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Abstract: The paper examines a MADM problem with stochastic attributes. The 
transformation of a stochastic MADM problem into a cardinal problem is done by the 
standardization of the probability distribution of each attribute X  and calculating the 
information of each attribute as Shannon's entropy or Onicescu's informational energy. 
Some well known (performant) methods to solve a cardinal MADM problem are 
presented and a method for combining results of several methods to give a final MADM 
solution is discussed. 
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1. INTRODUCTION 

A MADM (i.e. Mulltiple Attribute Decision Making) problem can be 
formulated as follows [2,4,6,12,14,15]: there are  decision alternatives to be taken and 
there are m  criteria or attributes used to determine the best (optimun) alternative 
decision. In order to make a decision, a “sense” for selecting decisions is associated with 
each criterion, namely, the best decision is selected if its attribute has a minimum or a 
maximum value. The problem is to select the “best” decision alternative with respect to 
all the criteria combined with  sense requirements.  

n
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The data of a MADM problem can be represented as in the following table 
[2,9]:  

 
A table representing decision data. 

 … 
2C1C MC   

… 1A 11a 12a 1ma    
… 2A 21a 22a 2ma    

… … … …  
… nA 1na 2na nma    
… P 1p 2p mp    
… sense 1sense 2sense msense    

 
n m×The entries  define the ,1 ,1ija i n j≤ ≤ ≤ ≤ m   decision matrix. The vector 

 is usually a probability vector  specifying the 

“importance” of each criterion (i.e.  is a positive weights vector) and the vector 
=1

( > 0, = 1)
m

i i
i

p p∑1 2= ( , ,..., )mP p p p ′

P
1 2= ( , ,..., )msense sense sense sense ′  (see the comments from above) specifies the 

requirements for selecting the best decision alternative.  
The entries  could be real numbers, linguistic qualificatives [9], logical values 

or any other elements from a specified ordered set.  
ija

There are various methods for solving a MADM problem, i.e. for determining 
an order of alternatives and then selecting the best decision alternative.  

The nature of a method is given by the entries  [2,4,11,15]. If  are 
deterministic then the problem is cardinal; if  are of a fuzzy nature then the problem is  
fuzzy, while if some  are stochastic elements having known probability 
distributions, then the MADM problem is stochastic. Sometimes, the decision matrix can 
have a complex structure in the sense that its entries can have more indexes [2] as 

 (The index k  may refer to several human decidents involved in decision 
process). Such a problem is a MADM problem  with several decidents.  

ija ija

ija
, = 1,2,...,ija i n

,1 .ijka k≤ ≤ d

In this paper we shall present a simple MADM method for stochastic entries of 
the decisin matrix, a case which is not often discussed in the literature.  

 
2. PROCESSING OF STOCHASTIC ENTRIES 

Assume that an entry  is a real random variable ija X  specified either as a 
discrete probability distribution in the form  
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1 2

=11 2

, , ...
: , , > 0,

, , ...

k
k

i i i
ik

a a a
X a R p

p p p
⎛ ⎞

∈⎜ ⎟
⎝ ⎠

∑ = 1,p  

or as a continuous probability distribution given by its probability density function 
(p.d.f.) ( )f x  in the form  

( ), [ , ], < < < , ( ) = 1.
b

a
X f x x a b a b f x dx→ ∈ −∞ ∞ ∫  

In other words the elements  in the discrete case or  in the 
continuous case are given, for a stochastic MADM problem. Many of the methods for 
solving MADM problems are reduced to solving cardinal (deterministic) problems. This 
idea is applied here for solving stochastic MADM problems in the sense that we first 
transform a stochastic problem into a cardinal one. More precisely, the stochastic 
decision matrix ||  is transformed into a cardinal (deterministic) matrix ||   

,i ia p , , ( )a b f x

||ija || .ijh
The procedure consists of the following steps:  
Step 1. A stochastic entry X  is transformed into a standardized stochastic entry 

 in the form   Y

= XY
σ

 (2.1) 

where  is the variance of 2 = (Var Xσ ) X  (i.e. σ  is the  standard deviation of X ).  
In the discrete case we have  

2 2 2

=1 =1
= [ ] = , = [( ) ] =

k k

i i i i
i i

m E X a p E X m p a mσ 2− −∑ ∑  

and in the continuous case we have  

2 2 2= [ ] = ( ) , = [( ) ] = ( ) ,
b

b

a
a

m E X xf x dx E X m x f x dx mσ − −∫ ∫ 2  

2σassuming that  and m  exist.  
According to (2.1) the discrete distribution of Y  is   

1 2
1

1 2

, , ...,
: , = , =

, , ...,
k i

i
k

b b b a
Y b

p p p
α β

σ
⎛ ⎞
⎜ ⎟
⎝ ⎠

, = kb b  (2.2) 

and in the continuous case the probability density function of Y  is   

( ) = ( ), [ , ], = , = .Y g y f y y a bσ σ α β α σ β→ ∈ σ  (2.2′) 

For each distribution, the standardized  range is calculated as = .r β α−   
Step 2. The next proposed step is to assign to a stochastic entry Y  in the 

decision matrix, the information contained in the corresponding probability distribution. 
This information can be represented either by Shannon's entropy or by Onicescu's 
informational energy of   .Y
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In the discrete case the entropy of Y  is  

1

log
k

i
i

h p
=

= −∑ ip

.

) x

b

a

e g y dy f x dx
β σ

α σ

σ σ∫ ∫

 (2.3) 

and the informational energy is   

2

=1

=
k

i
i

e p∑  (2.3′) 

In the continuous case the entropy of Y  is   

( ) ( ) ( ) ( )(log logh g y g y dy f x f x d
β βσ

α ασ

σ σ σ σ= − = −∫ ∫  (2.4) 

and the informational energy is  

2 2 2= ( ) = ( ) .  (2.4′) 

Now, the decision matrix of the problem has elements in the form  or 
, i.e. it is a cardinal one.  

|| ||ijh
|| ||ije

||ij ijhρOne can also define the decision matrix as  or as ||  respectively || ||ijρ
|| || .ij ijeρ  ( ijρ  is the range of the criterion  for the alternative ). If the range is , 
then it is not used.  

j i ∞

Note. In the continuous case, the formulae (2.4) and (2.4') say that for a random variable 
X  having the density ( )f x  we have  

= [ ( )]e E f X  (2.4'') 

= [log ( )].h E f X−  (2.4''') 

( )g vIn [10], the procedure to determine the probability density function  of 
 is presented, namely  = ( )Y f X

( ) = ( ), ( ) = { | ( ) }.(3.5)g v vA v A v mes x f x v′− ≥  (2.5) 

( )f XFor some particular continuous distributions the p.d.f of  is [10]:  

( ) = vg v
λ

( )Exp λ  the p.d.f. is  (i.e.uniform);  for exponential distribution 

1/2( ) = 2[ log( 2 ]g v vπ −−for the normal  distribution the p.d.f. is (0,1)N ;  
for the bivariate normal N (0, I) (I=the (0, )( 2 2 )N I I the unit matrix= × , the 

p.d.f. is ( ) = 2 ,g v π ( )f X i.e.  is uniform on [0 .  , 2 ]π
( )F XNote that while  is always uniform on [0, , the previous examples show 

that 
1]

( )f X  is not generally distributed as uniform.  



 I. Vaduva, C. Resteanu / On Solving Stohastic 79 

( )g vDensities can be used to calculate informational energy and entropy.  
For instance, by direct calculation [5], one can obtain informational energy for 

particular continuous distributions, namely:  
1=

2
e

πσ
( , )N m σ  distribution we have ;  for the normal 

=
2

e λ( )Exp λ  distribution we have ;  for the exponential 

1=
2

e
π

for standard Cauchy distribution we have .  

If the calculation of  or  is easier with (2.4'') and (2.4''') then the p.d.f. of e h
( )f X  should be used, as an alternative to (2.4) and  (2.4'). 

In the next section we will present some known performant methods for solving 
cardinal MADM problems [2,4,12,15].  

 

3. SOME CARDINAL MADM METHODS 

Two of the best accepted MADM methods [9] are SAW (Simple Additive 
Weighting) and TOPSIS (Technique for Order Preference by Similarity to Ideal 
Solution). We will present these methods in the following lines.  

 
3.1. Simple Additive Weighting 

Let us consider  the decision matrix, =|| ||ija a .ija R∈  (If some attribute takes 
initially discrete linguistic values, they will be transformed conventionally into some real 
numbers (e.g. marks)). In the following we assume that 0.ija ≠  If for some  there is an 

, then all the elements in the column  are translated with the same positive 

constant , i.e. , such as all  become positive numbers.  

j
< 0ija j

h :=ij ija a + h ija
The SAW method consists in the following steps [2,9]:  
Step 1. Normalize elements of the decision matrix , obtaining the matrix 
, by one of the folowing alternative procedures:  

a
=|| ||ijR r

a) Vectorial normalization. This normalization uses one of the formulae  

2

=1=1

= ij ij
ij ij mm

ijij
ij

a a
r or r

aa
= .
∑∑

 (3.1) 

b) Normalization by linear transformations. For the criterion  of maximum the 
formula is used 

j

1
= , = maxij max

ij i ijmax j mi

a
r a

a ≤ ≤
a  (3.2) 
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and for the criterion  of minimum the formula is used j

= 1 .ij
ij max

i

a
r

a
−  (3.2′) 

One can also use the following normalization formulae   

= , = min
max
i ij min

ij i ijmax min ji i

a a
r a

a a
−

−
a  (3.3) 

for a maximum criterion and   

=
min

ij i
ij max min

i i

a a
r

a a
−

−
 (3.3′) 

for a minimum criterion.  
c) Normalization by alternative linear transformations. This normalization uses 

formulae  

= ij
ij max

i

a
r

a
 (3.4) 

for a maximum criterion and   

1 1= =max
min
i

ij
jij ij ij

a
r

a a a
 (3.4′) 

for a minimum criterion.  
0 < 1.ijr ≤   As far as normalization is concerned, note that 

Note also that the requirement that all  are positive is not compulsory for 
(3.3) and (3.3') and in all other normalization formulae only the conditions 

are necessary. 

ija

0, 0.max min
i ia a≠ ≠

Step 2. Calculate the function :f A R  (  is the finite set of alternatives) as  A

=1

=1

= ( ) = , 1

m

j ij
j

i i m

j
i

p r
f f A i n

p
≤ ≤

∑

∑
 (3.5) 

jp jp are positive weights representing the relative importance of criteria. (If where  are 

probabilities then ).  
=1

= 1m
jj

p∑
Step 3. Order the values if  obtaining the ordered sequence (1) (2) ( )< < ... < n .f f f  

The best alternative is ( )nA ( ) .nf corresponding to   
In general, the result of SAW does not depend on the normalization technique.  
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3.2. Technique for Order Preference by Similarity to Ideal Solution 

This method consists of the following steps [2,4, 9,12,15]:  
Step 1. Normalize the decision matrix  by obtaining the normalized matrix  a R
(as in Step 1 of the SAW method).  
Step 2. Build up the weighted normalized matrix  where 

  
=|| ||ijV v

= , 1 , 1ij j ijv p r i n j m≤ ≤ ≤ ≤ .
+Step 3. Build up the ideal positive solution V  and the ideal negative solution 

 defined as  V −

1 2 1 2= ( , ,..., ), = ( , ,..., )m mV v v v V v v v+ + + − − − −+  
where  

max if the criterion is a maximum one
min if the criterion is a minimum one

i ij
j

i ij

v j
v

v j
+ ⎧⎪= ⎨

⎪⎩
 (3.6) 

min if the criterion is a maximum one
max if the criterion is a minimum one

i ij
j

i ij

v j
v

v j
− ⎧⎪= ⎨

⎪⎩
 (3.6′) 

Step 4. Calculate the distances between weighted normalized entries  and 
each of the ideal solutions (one uses the Euclideean distance), namely  

ijv

2

=1 =1
= ( ) , = ( )

m m

ij j ij j
j i

D v v D v v+ + −−∑ ∑ 2 .−−  (3.7) 

Step 5. Calculate the relative closeness to the ideal solution for each alternative 
as  

= i
i

i i

D
Q

D D

+

+ −+
.  (3.8) 

Note that 0 <  < 1.iQ
Step 6. Order the values of  obtaining iQ (1) (2) ( )... .nQ Q Q≤ ≤ ≤   

( )nAThe best alternative is  corresponding to   ( ) .nQ
 

4. COMBINING SEVERAL SOLUTIONS 

If we apply both stochastic MADM methods (i.e based on entropy or on 
energy), we may obtain different solutions (may be even different orderings of 
alternatives!). Finally we are interested in obtaining one solution by combining the two. 
The following procedure is proposed so as to give a unique solution.  
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Step 1. Formulate a new MADM problem with two criteria corresponding to the 
two solutions. The MADM decision matrix is an 2n×  with the elements 

,1 ,1 2ij i n jα ≤ ≤ ≤ ≤  defined as  

1
2

i
ij

i

f if j
Q if j

α
=⎧

= ⎨ =⎩
 (4.1) 

, ,1i if Q i≤ ≤ nwhere  are the values calculated by SAW, respectively TOPSIS 
methods. The weights assigned to the criteria could be  each, or could be specified 
by the decident.  

0.5

Next, apply one of the cardinal methods presented in the previous section; here 
we propose the SAW method.  

Step 2. Perform a normalization according to one of the procedures specified in 
the SAW method, obtaining the matrix =|| ||,1 ,1 2.ijR r i n j≤ ≤ ≤ ≤   

Step 3. Calculate = ( )i iF F A  by formula (3.5),  
Step 4. Order the values iF  obtaining (1) (2) ( )< < ... < n .F F F  The best solution is 

the alternative corresponding to ( ) .nA   
Note. If for an initial MADM problem there are m  solutions obtained, perhaps 

by m cardinal methods, and these solutions derive from the values of some functions 
,1jg j m≤ ≤ f (of the type  or Q  from the previous section), then a new MADM 

cardinal problem can be formulated as in Step 1 of this section, with the decision matrix 
 defined as  =|| ||,1 ,1ijD d i n j m≤ ≤ ≤ ≤

= ( )ij j id g A .

]

 (4.6) 

Then, an algorithm (such as SAW) can be applied, obtaining the final combined 
solution.  

Finally, we note that multivariate stochastic attributes could also be used; in this 
case, multivariate distributions are considered as attributes. Entropy and informational 
energy [5] are easily defined and calculated. The method based on  and 

 where 
= [ ( )]e E f X

= [log ( )h E f X− X  is a two dimensional vector, can use the results from [10] 
(mentioned above), for bivariate normal and Cauchy distributions. 
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