OPTIMALITY AND DUALITY FOR A CLASS OF NONDIFFERENTIABLE MINIMAX FRACTIONAL PROGRAMMING PROBLEMS

Antoan BĂTĂTORESCU
University of Bucharest, Bucharest
batator@fmi.unibuc.ro
Miruna BELDIMAN
Institute of Mathematical Statistics and Applied Mathematics, Romanian Academy, Bucharest
miruna.m@gmail.com
Iulian ANTONESCU
"Mircea cel Bătrân" Naval Academy, Constanța, Romania iulanton@yahoo.com
Roxana CIUMARA
Academy of Economic Studies, Bucharest
marinrox@mailcom.ase.ro

Received: December 2007 / Accepted: May 2009

Abstract

Necessary and sufficient optimality conditions are established for a class of nondifferentiable minimax fractional programming problems with square root terms. Subsequently, we apply the optimality conditions to formulate a parametric dual problem and we prove some duality results.

Keywords: Fractional programming, generalized invexity, optimality conditions, duality.

1. INTRODUCTION

Let us consider the following continuous differentiable mappings:

$$
f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}, \quad h: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}, \quad g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}, \quad \Psi: \mathbb{R}_{+} \rightarrow \mathbb{R}
$$

where $\frac{d \Psi(x)}{d x} \stackrel{\text { def }}{=} \Psi^{\prime}(x)>0$, and $g=\left(g_{1}, \cdots, g_{p}\right)$. We denote

$$
\begin{equation*}
\mathcal{P}=\left\{x \in \mathbb{R}^{n} \mid g_{j}(x) \leq 0, j=1,2, \cdots, p\right\} \tag{1.1}
\end{equation*}
$$

and consider the compact subset $Y \subseteq \mathbb{R}^{m}$. Let $B_{r}, r=\overline{1, \beta}$, and $D_{q}, q=\overline{1, \delta}$, be $n \times n$ positive semi definite matrices such that for each $(x, y) \in \mathcal{P} \times Y$, we have:

$$
f(x, y)+\sum_{r=1}^{\beta} \sqrt{x^{T} B_{r} x} \geq 0, \quad h(x, y)-\sum_{q=1}^{\delta} \sqrt{x^{T} D_{q} x}>0
$$

In this paper we consider the following non differentiable minimax fractional programming problem:

$$
\begin{equation*}
\inf _{x \in \mathcal{P}} \sup _{y \in Y} \Psi\left[\left(f(x, y)+\sum_{r=1}^{\beta} \sqrt{x^{T} B_{r} x}\right) /\left(h(x, y)-\sum_{q=1}^{\delta} \sqrt{x^{T} D_{q} x}\right)\right] . \tag{P}
\end{equation*}
$$

For $\beta=\delta=1$, and $\Psi \equiv 1$, this problem was studied by Lai et al. [3], and further, if $B_{1}=D_{1}=0,(\mathrm{P})$ is a differentiable minimax fractional programming problem which has been studied by Chandra and Kumar [2], Liu and Wu [5]. Many authors investigated the optimality conditions and duality theorems for minimax (fractional) programming problems. For details, one can consult [1, 4, 7].

In an earlier work, under conditions of convexity, Schmittendorf [6] established necessary and sufficient optimality conditions for the problem:

$$
\begin{equation*}
\inf _{x \in \mathcal{P}} \sup _{y \in Y} \phi(x, y) \tag{P1}
\end{equation*}
$$

where $\phi: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ is a continuous differentiable mapping. Later, Yadev and Mukherjee [9] employed the optimality conditions of Schmittendorf [6] to construct two dual problems and derived duality theorems for (convex) differentiable fractional minimax programming. In [2], Chandra and Kumar constructed two modified dual problems for which they proved duality theorems for (convex) differentiable fractional minimax programming. Liu and Wu [5] relaxed the convexity assumption in the sufficient optimality of [2] and employed the optimality conditions so as to construct one parametric dual and two other dual models of parametric-free problems. Several authors considered the optimality and duality theorems for nondifferentiable non convex minimax fractional programming problems, one can consult [4, 7].

We present necessary and sufficient optimality conditions for problem (P) and we apply the optimality conditions so as to construct one parametric dual problem for which we state weak duality, strong duality, and strictly converse duality theorems.

2. NOTATIONS AND PRELIMINARY RESULTS

Throughout this paper, we denote by \mathbb{R}^{n} the n-dimensional Euclidean space and by \mathbb{R}_{+}^{n} its nonnegative orthant. Let us consider the set \mathcal{P} defined by (1.1), and for each $x \in \mathcal{P}$, we define

$$
\begin{aligned}
& J(x)=\left\{j \in\{1,2, \cdots, p\} \mid g_{j}(x)=0\right\}, \\
& Y(x)=\left\{y \in Y \left\lvert\, \Psi\left(\frac{f(x, y)+\sum_{r=1}^{\beta} \sqrt{x^{T} B_{r} x}}{h(x, y)-\sum_{q=1}^{\delta} \sqrt{x^{T} D_{q} x}}\right)=\sup _{z \in Y} \Psi\left(\frac{f(x, z)+\sum_{r=1}^{\beta} \sqrt{x^{T} B_{r} x}}{h(x, z)-\sum_{q=1}^{\delta} \sqrt{x^{T} D_{q} x}}\right)\right.\right\}, \\
& K(x)=\left\{(s, t, \bar{y}) \in \mathbb{N} \times \mathbb{R}_{+}^{s} \times \mathbb{R}^{m s} \left\lvert\, \begin{array}{l}
1 \leq s \leq n+1, \sum_{i=1}^{s} t_{i}=1, \\
\text { and } \bar{y}=\left(\bar{y}_{1}, \cdots, \bar{y}_{s}\right) \in \mathbb{R}^{m s} \\
\text { with } \bar{y}_{i} \in Y(x), i=\overline{1, s}
\end{array}\right.\right\} .
\end{aligned}
$$

Since f and h are continuous differentiable functions and Y is a compact set in \mathbb{R}^{m}, it follows that for each $x_{0} \in \mathcal{P}$, we have $Y\left(x_{0}\right) \neq \varnothing$. We denote for any $\bar{y}_{i} \in Y\left(x_{0}\right)$,

$$
\begin{equation*}
k_{0}=\left(f\left(x_{0}, \bar{y}_{i}\right)+\sum_{r=1}^{\beta} \sqrt{x_{0}^{T} B_{r} x_{0}}\right) /\left(h\left(x_{0}, \bar{y}_{i}\right)-\sum_{q=1}^{\delta} \sqrt{x_{0}^{T} D_{q} x_{0}}\right) \tag{2.1}
\end{equation*}
$$

Let A be an $m \times n$ matrix and let $M, M_{i}, i=1, \cdots, k$, be $n \times n$ symmetric positive semi definite matrices.

Lemma 2.1 [8] We have

$$
A x \geq 0 \Rightarrow c^{T} x+\sum_{i=1}^{k} \sqrt{x^{T} M_{i} x} \geq 0
$$

if and only if there exist $y \in \mathbb{R}_{+}^{m}$ and $v_{i} \in \mathbb{R}^{n}, i=\overline{1, k}$, such that

$$
A v_{i} \geq 0, \quad v_{i}^{T} M_{i} v_{i} \leq 1, i=\overline{1, k}, \quad A^{T} y=c+\sum_{i=1}^{k} M_{i} v_{i}
$$

Lemma 2.2 [6] Let x_{0} be a solution of the minimax problem (P1) and the vectors $\nabla g_{j}\left(x_{0}\right), \quad j \in J\left(x_{0}\right)$ are linearly independent. Then there exist a positive integer s,
$1 \leq s \leq n+1$, real numbers $t_{i} \geq 0, \quad i=\overline{1, s}, \quad \mu_{j} \geq 0, \quad j=\overline{1, p}$, and vectors $\bar{y}_{i} \in Y\left(x_{0}\right)$, $i=\overline{1, s}$, such that

$$
\sum_{i=1}^{s} t_{i} \nabla_{x} \psi\left(x_{0}, \bar{y}_{i}\right)+\sum_{j=1}^{p} \mu_{j} \nabla g_{j}\left(x_{0}\right)=0 ; \quad \mu_{j} g_{j}\left(x_{0}\right)=0, j=\overline{1, p} ; \quad \sum_{i=1}^{s} t_{i} \neq 0
$$

Let us consider for the next definitions the differentiable function $\varphi: C \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$, the real number $\rho \in \mathbb{R}$, and the following functions: $\eta: C \times C \rightarrow \mathbb{R}^{n}, \quad \theta: C \times C \rightarrow \mathbb{R}_{+}$
Definition 2.1 The differentiable function φ is (η, ρ, θ)-invex at $x_{0} \in C$ if the following hold: $\varphi(x)-\varphi\left(x_{0}\right) \geq \eta\left(x, x_{0}\right)^{T} \nabla \varphi\left(x_{0}\right)+\rho \theta\left(x, x_{0}\right), \quad \forall x \in C$.

If $-\varphi$ is (η, ρ, θ)-invex at $x_{0} \in C$, then φ is called (η, ρ, θ)-incave at $x_{0} \in C$. If the inequality holds strictly, then φ is called to be strictly (η, ρ, θ)-invex.
Definition 2.2 The differentiable function φ is (η, ρ, θ)-pseudo-invex at $x_{0} \in C$ if the following hold: $\eta\left(x, x_{0}\right)^{T} \nabla \varphi\left(x_{0}\right) \geq-\rho \theta\left(x, x_{0}\right) \Rightarrow \varphi(x) \geq \varphi\left(x_{0}\right), \quad \forall x \in C$,

If $-\varphi$ is (η, ρ, θ)-pseudo-invex at $x_{0} \in C$, then φ is called ($\left.\eta, \rho, \theta\right)$-pseudoincave at $x_{0} \in C$.
Definition 2.3 The differentiable function φ is strictly (η, ρ, θ)-pseudo-invex at $x_{0} \in C$ if the following hold: $\eta\left(x, x_{0}\right)^{T} \nabla \varphi\left(x_{0}\right) \geq-\rho \theta\left(x, x_{0}\right) \Rightarrow \varphi(x)>\varphi\left(x_{0}\right), \forall x \in C, x \neq x_{0}$.
Definition 2.4 The differentiable function φ is (η, ρ, θ)-quasi-invex at $x_{0} \in C$ if the following hold: $\varphi(x) \leq \varphi\left(x_{0}\right) \Rightarrow \eta\left(x, x_{0}\right)^{T} \nabla \varphi\left(x_{0}\right) \leq-\rho \theta\left(x, x_{0}\right), \quad \forall x \in C$.

If $-\varphi$ is (η, ρ, θ)-quasi-invex at $x_{0} \in C$, then φ is called (η, ρ, θ)-quasiincave at $x_{0} \in C$.

3. NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS

For any $x \in \mathscr{P}$, let us denote the following index sets:

$$
\begin{aligned}
& \mathscr{B}(x)=\left\{r \in\{1,2, \cdots, \beta\} \mid x^{T} B_{r} x>0\right\}, \\
& \overline{\mathfrak{B}}(x)=\{1,2, \cdots, \beta\} \backslash \mathscr{B}(x)=\left\{r \mid x^{T} B_{r} x=0\right\}, \\
& \mathscr{D}(x)=\left\{q \in\{1,2, \cdots, \delta\} \mid x^{T} D_{q} x>0\right\}, \\
& \overline{\mathscr{D}}(x)=\{1,2, \cdots, \delta\} \backslash \mathscr{D}(x)=\left\{q \mid x^{T} D_{q} x=0\right\} .
\end{aligned}
$$

Using Lemma 2.2, we may prove the following necessary optimality conditions for problem (P).

Theorem 3.1 (Necessary Condition) If x_{0} is an optimal solution of problem (P) for which $\overline{\mathfrak{B}}\left(x_{0}\right)=\varnothing, \overline{\mathscr{D}}\left(x_{0}\right)=\varnothing$, and $\nabla g_{j}\left(x_{0}\right), j \in J\left(x_{0}\right)$ are linearly independent, then
there exist $(s, \bar{t}, \bar{y}) \in K\left(x_{0}\right), \quad k_{0} \in \mathbb{R}_{+}, \quad w_{r} \in \mathbb{R}^{n}, r=\overline{1, \beta}, \quad v_{q} \in \mathbb{R}^{n}, q=\overline{1, \delta}$, and $\bar{\mu} \in \mathbb{R}_{+}^{p}$ such that

$$
\begin{align*}
& \sum_{i=1}^{s} \bar{t}_{i} \Psi^{\prime}\left(k_{0}\right)\left[\nabla f\left(x_{0}, \bar{y}_{i}\right)+\sum_{r=1}^{\beta} B_{r} w_{r}-k_{0}\left(\nabla h\left(x_{0}, \bar{y}_{i}\right)-\sum_{q=1}^{\delta} D_{q} v_{q}\right)\right] \tag{3.1}\\
& +\sum_{j=1}^{p} \bar{\mu}_{j} \nabla g_{j}\left(x_{0}\right)=0, \\
& f\left(x_{0}, \bar{y}_{i}\right)+\sum_{r=1}^{\beta} \sqrt{x_{0}^{T} B_{r} x_{0}}-k_{0}\left(h\left(x_{0}, \bar{y}_{i}\right)-\sum_{q=1}^{\delta} \sqrt{x_{0}^{T} D_{q} x_{0}}\right)=0, \quad \forall i=\overline{1, s}, \tag{3.2}\\
& \sum_{j=1}^{p} \bar{\mu}_{j} g_{j}\left(x_{0}\right)=0, \tag{3.3}\\
& \bar{t}_{i} \geq 0, \quad \sum_{i=1}^{s} \bar{t}_{i}=1, \tag{3.4}\\
& w_{r}^{T} B_{r} w_{r} \leq 1, x_{0}^{T} B_{r} w_{r}=\sqrt{x_{0}^{T} B_{r} x_{0}}, r=\overline{1, \beta} ; \\
& v_{q}^{T} D_{q} v_{q} \leq 1, x_{0}^{T} D_{q} v_{q}=\sqrt{x_{0}^{T} D_{q} x_{0}}, q=\overline{1, \delta} . \tag{3.5}
\end{align*}
$$

Proof: Since all $B_{r}, r=\overline{1, \beta}$, and $D_{q}, q=\overline{1, \delta}$, are positive definite and f and h are differentiable functions, it follows that the function

$$
\Psi\left[\left(f(x, y)+\sum_{r=1}^{\beta} \sqrt{x^{T} B_{r} x}\right) /\left(h(x, y)-\sum_{q=1}^{\delta} \sqrt{x^{T} D_{q} x}\right)\right]
$$

is differentiable with respect to x for any given $y \in \mathbb{R}^{m}$. Using Lemma 2.2, it follows that there exist a positive integer $s, 1 \leq s \leq n+1$, and vectors $t \in \mathbb{R}_{+}^{s}, \quad \bar{\mu} \in \mathbb{R}_{+}^{p}, \bar{y}_{i} \in Y\left(x_{0}\right)$, $i=\overline{1, s}$, so that

$$
\begin{align*}
& \begin{array}{l}
\sum_{i=1}^{s} t_{i} \frac{\Psi^{\prime}\left(k_{0}\right)}{h\left(x_{0}, \bar{y}_{i}\right)-\sum_{q=1}^{\delta} \sqrt{x_{0}^{T} D_{q} x_{0}}}\left[\nabla f\left(x_{0}, \bar{y}_{i}\right)+\sum_{r=1}^{\beta} \frac{B_{r} x_{0}}{\sqrt{x_{0}^{T} B_{r} x_{0}}}-\right. \\
\left.-k_{0}\left(\nabla h\left(x_{0}, \bar{y}_{i}\right)-\sum_{r=1}^{\beta} \frac{D_{q} x_{0}}{\sqrt{x_{0}^{T} D_{q} x_{0}}}\right)\right]+\sum_{j=1}^{p} \bar{\mu}_{j} \nabla g_{j}\left(x_{0}\right)=0
\end{array} \tag{3.6}\\
& \sum_{j=1}^{p} \bar{\mu}_{j} g_{j}\left(x_{0}\right)=0,
\end{align*}
$$

$$
\begin{equation*}
\sum_{i=1}^{s} t_{i}>0 \tag{3.8}
\end{equation*}
$$

where k_{0} is given by (2.1). If we denote

$$
\begin{aligned}
& w_{r}=\frac{x_{0}}{\sqrt{x_{0}^{T} B_{r} x_{0}}}, r=\overline{1, \beta}, \quad v_{q}=\frac{x_{0}}{\sqrt{x_{0}^{T} D_{q} x_{0}}}, q=\overline{1, \delta} \\
& \overline{t_{i}}=\frac{t_{i}^{0}}{\sum_{i=1}^{s} t_{i}^{0}}, \quad \text { where } t_{i}^{0}=\frac{\Psi^{\prime}\left(k_{0}\right) t_{i}}{h\left(x_{0}, \bar{y}_{i}\right)-\sum_{q=1}^{\delta} \sqrt{x_{0}^{T} D_{q} x_{0}}}
\end{aligned}
$$

we get (3.1) - (3.4). Furthermore, it easily confirms that relation (3.5) also holds, and the theorem is proved.

We notice that, in the above theorem, all matrices B_{r} and D_{q} are supposed to be positive definite. If at least one of $\overline{\mathfrak{B}}\left(x_{0}\right)$ or $\overline{\mathfrak{D}}\left(x_{0}\right)$ is not empty, then the functions involved in the objective function of problem (P) are not differentiable. In this case, the necessary optimality conditions still hold under some additional assumptions. For $x_{0} \in \mathcal{P}$ and $(s, \bar{t}, \bar{y}) \in K\left(x_{0}\right)$ we define the following vector:

$$
\alpha=\sum_{i=1}^{s} \bar{t}_{i} \Psi^{\prime}\left(k_{0}\right)\left(\nabla f\left(x_{0}, \bar{y}_{i}\right)+\sum_{r \in \boldsymbol{\mathcal { B }}\left(x_{0}\right)} \frac{B_{r} x_{0}}{\sqrt{x_{0}^{T} B_{r} x_{0}}}-k_{0}\left(\nabla h\left(x_{0}, \bar{y}_{i}\right)-\sum_{r \in \boldsymbol{D}\left(x_{0}\right)} \frac{D_{q} x_{0}}{\sqrt{x_{0}^{T} D_{q} x_{0}}}\right)\right)
$$

Now we define a set Z as follows:

$$
Z_{\bar{y}}\left(x_{0}\right)=\left\{z \in \mathbb{R}^{n} \left\lvert\, \begin{array}{l}
z^{T} \nabla g_{j}\left(x_{0}\right) \leq 0, j \in J\left(x_{0}\right), \\
z^{T} \alpha+\sum_{i=1}^{s} \overline{t_{i}}\left(\sum_{r \in \overline{\overline{\mathcal{D}}}\left(x_{0}\right)} \sqrt{z^{T} B_{r} z}+\sum_{q \in \overline{\bar{D}}\left(x_{0}\right)} \sqrt{z^{T}\left(\left(k_{0}\right)^{2} D_{q}\right) z}\right)<0 .
\end{array}\right.\right\}
$$

Using Lemma 2.1, we establish the following result:
Theorem 3.2 Let x_{0} be an optimal solution of problem (P) and at least one of $\overline{\mathcal{B}}\left(x_{0}\right)$ or $\overline{\mathfrak{D}}\left(x_{0}\right)$ is not empty. Let $(s, \bar{t}, \bar{y}) \in K\left(x_{0}\right)$ be such that $Z_{\bar{y}}\left(x_{0}\right)=\varnothing$. Then there exist vectors $w_{r} \in \mathbb{R}^{n}, \quad r=\overline{1, \beta}, \quad v_{q} \in \mathbb{R}^{n}, q=\overline{1, \delta}$, and $\bar{\mu} \in \mathbb{R}_{+}^{p}$ which satisfy the relations (3.1) - (3.5).

Proof: Using (2.1) we get (3.2), and relation (3.4) follows directly from the assumptions.
Since $Z_{\bar{y}}\left(x_{0}\right)=\varnothing$, for any $z \in \mathbb{R}^{n}$ with: $-z^{T} \nabla g_{j}\left(x_{0}\right) \geq 0, j \in J\left(x_{0}\right)$, we have

$$
z^{T} \alpha+\sum_{i=1}^{s} \bar{t}_{i}\left(\sum_{r \in \overline{\mathcal{B}}\left(x_{0}\right)} \sqrt{z^{T} B_{r} z}+\sum_{q \in \overline{\bar{D}}\left(x_{0}\right)} \sqrt{z^{T}\left(\left(k_{0}\right)^{2} D_{q}\right) z}\right) \geq 0
$$

Let us denote: $\lambda=\sum_{i=1}^{s} \bar{t}_{i}, \quad \gamma=\sum_{i=1}^{s} \bar{t}_{i} k_{0}$. Applying Lemma 2.1 considering:

- the rows of matrix A are the vectors $\left[-\nabla g_{j}\left(x_{0}\right)\right], j \in J\left(x_{0}\right)$;
- $\quad c=\alpha$;
- $\quad M_{r}^{B}=\left\{\begin{array}{cl}\lambda^{2} B_{r} & \text { if } r \in \overline{\mathscr{B}}\left(x_{0}\right) \\ 0 & \text { if } r \in \mathscr{B}\left(x_{0}\right)\end{array}\right.$ and $M_{q}^{D}=\left\{\begin{array}{cl}\gamma^{2} D_{q} & \text { if } q \in \overline{\mathfrak{D}}\left(x_{0}\right) \\ 0 & \text { if } q \in \mathscr{D}\left(x_{0}\right)\end{array}\right.$,
it follows that there exist the scalars $\bar{\mu}_{j} \geq 0, j \in J\left(x_{0}\right)$, and the vectors $\bar{w}_{r} \in \mathbb{R}^{n}$, $r \in \overline{\mathscr{B}}\left(x_{0}\right), \quad \bar{v}_{q} \in \mathbb{R}^{n}, \quad q \in \overline{\mathscr{D}}\left(x_{0}\right)$, such that

$$
\begin{equation*}
-\sum_{j \in J\left(x_{0}\right)} \bar{\mu}_{j} \nabla g_{j}\left(x_{0}\right)=c+\sum_{r \in \overline{\mathcal{D}}\left(x_{0}\right)} M_{r}^{B} \bar{w}_{r}+\sum_{q \in \overline{\mathcal{D}}\left(x_{0}\right)} M_{q}^{D} \bar{v}_{q} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{w}_{r}^{T} M_{r}^{B} \bar{w}_{r} \leq 1, \quad r \in \overline{\mathfrak{B}}\left(x_{0}\right) ; \quad \bar{v}_{q}^{T} M_{q}^{D} \bar{v}_{q} \leq 1, \quad q \in \overline{\mathscr{D}}\left(x_{0}\right) . \tag{3.10}
\end{equation*}
$$

Since $g_{j}\left(x_{0}\right)=0$ for $j \in J\left(x_{0}\right)$, we have: $\bar{\mu}_{j} g_{j}\left(x_{0}\right)=0$ for $j \in J\left(x_{0}\right)$. If $j \notin J\left(x_{0}\right)$, we put $\bar{\mu}_{j}=0$. It follows: $\sum_{j=1}^{p} \bar{\mu}_{j} g_{j}\left(x_{0}\right)=0$, which shows that relation (3.3) holds.
Now we define

$$
w_{r}=\left\{\begin{array}{cc}
\frac{x_{0}}{\sqrt{x_{0}^{T} B_{r} x_{0}},}, & \text { if } r \in \mathscr{B}\left(x_{0}\right) \\
\lambda \bar{w}_{r}, & \text { if } r \in \overline{\mathcal{B}}\left(x_{0}\right)
\end{array} \quad \text { and } \quad v_{q}=\left\{\begin{array}{cc}
\frac{x_{0}}{\sqrt{x_{0}^{T} D_{q} x_{0}},} & \text { if } q \in \mathscr{D}\left(x_{0}\right) \\
\gamma \bar{v}_{q}, & \text { if } q \in \overline{\mathfrak{D}}\left(x_{0}\right)
\end{array}\right.\right.
$$

With this notations, equality (3.9) yields relation (3.1).
From (3.10) we get: $w_{r}^{T} B_{r} w_{r} \leq 1$ for any $r=\overline{1, \beta}$. Further, if $r \in \overline{\mathcal{B}}\left(x_{0}\right)$, we have $x_{0}^{T} B_{r} x_{0}=0$, which implies $B_{r} x_{0}=0$, and then $\sqrt{x_{0}^{T} B_{r} x_{0}}=0=x_{0}^{T} B_{r} w_{r}$. If $r \in \mathscr{B}\left(x_{0}\right)$, we obviously have $x_{0}^{T} B_{r} w_{r}=\sqrt{x_{0}^{T} B_{r} x_{0}}$. The same arguments apply to matrices D_{q}, so relation (3.5) holds. Therefore the theorem is proved.

For convenience, if a point $x_{0} \in \mathcal{P}$ has the property that the vectors $\nabla g_{j}\left(x_{0}\right)$, $j \in J\left(x_{0}\right)$, are linear independent and the set $Z_{\bar{y}}\left(x_{0}\right)=\varnothing$, then we say that $x_{0} \in \mathscr{P}$ satisfy a constraint qualification.

The results of Theorems 3.1 and 3.2 are the necessary conditions for the optimal solution of problem (P). Actually, with some supplementary assumptions, the conditions (3.1) - (3.5) are also the sufficient optimality conditions for (P), which we state the following result for by involving generalized invex functions, being weaker assumptions used by Lai et al. in [3].

Theorem 3.3 (Sufficient Conditions) Let $x_{0} \in \mathscr{P}$ be a feasible solution of (P) for which there exist a positive integer $s, 1 \leq s \leq n+1, \quad \bar{y}_{i} \in Y\left(x_{0}\right), \quad i=\overline{1, s}, \quad k_{0} \in \mathbb{R}_{+}$, defined by (2.1), $\bar{t} \in \mathbb{R}_{+}^{s}, \quad w_{r} \in \mathbb{R}^{n}, r=\overline{1, \beta}, \quad v_{q} \in \mathbb{R}^{n}, q=\overline{1, \delta}$, and $\bar{\mu} \in \mathbb{R}_{+}^{p}$ such that the relations (3.1) - (3.5) are satisfied. If any one of the following four conditions holds:
a) $f\left(\cdot, \bar{y}_{i}\right)+\sum_{r=1}^{\beta}(\cdot)^{T} B_{r} w_{r}$ is $\left(\eta, \rho_{i}, \theta\right)$-invex, $h\left(\cdot, \bar{y}_{i}\right)-\sum_{q=1}^{\delta}(\cdot)^{T} D_{q} v_{q}$ is $\left(\eta, \rho_{i}^{\prime}, \theta\right)$-incave for $i=\overline{1, s}, \quad \sum_{j=1}^{p} \bar{\mu}_{j} g_{j}(\cdot)$ is $\left(\eta, \rho_{0}, \theta\right)$-invex, and $\rho_{0}+\sum_{i=1}^{s} \bar{t}_{i}\left(\rho_{i}+\rho_{i}^{\prime} k_{0}\right) \geq 0$,
b) $\bar{\Phi}(\cdot) \stackrel{\text { def }}{=} \sum_{i=1}^{s} \bar{t}_{i}\left[f\left(\cdot, \bar{y}_{i}\right)+\sum_{r=1}^{\beta}(\cdot)^{T} B_{r} w_{r}-k_{0}\left(h\left(\cdot, \bar{y}_{i}\right)-\sum_{q=1}^{\delta}(\cdot)^{T} D_{q} v_{q}\right)\right]$ is (η, ρ, θ)-invex and $\sum_{j=1}^{p} \bar{\mu}_{j} g_{j}(\cdot)$ is $\left(\eta, \rho_{0}, \theta\right)$-invex, and $\rho+\rho_{0} \geq 0$,
c) $\bar{\Phi}(\cdot) \quad$ is $\quad(\eta, \rho, \theta)$-pseudo-invex, $\quad \sum_{j=1}^{p} \bar{\mu}_{j} g_{j}(\cdot) \quad$ is $\quad\left(\eta, \rho_{0}, \theta\right)$-quasi-invex, and $\rho+\rho_{0} \geq 0$,
d) $\bar{\Phi}(\cdot)$ is $\quad(\eta, \rho, \theta)$-quasi-invex, $\quad \sum_{j=1}^{p} \bar{\mu}_{j} g_{j}(\cdot)$ is strictly $\quad\left(\eta, \rho_{0}, \theta\right)$-pseudo-invex,

$$
\rho+\rho_{0} \geq 0
$$

then x_{0} is an optimal solution of (P).
Proof: On contrary, let us suppose that x_{0} is not an optimal solution of (P). Then there exists an $x_{1} \in \mathcal{P}$ such that

$$
\sup _{y \in Y} \Psi\left(\frac{f\left(x_{1}, y\right)+\sum_{r=1}^{\beta} \sqrt{x_{1}^{T} B_{r} x_{1}}}{h\left(x_{1}, y\right)-\sum_{q=1}^{\delta} \sqrt{x_{1}^{T} D_{q} x_{1}}}\right)<\sup _{y \in Y} \Psi\left(\frac{f\left(x_{0}, y\right)+\sum_{r=1}^{\beta} \sqrt{x_{0}^{T} B_{r} x_{0}}}{h\left(x_{0}, y\right)-\sum_{q=1}^{\delta} \sqrt{x_{0}^{T} D_{q} x_{0}}}\right)
$$

We note that, for $\bar{y}_{i} \in Y\left(x_{0}\right), i=\overline{1, s}$, we have

$$
\sup _{y \in Y} \Psi\left(\frac{f\left(x_{0}, y\right)+\sum_{r=1}^{\beta} \sqrt{x_{0}^{T} B_{r} x_{0}}}{h\left(x_{0}, y\right)-\sum_{q=1}^{\delta} \sqrt{x_{0}^{T} D_{q} x_{0}}}\right)=\Psi\left(\frac{f\left(x_{0}, \bar{y}_{i}\right)+\sum_{r=1}^{\beta} \sqrt{x_{0}^{T} B_{r} x_{0}}}{h\left(x_{0}, \bar{y}_{i}\right)-\sum_{q=1}^{\delta} \sqrt{x_{0}^{T} D_{q} x_{0}}}\right)=\Psi\left(k_{0}\right),
$$

and

$$
\Psi\left(\frac{f\left(x_{1}, \bar{y}_{i}\right)+\sum_{r=1}^{\beta} \sqrt{x_{1}^{T} B_{r} x_{1}}}{h\left(x_{1}, \bar{y}_{i}\right)-\sum_{q=1}^{\delta} \sqrt{x_{1}^{T} D_{q} x_{1}}}\right) \leq \sup _{y \in Y} \Psi\left(\frac{f\left(x_{1}, y\right)+\sum_{r=1}^{\beta} \sqrt{x_{1}^{T} B_{r} x_{1}}}{h\left(x_{1}, y\right)-\sum_{q=1}^{\delta} \sqrt{x_{1}^{T} D_{q} x_{1}}}\right) .
$$

Since $\Psi^{\prime}(x)>0, \Psi$ is an increasing function and we get

$$
\begin{equation*}
f\left(x_{1}, \bar{y}_{i}\right)+\sum_{r=1}^{\beta} \sqrt{x_{1}^{T} B_{r} x_{1}}-k_{0}\left(h\left(x_{1}, \bar{y}_{i}\right)-\sum_{q=1}^{\delta} \sqrt{x_{1}^{T} D_{q} x_{1}}\right)<0, \text { for } i=\overline{1, s} \tag{3.11}
\end{equation*}
$$

From the generalized Schwarz inequality $x^{T} M v \leq \sqrt{x^{T} M x} \sqrt{v^{T} M v}$, it follows that $v^{T} M v \leq 1 \Rightarrow x^{T} M v \leq \sqrt{x^{T} M x}$, where M is an arbitrary symmetric positive semi definite matrix. Using now the relations (3.5), (3.11), (3.2), and (3.4), we obtain

$$
\begin{equation*}
\bar{\Phi}\left(x_{1}\right)<\bar{\Phi}\left(x_{0}\right) \tag{3.12}
\end{equation*}
$$

1. If hypothesis a) holds, then for $i=\overline{1, s}$, we have

$$
\begin{align*}
& f\left(x_{1}, \bar{y}_{i}\right)+\sum_{r=1}^{\beta} x_{1}^{T} B_{r} w_{r}-f\left(x_{0}, \bar{y}_{i}\right)-\sum_{r=1}^{\beta} x_{0}^{T} B_{r} w_{r} \geq \\
& \quad \geq \eta\left(x_{1}, x_{0}\right)^{T}\left(\nabla f\left(x_{0}, \bar{y}_{i}\right)+\sum_{r=1}^{\beta} B_{r} w_{r}\right)+\rho_{i} \theta\left(x_{1}, x_{0}\right) \tag{3.13}
\end{align*}
$$

and

$$
\begin{align*}
& -h\left(x_{1}, \bar{y}_{i}\right)+\sum_{q=1}^{\delta} x_{1}^{T} D_{q} v_{q}+h\left(x_{0}, \bar{y}_{i}\right)-\sum_{q=1}^{\delta} x_{0}^{T} D_{q} v_{q} \geq \\
& \quad \geq \eta\left(x_{1}, x_{0}\right)^{T}\left(-\nabla h\left(x_{0}, \bar{y}_{i}\right)+\sum_{q=1}^{\delta} D_{q} v_{q}\right)+\rho_{i}^{\prime} \theta\left(x_{1}, x_{0}\right) . \tag{3.14}
\end{align*}
$$

Now, multiplying (3.13) by $\overline{t_{i}}$, (3.14) by $\bar{t}_{i} k_{0}$, and then sum up these inequalities, we obtain

$$
\begin{aligned}
& \bar{\Phi}\left(x_{1}\right)-\bar{\Phi}\left(x_{0}\right) \geq \sum_{i=1}^{s} \bar{t}_{i}\left(\rho_{i}+k_{0} \rho_{i}^{\prime}\right) \theta\left(x_{1}, x_{0}\right)+ \\
& +\eta\left(x_{1}, x_{0}\right)^{T} \sum_{i=1}^{s} \bar{t}_{i}\left[\nabla f\left(x_{0}, \bar{y}_{i}\right)+\sum_{r=1}^{\beta} B_{r} w_{r}-k_{0}\left(\nabla h\left(x_{0}, \bar{y}_{i}\right)-\sum_{q=1}^{\delta} D_{q} v_{q}\right)\right]
\end{aligned}
$$

Further, by (3.1) and $\left(\eta, \rho_{0}, \theta\right)$-invexity of $\sum_{j=1}^{p} \bar{\mu}_{j} g_{j}(\cdot)$, we get

$$
\begin{aligned}
\bar{\Phi}\left(x_{1}\right)-\bar{\Phi}\left(x_{0}\right) & \geq-\eta\left(x_{1}, x_{0}\right)^{T} \sum_{j=1}^{p} \bar{\mu}_{j} \nabla g_{j}\left(x_{0}\right)+\sum_{i=1}^{s} \bar{t}_{i}\left(\rho_{i}+k_{0} \rho_{i}^{\prime}\right) \theta\left(x_{1}, x_{0}\right) \\
& \geq-\sum_{j=1}^{p} \bar{\mu}_{j} g_{j}\left(x_{1}\right)+\sum_{j=1}^{p} \bar{\mu}_{j} g_{j}\left(x_{0}\right)+\left(\rho_{0}+\sum_{i=1}^{s} \bar{t}_{i}\left(\rho_{i}+k_{0} \rho_{i}^{\prime}\right)\right) \theta\left(x_{1}, x_{0}\right)
\end{aligned}
$$

Since $x_{1} \in \mathcal{P}$, we have $g_{i}\left(x_{1}\right) \leq 0, i=\overline{1, s}$, and using (3.3) it follows

$$
\bar{\Phi}\left(x_{1}\right)-\bar{\Phi}\left(x_{0}\right) \geq\left(\rho_{0}+\sum_{i=1}^{s} \bar{t}_{i}\left(\rho_{i}+k_{0} \rho_{i}^{\prime}\right)\right) \theta\left(x_{1}, x_{0}\right) \geq 0
$$

which contradicts the inequality (3.12).
The conclusion follows similarly by using the assumptions b), c) and d).

4. DUALITY

Let $H(s, t, y)$ be the set consisting of all $(z, \mu, k, v, w) \in \mathbb{R}^{n} \times \mathbb{R}_{+}^{p} \times \mathbb{R}_{+} \times \mathbb{R}^{n \delta} \times \mathbb{R}^{n \beta}$, where $v=\left(v_{1}, \cdots, v_{\delta}\right), \quad v_{q} \in \mathbb{R}^{n}, \quad q=\overline{1, \delta}$, and $w=\left(w_{1}, \cdots, w_{\beta}\right), \quad w_{r} \in \mathbb{R}^{n}, r=\overline{1, \beta}$, which satisfy the following conditions:

$$
\begin{align*}
& \sum_{i=1}^{s} t_{i} \Psi^{\prime}(k)\left[\nabla f\left(z, y_{i}\right)+\sum_{r=1}^{\beta} B_{r} w_{r}-k\left(\nabla h\left(z, y_{i}\right)-\sum_{q=1}^{\delta} D_{q} v_{q}\right)\right]+\sum_{j=1}^{p} \mu_{j} \nabla g_{j}(z)=0, \tag{4.1}\\
& \sum_{i=1}^{s} t_{i}\left[f\left(z, y_{i}\right)+\sum_{r=1}^{\beta} z^{T} B_{r} w_{r}-k\left(h\left(z, y_{i}\right)-\sum_{q=1}^{\delta} z^{T} D_{q} v_{q}\right)\right] \geq 0 \tag{4.2}\\
& \sum_{j=1}^{p} \mu_{j} g_{j}(z) \geq 0 \tag{4.3}\\
& (s, t, y) \in K(z), \tag{4.4}\\
& w_{r}^{T} B_{r} w_{r} \leq 1, \quad r=\overline{1, \beta}, \quad \text { and } \quad v_{q}^{T} D_{q} v_{q} \leq 1, \quad q=\overline{1, \delta} \tag{4.5}
\end{align*}
$$

The optimality conditions, stated in the preceding section for the minimax problem (P), suggest us to define the following dual problem:

$$
\begin{equation*}
\max _{(s, t, y) \in K(z)} \sup \{\Psi(k) \mid(z, \mu, k, v, w) \in H(s, t, y)\} \tag{DP}
\end{equation*}
$$

If, for a triplet $(s, t, y) \in K(z)$, the set $H(s, t, y)=\varnothing$, then we define the supremum over $H(s, t, y)$ to be $-\infty$. Further, we denote

$$
\Phi(\cdot)=\sum_{i=1}^{s} t_{i}\left[f\left(\cdot, y_{i}\right)+\sum_{r=1}^{\beta}(\cdot)^{T} B_{r} w_{r}-k\left(h\left(\cdot, y_{i}\right)-\sum_{q=1}^{\delta}(\cdot)^{T} D_{q} v_{q}\right)\right]
$$

Now, we can state the following weak duality theorem for (P) and (DP).
Theorem 4.1 (Weak Duality) Let $x \in \mathcal{P}$ be a feasible solution of (P) and $(x, \mu, k, v, w, s, t, y)$ be a feasible solution of (DP). If any of the following four conditions holds:
a) $f\left(\cdot, y_{i}\right)+\sum_{r=1}^{\beta}(\cdot)^{T} B_{r} w_{r}$ is $\left(\eta, \rho_{i}, \theta\right)$-invex, $h\left(\cdot, y_{i}\right)-\sum_{q=1}^{\delta}(\cdot)^{T} D_{q} v_{q}$ is $\left(\eta, \rho_{i}^{\prime}, \theta\right)$-incave for $i=\overline{1, s}, \sum_{j=1}^{p} \mu_{j} g_{j}(\cdot)$ is $\left(\eta, \rho_{0}, \theta\right)$-invex, and $\rho_{0}+\sum_{i=1}^{s} t_{i}\left(\rho_{i}+\rho_{i}^{\prime} k\right) \geq 0$,
b) $\Phi(\cdot)$ is (η, ρ, θ)-invex and $\sum_{j=1}^{p} \mu_{j} g_{j}(\cdot)$ is $\left(\eta, \rho_{0}, \theta\right)$-invex, and $\rho+\rho_{0} \geq 0$,
c) $\Phi(\cdot)$ is $\quad(\eta, \rho, \theta)$-pseudo-invex, $\quad \sum_{j=1}^{p} \mu_{j} g_{j}(\cdot) \quad$ is $\quad\left(\eta, \rho_{0}, \theta\right)$-quasi-invex, and $\rho+\rho_{0} \geq 0$,
d) $\Phi(\cdot)$ is $\quad(\eta, \rho, \theta)$-quasi-invex, $\quad \sum_{j=1}^{p} \mu_{j} g_{j}(\cdot)$ is strictly $\quad\left(\eta, \rho_{0}, \theta\right)$-pseudo-invex, $\rho+\rho_{0} \geq 0$,
then $\sup _{y \in Y} \Psi\left[\left(f(x, y)+\sum_{r=1}^{\beta} \sqrt{x^{T} B_{r} x}\right) /\left(h(x, y)-\sum_{q=1}^{\delta} \sqrt{x^{T} D_{q} x}\right)\right] \geq \Psi(k)$.
The proof of this theorem uses similar arguments as in the proof of Theorem 3.3.
Theorem 4.2 (Strong Duality) Let x^{*} be an optimal solution of problem (P). Assume that x^{*} satisfies a constraint qualification for problem (P). Then there exist $\left(s^{*}, t^{*}, y^{*}\right) \in K\left(x^{*}\right) \quad$ and $\quad\left(x^{*}, \mu^{*}, k^{*}, v^{*}, w^{*}\right) \in H\left(s^{*}, t^{*}, y^{*}\right)$ such that $\left(x^{*}, \mu^{*}, k^{*}, v^{*}, w^{*}, s^{*}, t^{*}, y^{*}\right)$ is a feasible solution of (DP). If the hypotheses of Theorem 4.1 are also satisfied, then $\left(x^{*}, \mu^{*}, k^{*}, v^{*}, w^{*}, s^{*}, t^{*}, y^{*}\right)$ is an optimal solution for (DP), and both problems (P) and $(D P)$ have the same optimal values.
Proof: By Theorems 3.1 and 3.2, there exist $\left(s^{*}, t^{*}, y^{*}\right) \in K\left(x^{*}\right)$ and $\left(x^{*}, \mu^{*}, k^{*}\right.$, $\left.v^{*}, w^{*}\right) \in H\left(s^{*}, t^{*}, y^{*}\right)$ such that $\left(x^{*}, \mu^{*}, k^{*}, v^{*}, w^{*}, s^{*}, t^{*}, y^{*}\right)$ is a feasible solution of (DP), and

$$
\Psi\left(k^{*}\right)=\Psi\left[\left(f\left(x^{*}, y_{i}^{*}\right)+\sum_{r=1}^{\beta} \sqrt{\left(x^{*}\right)^{T} B_{r} x^{*}}\right) /\left(h\left(x^{*}, y_{i}^{*}\right)-\sum_{q=1}^{\delta} \sqrt{\left(x^{*}\right)^{T} D_{q} x^{*}}\right)\right]
$$

The optimality of this feasible solution for (DP) follows from Theorem 4.1.

Theorem 4.3 (Strict Converse Duality) Let x^{*} and ($\bar{z}, \bar{\mu}, \bar{k}, \bar{v}, \bar{w}, \bar{s}, \bar{t}, \bar{y}$) be the optimal solutions of (P) and $(D P)$, respectively, and that the hypotheses of Theorem 4.2 are fulfilled. If any one of the following three conditions holds:
a) one of $f\left(\cdot, \bar{y}_{i}\right)+\sum_{r=1}^{\beta}(\cdot)^{T} B_{r} \bar{w}_{r}$ is strictly $\left(\eta, \rho_{i}, \theta\right)$-invex, $h\left(\cdot, \bar{y}_{i}\right)-\sum_{q=1}^{\delta}(\cdot)^{T} D_{q} \bar{v}_{q}$ is strictly $\left(\eta, \rho_{i}^{\prime}, \theta\right)$-incave for $i=\overline{1, s}$, or $\sum_{j=1}^{p} \bar{\mu}_{j} g_{j}(\cdot)$ is strictly $\left(\eta, \rho_{0}, \theta\right)$-invex, and

$$
\rho_{0}+\sum_{i=1}^{s} \bar{t}_{i}\left(\rho_{i}+\rho_{i}^{\prime} \bar{k}\right) \geq 0
$$

b) either $\sum_{i=1}^{s} \bar{t}_{i}\left[f\left(\cdot, \bar{y}_{i}\right)+\sum_{r=1}^{\beta}(\cdot)^{T} B_{r} \bar{w}_{r}-\bar{k}\left(h\left(\cdot, \bar{y}_{i}\right)-\sum_{q=1}^{\delta}(\cdot)^{T} D_{q} \bar{v}_{q}\right)\right]$ is strictly $(\eta, \rho, \theta)-$ invex or $\sum_{j=1}^{p} \bar{\mu}_{j} g_{j}(\cdot)$ is strictly $\left(\eta, \rho_{0}, \theta\right)$-invex, and $\rho+\rho_{0} \geq 0$;
c) $\quad \sum_{i=1}^{s} \bar{t}_{i}\left[f\left(\cdot, \bar{y}_{i}\right)+\sum_{r=1}^{\beta}(\cdot)^{T} B_{r} \bar{w}_{r}-\bar{k}\left(h\left(\cdot, \bar{y}_{i}\right)-\sum_{q=1}^{\delta}(\cdot)^{T} D_{q} \bar{v}_{q}\right)\right] \quad$ is strictly $\quad(\eta, \rho, \theta)-$ pseudo-invex and $\sum_{j=1}^{p} \bar{\mu}_{j} g_{j}(\cdot)$ is $\left(\eta, \rho_{0}, \theta\right)$-quasi-invex, and $\rho+\rho_{0} \geq 0$;
then $x^{*}=\bar{z}$, that is, \bar{z} is an optimal solution for problem (P) and

$$
\sup _{y \in Y} \Psi\left[\left(f(\bar{z}, y)+\sum_{r=1}^{\beta} \sqrt{\bar{z}^{T} B_{r} \bar{z}}\right) /\left(h(\bar{z}, y)-\sum_{q=1}^{\delta} \sqrt{\bar{z}^{T} D_{q} \bar{z}}\right)\right]=\Psi(\bar{k}) .
$$

Proof: Suppose on the contrary that $x^{*} \neq \bar{z}$. From Theorem 4.2 we know that there exist $\left(s^{*}, t^{*}, y^{*}\right) \in K\left(x^{*}\right)$ and $\left(x^{*}, \mu^{*}, k^{*}, v^{*}, w^{*}\right) \in H\left(s^{*}, t^{*}, y^{*}\right)$ such that $\left(x^{*}, \mu^{*}, k^{*}, v^{*}, w^{*}, s^{*}, t^{*}, y^{*}\right)$ is a feasible solution for (DP) with the optimal value $\Psi\left(k^{*}\right)$. Now, if we proceed similarly as in the proof of Theorem 3.3, we arrive at the strict inequality

$$
\sup _{y \in Y} \Psi\left[\left(f\left(x^{*}, y\right)+\sum_{r=1}^{\beta} \sqrt{\left(x^{*}\right)^{T} B_{r} x^{*}}\right) /\left(h\left(x^{*}, y\right)-\sum_{q=1}^{\delta} \sqrt{\left(x^{*}\right)^{T} D_{q} x^{*}}\right)\right]>\Psi(\bar{k}) .
$$

But this contradicts the fact $\Psi\left(k^{*}\right)=\Psi(\bar{k})$, and we conclude that $x^{*}=\bar{z}$.

REFERENCES

[1] Bector, C.R., and Bhatia, B.L., "Sufficient optimality conditions and duality for a minmax problem", Utilitas Math., 27 (1985) 229-247.
[2] Chandra, S., and Kumar, V., "Duality in fractional minimax programming", J. Austral. Math. Soc. Ser. A, 58 (1995) 376-386.
[3] Lai, H.C., Liu, J.C., and Tanaka, K., 'Necessary and sufficient conditions for minimax fractional programming", J. Math. Anal. Appl., 230 (1999) 311-328.
[4] Liu, J.C., "Optimality and duality for generalized fractional programming involving nonsmooth (F, ρ) -convex functions", Comput. Math. Appl., 32 (1996) 91-102.
[5] Liu, J.C., and Wu, C.S., "On minimax fractional optimality conditions with (F, ρ) convexity", J. Math. Anal. Appl., 219 (1998) 36-51.
[6] Schmittendorf, W.E., "Necessary conditions and sufficient conditions for static minmax problems", J. Math. Anal. Appl., 57 (1977) 683-693.
[7] Singh, C., 'Optimality conditions for fractional minimax programming", J. Math. Anal. Appl., 100 (1984) 409-415.
[8] Sinha, S.M., "A extension of a theorem of supports of a convex function", Management Sci., 16 (1966) 409-415.
[9] Yadev, S.R., and Mukherjee, R.N., "Duality for fractional minimax programming problems", J. Austral. Math. Soc. Ser. B, 31 (1990) 484-492.

