side by side over a=1r the twice implications (5.5) and
equivalently, we obtain

["Lu0) g(t.x. )+ 0(0) At (1.2, ) dt -

[71u0) g (6,3, 3)+ 00 (e, y, 73] dr <0 = b(x, y)

[P oru)' g, (9. 9)+ 00, (1.3, 90+ (D) Tu(0)' g, (8.7, 5) 0
#0006 P b o] X

By summing now the double implications (5.4) and (5.6) side by side, the result
gained is
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> ALE K, (7.0~ K () F )]+
[Tty g2, 5) +v(0) (e, x, ) dt
[0 g6, 3, 5)+ V() (e, 7, 7)) de= 0

= bCo ) 7' ALK ), (4. 9) - FO, (6,3, 501+ (57)

u(@®)'g, (6, y, ) +0(t) h(2,y,7)} + (D77)'{Zi,-[K,-(y).ﬁy(f»y,J'/)

—E W)k (8,3, )]+ (1) g (2, y,v) +0() 'hy (2, y,v)} di <

<=bCe DO ALK, 0) +AE W+ Y Pl

From the second implication of (5.7) it results that 5(x, y) > 0.
Then the second implication of (5.7) shortly, becomes

14 r
["tr, + @0V, 1de <=6 (ALK, () + pE (I + Y. ol (5.8)
i=1 a=1
where *

V= D A (KO0 )= E vk, (4.0 ]+ 10 &, (.30) + 0(0) B 1. 3.)

We bring in the second term of under-integral and (5.8) becomes

h d a u "
n'vlo+ jjn'[Vy—EVy]dr<—||9||2{§ ALPK, (D) +pIEWMI+ Y. o (5.9)
i=1 a=1

But 7(a, y(a),y(a))=n(b,y(b), (b)) =0 and taking the first constraint of
problem (MFD) into account, relation (5.9) becomes

p r
0<-|o]" ALK, (r.v)+ PIF,(r.)]+ Y. P (5.10)
i=1 a=1
By taking the hypothesis ¢) into account, the inequality (5.10) becomes 0 <0,

that is false.
Then from (5.7) it results
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S ALE @K, () - K, (O E (0] +

i=1

[ 1) g (0.0 4 v(0) (e, . 5)] it - (5.11)
[ L0y 20,3+ v (0 R 7.9 de > 0
But
[ ) g(t.x. %)+ v(0) (e, x,5)] deo,
[ L) g (1,3, 9) () By, )] <0

and then relation (5.11) becomes
p
2 AE @K, (9) =K, (0)F ()] > 0.
i=l1
which can be written under the form
L F F
S 4K (0K, (7) {ﬂ - ﬂ} >0
i K.(x) K, (»)
Since 4K, (x)K,(¥)>0, i= L_s (1< s < p), from this inequality we infer that

Ex F» & FO0 <(0,...,0)
K0 K0 TUKE Ko)

F  E®)_(Fe)  FW
K@ K@) K0 TTK,0)

Therefore 7z(x) <d(y, 4, u,v) is false.

Theorem 5.2 (Direct duality). Let x° be a normal efficient solution to the primal (MFP)
and assume the hypotheses of Theorem 5.1. Then there exists A" € R’ and piecewise
smooth functions 1’1 — R™ and v°:1 — R" such that (x°,A°,u°,0°) is an efficient
solution to the dual (MFD) and, moreover, (x")=05(x",A%, u°,0°).

Proof: Because x’ is a regular efficient solution to (MFP), according to Theorem 3.4
there are vector A° € Rn and the piecewise nonsmooth functions x°:7 — R” and
v’ :1— R that satisfy relations (MFV),. Also, v’ (t)h,(t,x",x")=0, s =1,m. Then it
results that (x”, A%, °,0°) € A and in addition, 7(x")=5(x",A°, 1°,0").
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Theorem 5.3 (Converse duality). Let (x°,A°, 11°,0") be an efficient solution to the dual

(MFD) and suppose satisfied the following conditions:
1. X is anormal efficient solution to the primal (MFP).

2. a°) Foreach i=1,p, F(x")>0, K,(x’)>0.

3. b") Foreach i=1,p, F(x) is (p/,b)-quasiinvex at x°, and —K,(x) is
(o!,b) -quasiinvex at x’, all with respect to 7 and 6.

4. " J.: (1, (O'g, & x,%)+0 (@) h (8,x,X)]dt s (p2,b) -quasiinvex at
x° with respect to 7 and 6.

5. d") One of the functions of bs°)—c") is strictly (p,b) -quasiinvex.
P r

6. €') YAoK ")+ pF(")]+D pl20.
i=1 a=1

Then X = x” and, moreover, 7(x")=06(x",2°,1",0°).
Proof: On the contrary, suppose that X # x” and we will obtain a contradiction. Because
X is a normal efficient solution to (MFP) then, according to Theorem 3.4 there are vector
A € R? and vector functions 77:/ — R™, 0 :1 — R that satisfy conditions (MF V), It
results

(1) g(t,x,X)+0()h(t,x,x)=0

and so, (X,4,1,0) € A Moreover, 7(X)=38(x,A,1,0). According to Theorem 5.1 the
relation  7(x)<8(x°, A%, u°,0%), is false. It results that the relation
I(x, A, 1,0)<6(x°, 2%, u°,0°), is false. Therefore, the maximal efficiency of
(x",A°, 1",0°%) is contradicted. It results that the supposition X # x’, above made, is
false and we have 7(¥)=8(x", A%, 1°,0°).

Note that if p =1 problems (MFP) and (MFD) become the pair of Mond-Weir
type dual variational problems [18].
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