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1. INTRODUCTION 

Let us consider the following continuous differentiable mappings: 

: , : , : , :n m n m n pf h g +× → × → → Ψ →R R R R R R R R R R ,  
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where ( ) '( ) 0
defd x x

dx
Ψ

= Ψ > , and 1( , , ).pg g g=  We denote  

{ | ( ) 0, 1, 2, ,n
j }x g x j p= ∈ ≤ =RP  (1.1) 

and consider the compact subset . Let mY ⊆ R , 1,rB r ,β=  and , 1,qD q ,δ=  be  
positive semi definite matrices such that for each ( ,

n n×
) ,x y Y∈ ×P  we have:  

1 1

( , ) 0, ( , ) 0.T T
r q

r q

f x y x B x h x y x D x
β δ

= =

+ ≥ −∑ ∑ >  

In this paper we consider the following non differentiable minimax fractional 
programming problem:  

1 1
inf sup ( , ) ( , )T

rx y Y r q

T
qf x y x B x h x y x D x

β δ

∈ ∈ = =

⎡ ⎤⎛ ⎞⎛ ⎞
Ψ + −⎢ ⎥⎜⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑P
⎟ . (P) 

For 1,  and 1,β δ= = Ψ ≡  this problem was studied by Lai et al. [3], and further, 
if  (P) is a differentiable minimax fractional programming problem which 
has been studied by Chandra and Kumar [2], Liu and Wu [5]. Many authors investigated 
the optimality conditions and duality theorems for minimax (fractional) programming 
problems. For details, one can consult [1, 4, 7]. 

1 1 0,B D= =

In an earlier work, under conditions of convexity, Schmittendorf [6] established 
necessary and sufficient optimality conditions for the problem:  

inf sup ( , ),
x y Y

x yφ
∈ ∈P

 (P1) 

where  is a continuous differentiable mapping. Later, Yadev and 
Mukherjee [9] employed the optimality conditions of Schmittendorf [6] to construct two 
dual problems and derived duality theorems for (convex) differentiable fractional 
minimax programming. In [2], Chandra and Kumar constructed two modified dual 
problems for which they proved duality theorems for (convex) differentiable fractional 
minimax programming. Liu and Wu [5] relaxed the convexity assumption in the 
sufficient optimality of [2] and employed the optimality conditions so as to construct one 
parametric dual and two other dual models of parametric-free problems. Several authors 
considered the optimality and duality theorems for nondifferentiable non convex 
minimax fractional programming problems, one can consult [4, 7]. 

: n mφ × →R R R

We present necessary and sufficient optimality conditions for problem (P) and we 
apply the optimality conditions so as to construct one parametric dual problem for which 
we state weak duality, strong duality, and strictly converse duality theorems. 
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2. NOTATIONS AND PRELIMINARY RESULTS 

Throughout this paper, we denote by  the n-dimensional Euclidean space and 
by  its nonnegative orthant. Let us consider the set  defined by (1.1), and for each 

 we define  

nR
n
+R P

,x∈P

{ }{ }

1 1

1 1

1

1

( ) 1,2, , | ( ) 0 ,

( , ) ( , )
( ) sup ,

( , ) ( , )

  1 1, 1,

( ) ( , , )  and ( ,

j

T T
r r

r r

z YT T
q q

q q

s

i
i

s ms

J x j p g x

f x y x B x f x z x B x
Y x y Y

h x y x D x h x z x D x

s n t

K x s t y y y

β β

δ δ
= =

∈

= =

=

+

= ∈ =

⎧ ⎫⎛ ⎞ ⎛
+ +⎪ ⎪⎜ ⎟ ⎜⎪ ⎪⎜ ⎟ ⎜= ∈ Ψ = Ψ⎨ ⎬⎜ ⎟ ⎜⎪ ⎪− −⎜ ⎟ ⎜⎪ ⎪⎝ ⎠ ⎝⎩ ⎭

≤ ≤ + =

= ∈ × × =

∑ ∑

∑ ∑

∑
N R R

⎞
⎟
⎟
⎟
⎟
⎠

, ) .

 with ( ), 1,

ms
s

i

y

y Y x i s

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪∈⎨ ⎬
⎪ ⎪∈ =⎪ ⎪
⎪ ⎪⎩ ⎭

R

 

Since f and h are continuous differentiable functions and Y is a compact set in 
 it follows that for each ,mR 0 ,x ∈P  we have 0( )Y x ≠ ∅ . We denote for any 

0( ),iy Y x∈  

0 0 0 0 0 0 0
1 1

( , ) ( , ) .T
i r i q

r q

k f x y x B x h x y x D x
β δ

= =

⎛ ⎞⎛ ⎞
= + −⎜⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ T ⎟

,

 (2.1) 

Let A be an  matrix and let m n× , , 1, ,iM M i k=  be n n×  symmetric positive 
semi definite matrices. 

 
Lemma 2.1 [8] We have  

1

0 0
k

T T
i

i

Ax c x x M x
=

≥ ⇒ + ≥∑ ,  

if and only if there exist  and  my +∈R ,n
iv ∈R 1, ,i k=  such that  

1

0, 1, 1, , .
k

T T
i i i i i i

i

Av v M v i k A y c M
=

≥ ≤ = = +∑ v  

Lemma 2.2 [6] Let 0x  be a solution of the minimax problem (P1) and the vectors 

0( ),jg x∇   are linearly independent. Then there exist a positive integer s, 0( )j J x∈
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1 s n≤ ≤ +1,  real numbers  0,it ≥ 1, ,i s=  0,jμ ≥  1, ,j p=  and vectors ( )0 ,iy Y x∈  

1, ,i s=  such that  

0 0 0
1 1

( , ) ( ) 0; ( ) 0, 1, ; 0.
ps s

i x i j j j j i
i j i

t x y g x g x j p tψ μ μ
= = =

∇ + ∇ = = =∑ ∑ ∑
1

≠

R

 

Let us consider for the next definitions the differentiable function 
, the real number : nCϕ ⊆ →R ρ ∈R , and the following functions: 

: , :nC C C Cη θ +× → × →R R  
Definition 2.1 The differentiable function ϕ  is ( , , )η ρ θ -invex at 0x C∈  if the following 
hold: 0 0 0 0( ) ( ) ( , ) ( ) ( , ), .Tx x x x x x x xϕ ϕ η ϕ ρθ− ≥ ∇ + ∀ ∈C  

If ϕ−  is ( , , )η ρ θ -invex at 0 ,x C∈  then ϕ  is called ( , , )η ρ θ -incave at 0 .x C∈  
If the inequality holds strictly, then ϕ  is called to be strictly ( , , )η ρ θ -invex. 
Definition 2.2 The differentiable function ϕ  is ( , , )η ρ θ -pseudo-invex at 0x C∈  if the 
following hold: 0 0 0 0( , ) ( ) ( , ) ( ) ( ), ,Tx x x x x x x xη ϕ ρθ ϕ ϕ∇ ≥ − ⇒ ≥ ∀ ∈C  

If ϕ−  is ( , , )η ρ θ -pseudo-invex at 0 ,x C∈  then ϕ  is called ( , , )η ρ θ -pseudo-
incave at 0 .x C∈  
Definition 2.3 The differentiable function ϕ  is strictly ( , , )η ρ θ -pseudo-invex at 0x C∈  
if the following hold: 0 0 0 0( , ) ( ) ( , ) ( ) ( ), , .T

0x x x x x x x x C xη ϕ ρθ ϕ ϕ∇ ≥ − ⇒ > ∀ ∈ ≠ x  
Definition 2.4 The differentiable function ϕ  is ( , , )η ρ θ -quasi-invex at 0x C∈  if the 
following hold: 0 0 0 0( ) ( ) ( , ) ( ) ( , ), .Tx x x x x x x xϕ ϕ η ϕ ρθ≤ ⇒ ∇ ≤ − ∀ ∈C  

If ϕ−  is ( , , )η ρ θ -quasi-invex at 0 ,x C∈  then ϕ  is called ( , , )η ρ θ -quasi-
incave at 0 .x C∈   

 
3. NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS 

For any  let us denote the following index sets:  ,x∈P

{ }{ }
( ) { } { }
( ) 1, 2, , | 0 ,

1,2, , \ ( ) | 0 ,

T
r

T
r

x r x B x

x x r x B

β

β

= ∈ >

= =

B

B B

{ }{ }
x =

{ } { }
( ) 1, 2, , | 0 ,

( ) 1, 2, , \ ( ) | 0 .

T
q

T
q

x q x D x

x x q x D

δ

δ

= ∈ >

= =

D

D D x =
 

Using Lemma 2.2, we may prove the following necessary optimality conditions 
for problem (P). 

 
Theorem 3.1 (Necessary Condition) If 0x  is an optimal solution of problem (P) for 

which 0( ) ,x =∅B  0( ) ,x = ∅D  and 0( ),jg x∇  0( )j J x∈  are linearly independent, then 
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there exist 0( , , ) ( ),s t y K x∈  0 ,k +∈R  , 1, ,n
rw r β∈ =R  , 1, ,n

qv q δ∈ =R  and pμ +∈R  
such that  

0 0 0 0
1 1

0
1

'( ) ( , ) ( , )

( ) 0,

s

i i r r i
i r

p

j j
j

t k f x y B w k h x y D v

g x

β δ

μ

= =

=

⎡ ⎤⎛ ⎞
Ψ ∇ + − ∇ −⎢ ⎥⎜ ⎟

⎢ ⎥⎝⎣ ⎦

+ ∇ =

∑ ∑ ∑

∑

1
q q

q= ⎠  (3.1) 

0 0 0 0 0 0 0
1 1

( , ) ( , ) 0, 1, ,T T
i r i q

r q

f x y x B x k h x y x D x i s
β δ

= =

⎛ ⎞
+ − − = ∀⎜ ⎟

⎝ ⎠
∑ ∑ =  (3.2) 

0
1

( ) 0,
p

j j
j

g xμ
=

=∑  (3.3) 

1
0, 1,

s

i i
i

t t
=

≥ ∑ =  (3.4) 

0 0 0

0 0 0

1, , 1, ;

1, , 1, .

T T T
r r r r r r

T T T
q q q q q q

w B w x B w x B x r

v D v x D v x D x q

β

δ

≤ = =

≤ = =
 (3.5) 

Proof: Since all , 1,rB r ,β=  and , 1,qD q ,δ=  are positive definite and f and h are 
differentiable functions, it follows that the function  

1 1
( , ) ( , )T T

r q
r q

f x y x B x h x y x D x
β δ

= =

⎡ ⎤⎛ ⎞⎛ ⎞
Ψ + −⎢ ⎥⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑  

is differentiable with respect to x for any given  Using Lemma 2.2, it follows that 

there exist a positive integer 

.my∈R

, 1 1,s s n≤ ≤ +  and vectors ,st +∈R  ,pμ +∈R  ( )0 ,iy Y x∈  

1, ,i s=  so that  

0 0
0

11 0 00 0 0
1

0
0 0 0

1 10 0

'( )
( , )

( , )

( , ) ( ) 0

s
r

i i TT ri ri q
q

p
q

i jT
r jq

k B x
t f x y

x B xh x y x D x

D x
k h x y g x

x D x

β

δ

β

μ

==

=

= =

⎡Ψ ⎢∇ + −
⎢⎣−

⎤⎛ ⎞
⎥⎜ ⎟− ∇ − + ∇ =
⎥⎜ ⎟

⎝ ⎠⎦

∑∑
∑

∑ ∑ j

 (3.6) 

0
1

( ) 0,
p

j j
j

g xμ
=

=∑  (3.7) 
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1
0,

s

i
i

t
=

>∑  (3.8) 

where  is given by 0k (2.1). If we denote  

( )

( )

0 0

0 0 0 0

0
00

0
0 01

1

, 1, , , 1,

'
, where  ,

,

r qT T
r q

ii
i is

T
i i qi

q

x x
w r v q

x B x x D x

k tt
t t

t h x y x D x
δ

0

,β δ

=
=

= = =

Ψ
= =
∑ −∑

=

 

we get (3.1) - (3.4). Furthermore, it easily confirms that relation (3.5) also holds, and the 
theorem is proved. 

 
We notice that, in the above theorem, all matrices  and  are supposed to be 

positive definite. If at least one of 
rB qD

0( )xB  or 0( )xD  is not empty, then the functions 
involved in the objective function of problem (P) are not differentiable. In this case, the 
necessary optimality conditions still hold under some additional assumptions. For  
and 

0x ∈P

0( , , ) ( )s t y K x∈  we define the following vector:  

0 0

00
0 0 0 0

1 ( ) ( )0 0 0 0

'( ) ( , ) ( , )
s

qr
i i iT T

i r x r xr q

D xB x
t k f x y k h x y

x B x x D x
α

= ∈ ∈

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= Ψ ∇ + − ∇ −⎜ ⎟⎜ ⎟⎜ ⎝ ⎠⎠⎝

∑ ∑ ∑
B D

 

Now we define a set Z as follows:  

0 0

0 0

0 2
0

1 ( ) ( )

( ) 0, ( ),

( )
(( ) ) 0.

Tz g⎧ ⎫
j

n s
y T T T

i r q
i r x q x

x j J x

Z x z
z t z B z z k D zα

= ∈ ∈

∇ ≤ ∈
⎪ ⎪⎪ ⎪= ∈ ⎛ ⎞⎨ ⎬

+ + <⎜ ⎟⎪ ⎪⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∑ ∑ ∑
R

B D

 

Using Lemma 2.1, we establish the following result: 

heorem 3.2 Let 
 

 be an optimal solution of problem (P) and at least one of 0( )xBT 0x  or 

0( )xD  is not empty. Let 0( , , ) ( )s t y K x∈  be such that 0( ) .Z xy = ∅  Then th xist 

s ,nw ∈R  

ere e

vector r 1, ,r β=  ,n
qv ∈R  1, ,q δ=  and pμ +∈R tisfy the relations  which sa

.5). 
 (2.1) we get (3.2), and relation (3.4) follows directly from the assumptions. 

(3.1) - (3
Proof: Using
Since 0( ) ,yZ x = ∅  for any nz∈R  with: 0 0( ) 0, ( ),T

jz g x j J x− ∇ ≥ ∈  we have  

0 0

2
0

1 ( ) ( )

(( ) ) 0.
s

T T T
i r q

i r x q x

z t z B z z k D zα
= ∈ ∈

⎛ ⎞
+ +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑

B D

 ≥
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0
1 1

, .
s s

i i
i i

t tλ γ
= =

= =∑ ∑Let us denote: k  Applying Lemma 2.1 co idering: 

• the rows of matrix A are the vectors 

ns

0 0( ) , ( );jg x j J x⎡ ⎤−∇ ∈⎣ ⎦  

• ;c α=   
2

• 0if ( )
0 if ( )

B r
r

B r xM
r x

λ ∈⎪= ⎨
∈
B
B

 and 
0

⎧ 2
0

0

if ( ) ,
0 if ( )

D q
qM

⎪⎩

D q x
q x

γ⎧ ∈⎪= ⎨
∈⎪⎩

D
D

  

follows at there exist the scalars 0,jμ ≥  0( ),j J x∈it th  and the vectors ,n
rw ∈R  

0( ),r∈ xB  ,n
qv ∈R  0( ),q x∈D  such that  

0 0

0
( )

( ) B D

0( ) ( )
j j r

j J r x
r q q

x q x

g x c Mμ
∈ ∈

− ∇ = +∑ ∑
B

) w M v
∈

+ ∑
D

 (3.9

and  

0 01, ( ); 1, ( ).T B T D
r r r q q qw M w r x v M v q x≤ ∈ ≤ ∈B D  (3.10) 

Since 0( ) 0jg x =  fo  we have: r 0( ),j J x∈ 0( ) 0j jg xμ =  for 0( ).j J x∈  If  we 

put 

0( ),j J x∉

0.jμ =  It follows: 0
1

( ) 0,
p

j j
j

g xμ
=

=∑  which shows that relati

e define  

on (3.3) holds. 

Now w

00 , if ( )
xx q x⎧⎧ ∈D 00

0 00 0

0 0

, if ( )
     and   

, if ( ) , if ( )

TT
qr q

r q

r x
x D xx B x v

w r x v q xλ γ

∈ ⎪⎪ ⎪=rw = ⎨ ⎨

∈ ∈⎪⎩ ⎩

B

B D

 

With this notations, equality (3.9) yields relation (3.1). 
From (3.10) we get: 

⎪ ⎪

 for any 1, .r β=  Further, if 0( ),r x∈B1T
r r rw B w ≤  we have 

0 0 0,rx B x =  which implies 0 0,rB xT =  and then 0 r 0 00 .T Tx B x r rx B w= =  If 0( ),r x∈B  we 

obviously have 0 0 0 .T T
r r rx B w  The sam ments apply t s ,qD  so 

)
x B x= e argu o matrice

relation (3.5 re the the ved. 
 

nience, if a point 

 holds. Therefo orem is pro

For conve 0x ∈P  has the property that the vectors 0 ),g (xj∇  

0( ),j J x∈  are linear independent and the set 0(yZ x ) ,= ∅  then we say that 
tisfy a constraint qualification. 

and 3. e optima
solution of lementary 

onditions for (P), whic

0x ∈P  
sa

The results of Theorems 3.1 2 are the necessary conditions for th l 
 problem (P). Actually, with some supp assumptions, the conditions  

(3.1) - (3.5) are also the sufficient optimality c h we state the 
following result for by involving generalized invex functions, being weaker assumptions 
used by Lai et al. in [3]. 
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Theorem 3.3 (Sufficient Conditions) Let 0x ∈P  be a feasible solution of (P) for which 

there exist a positive integer s, 1 1,s n≤ ≤ +  0( ),y Y x 1, ,i s=  ,ki ∈  0 +∈R  defined by 

(2.1), ,st +∈R  ,n
rw ∈R  1, ,r β=  ,n

qv ∈R  1, ,q δ=  and pμ +∈R  such that the relations 
followi(3.1) - (3.5) are satisfied. If any one of the ng four conditions holds: 

a) 
1

( , ) ( )T
r

r
i rf y B w

β

=
⋅ + ∑ ⋅  is ( , , )iη ρ θ -invex, 

1
( , ) ( q

q=
 , )i)T

i qh y D v
δ

⋅ − ∑ ⋅ is ( ,η ρ θ′ -incave 

for 1, ,i s=  
1

( )j jgμ ⋅∑  is 0( , , )
p

j=

η ρ θ -invex, and 0 0( ) 0
s

i i it kρ ρ ρ ′
1

,
i=

+ + ≥∑   

b) 0
1 11

( ) ( , ) ( ) ( , ) ( )
sdef

T T
i i r r i q q

r qi

t f y B w k h y D v
β

= =

δ

=

⎡ ⎤⎛ ⎞Φ ⋅ = ⋅ + ∑ ⋅ − ⋅ − ∑ ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑  is ( , , )η ρ θ -invex 

and 
1

( )
p

j j
j

gμ
=

⋅∑  is 0( , , )η ρ θ -invex, and 0 0,ρ ρ+ ≥   

c) ( )Φ ⋅  is ( , , )η ρ θ -pseudo-invex, 
1

( )
p

j j
j=

gμ ⋅∑  is 0( , , )η ρ θ -quasi-invex, and 

0 0,ρ ρ ≥   +

1

( )
p

j j
j

gμ
=

⋅∑ 0 , )( )Φ ⋅ is (d) , , )ρ θ -quasi-invex, is strictly η ( ,ρ θ -pseudo-invex, η

0 0,ρ ρ+ ≥   
then 0x  is an optimal solution of (P). 

Proof: On contrary, let us suppose that 0x  is not an optimal solution of (P). Then there 
exists an ch that   su1x ∈P

1 1 1 0 0 0
1 1

( , ) ( , )
sup

T T
r r

r r

1 1 1 0 0 0
1 1

sup
( , ) ( , )y Y y YT T

q q
q q

f x y x B x f x y x B x

δ δ
= =

+ +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

− −

∑ ∑

h x y x D x h x y x D x

β β

∈ ∈

= =

⎛ ⎞ ⎛ ⎞

Ψ < Ψ
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑
 

We note that, for 0( ),iy Y x∈  1, ,i s=  we have  

0 0 0 0 0 0
1sup

y Y∈

⎜ ⎟ ⎜Ψ = Ψ
⎜ ⎟ ⎜

1
0

0 0 0 0 0 0
1 1

( , ) ( , )
( ),

( , ) ( , )

T T
r i r

r r

T T
q i q

q q

f x y x B x f x y x B x
k

h x y x D x h x y x D x

β β

δ δ
= =

= =

⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟

⎟ = Ψ
⎟

− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑
 

and  
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1 1 1 1 1
1 1

1 1 1 1 1
1 1

( , ) ( , )
sup .

( , ) ( , )

T T
i r

r r

y YT T
i q

q q

1

1

r

q

f x y x B x f x y x B x

h x y x D x h x y x D x

β β

δ δ
= =

∈

= =

⎛ ⎞ ⎛
+ +⎜ ⎟ ⎜

⎜ ⎟ ⎜Ψ ≤ Ψ
⎜ ⎟ ⎜

− −⎜ ⎟ ⎜
⎝ ⎠ ⎝

∑ ∑

∑ ∑
 

⎞
⎟
⎟
⎟
⎟
⎠

Since  is an increasing function and we get  '( ) 0xΨ > , Ψ

1 1 1 0 1 1 1
1 1

( , ) ( , ) 0, for 1, .T T
i r i q

r q

f x y x B x k h x y x D x i s
β δ⎛

= =

⎞
+ − − < =⎜ ⎟

⎝ ⎠
∑ ∑  (3.11) 

From the generalized Schwarz inequality T T Tx Mv x Mx v Mv≤ , it follows that 

1T T Tv Mv x Mv x Mx≤ ⇒ ≤ , where M is an a sitive semi definite 
s 

rbitrary symmetric po
matrix. Using now the relation (3.5), (3.11), (3.2), and (3.4), we obtain  

1 0( ) ( ).x xΦ < Φ  (3.12) 

1. If hypothesis a) holds 1, ,i s=  we have  , then for 

1 1 0 0
1 1

1 0 0 1 0
1

( , ) ( , )

( , ) ( , ) ( , ),

T T
i r r i r r

r r

T
i r r i

r

f x y x B w f x y x B w

x x f x y B w x x
β

η ρ θ

= =

=

+ − − ≥

⎛ ⎞
≥ ∇ + +⎜ ⎟

⎝ ⎠

∑ ∑

∑
 (3.13) 

and  

β β

1 1 0 0
1 1

1 0 0 1 0
1

( , ) ( , )

( , ) ( , ) ( , ).

T T
i q q i q q

q q

T
i q q i

q

h x y x D v h x y x D v

x x h x y D v x x

δ δ

δ

η

= =

=

− + + − ≥

⎛ ⎞ ′≥ −∇ + +⎜ ⎟
⎝ ⎠

∑ ∑

∑ ρ θ
 (3.14) 

Now, multiplying (3.13) by ,it  (3.14) by 0 ,it k  and then sum up these inequalities, we 
obtain  

1 0 0 1 0
1

1 0 0 0 0
1 1 1

( ) ( ) ( ) ( , )

( , ) ( , ) ( , )

s

i i i
i

s
T

i i r r i q
i r q

x x t k x x

x x t f x y B w k h x y D v
β δ

ρ ρ θ

η

=

= = =

′Φ −Φ ≥ + +

⎡ ⎤⎛ ⎞
+ ∇ + − ∇ −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑ ∑ ∑
 

q

Further, by (3.1) and 0( , , )η ρ θ -invexity of 
1

( ),
p

j j
j

gμ
=

⋅∑  we get  
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1 0 1 0 0 0 1 0
1 1

1 0 0 0
1 1 1

( ) ( ) ( , ) ( ) ( ) ( , )

( ) ( ) ( ) ( , ).

p s
T

j j i i i
j i

p p s

j j j j i i i
j j i

x x x x g x t k x x

1 0g x g x t k x

η μ ρ ρ θ

μ μ ρ ρ ρ θ

= =

= = =

′Φ −Φ ≥ − ∇ + +

⎛ ⎞′≥ − + + + +⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑ ∑ x
 

Since  we have  1 ,x ∈P 1( ) 0,ig x ≤ 1, ,i s=  and using (3.3) it follows  

1 0 0 0 1 0
1

( ) ( ) ( ) ( , ) 0,
s

i i i
i

x x t k x xρ ρ ρ θ
=

⎛ ⎞′Φ −Φ ≥ + + ≥⎜ ⎟
⎝ ⎠

∑  

which contradicts the inequality (3.12). 
The conclusion follows similarly by using the assumptions b), c) and d). 

4. DUALITY 

Let ( , , )H s t y  be the set consisting of all 

( , , , , ) ,n p n nz k v w δ βμ + +∈ × × × ×R R R R R  where 1( , , ),v v vδ=   ,n
qv ∈R 1, ,q δ=  and 

  1( , , ),w w wβ= ,n
rw ∈R 1, ,r β=  which satisfy the following conditions:  

1 11 1

'( ) ( , ) ( , ) ( ) 0,
ps

i i r r i q q j j
i jr q

t k f z y B w k h z y D v g z
β δ

μ
= == =

⎡ ⎤⎛ ⎞
Ψ ∇ + − ∇ − + ∇ =⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑∑ ∑ (4.1) 

1 1 1

( , ) ( , ) 0,
s

T T
i i r r i q q

i r q

t f z y z B w k h z y z D v
β δ

= = =

⎡ ⎤⎛ ⎞
+ − −⎢ ⎜

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑ ≥⎥⎟  (4.2) 

1
( ) 0,

p

j j
j

g zμ
=

≥∑  (4.3) 

( , , ) ( ),s t y K z∈  (4.4) 

1, 1, , and 1, 1, .T T
r r r q q qw B w r v D v qβ δ≤ = ≤ =  (4.5) 

The optimality conditions, stated in the preceding section for the minimax 
problem (P), suggest us to define the following dual problem:  

{
( , , ) ( )

max sup ( ) | ( , , , , ) ( , , )
s t y K z

k z k v w H s t yμ
∈

Ψ ∈ }  (DP) 

If, for a triplet ( , , ) ( ),s t y K z∈  the set ( , , ) ,H s t y = ∅  then we define the 
supremum over ( , , )H s t y  to be .−∞  Further, we denote  

1 1 1

( ) ( , ) ( ) ( , ) ( )
s

T T
i i r r i q q

i r q

t f y B w k h y D v
β δ

= = =

⎡ ⎤⎛ ⎞
Φ ⋅ = ⋅ + ⋅ − ⋅ − ⋅⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑  
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Now, we can state the following weak duality theorem for (P) and (DP). 

 
Theorem 4.1 (Weak Duality) Let x∈P  be a feasible solution of (P) and 
( , , , , , , , )x k v w s t yμ  be a feasible solution of (DP). If any of the following four conditions 
holds: 

a)  is 
1

( , ) ( )T
i r r

r

f y B w
β

=

⋅ + ⋅∑ ( , , )iρ θ
q

h y D v
δ

=

⋅ − ⋅∑ ( , , )i-invex,  is 
1

( , ) ( )T
i q qη η ρ θ′ -incave 

for 1, ,i s=   is 
1

( )
p

j j
j

gμ
=

⋅∑ 0( , , )η ρ θ -invex, and 0
1

( )
s

i i i
i

t kρ ρ ρ
=

′ 0,+ + ≥∑   

b)  is ( )Φ ⋅ ( , , )η ρ θ -invex and 
1

( )
p

j j
j

gμ
=

⋅∑  is 0( , , )η ρ θ -invex, and 0 0,ρ ρ+ ≥   

c) is ( )Φ ⋅ ( , , )η ρ θ -pseudo-invex, 
1

( )
p

j j
j

gμ
=

⋅∑  is 0( , , )η ρ θ -quasi-invex, and 

0 0,ρ ρ+ ≥   

d) is ( )Φ ⋅ ( , , )η ρ θ -quasi-invex, 
1

( )
p

j j
j

gμ
=

⋅∑ is strictly 0( , , )η ρ θ -pseudo-invex, 

0 0,ρ ρ+ ≥   

then  
1 1

sup ( , ) ( , ) ( ).T T
r q

y Y r q
f x y x B x h x y x D x k

β δ

∈ = =

⎡ ⎤⎛ ⎞⎛ ⎞
Ψ + − ≥ Ψ⎢ ⎥⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑  

The proof of this theorem uses similar arguments as in the proof of Theorem 3.3. 
 
Theorem 4.2 (Strong Duality) Let x∗  be an optimal solution of problem (P). Assume that 
x∗  satisfies a constraint qualification for problem (P). Then there exist 
( , , ) ( )s t y K x∗ ∗ ∗ ∗∈  and ( , , , , ) ( , , )x k v w H s t yμ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∈  such that 
( , , , , , , , )x k v w s t yμ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗  is a feasible solution of (DP). If the hypotheses of Theorem 
4.1 are also satisfied, then ( , , , , , , , )x k v w s t yμ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗  is an optimal solution for (DP), 
and both problems (P) and (DP) have the same optimal values. 
Proof: By Theorems 3.1 and 3.2, there exist ( , , ) ( )s t y K x∗ ∗ ∗ ∗∈  and ( , , ,x kμ∗ ∗ ∗  

 such that , ) ( , , )v w H s t y∗ ∗ ∗ ∗ ∗∈ ( , , , , , , , )x k v w s t yμ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗  is a feasible solution of (DP), 
and  

1 1
( ) ( , ) ( ) ( , ) ( ) .T T

i r i
r q

k f x y x B x h x y x D x
β δ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

= =

⎡ ⎤⎛ ⎞⎛ ⎞
Ψ =Ψ + −⎢ ⎥⎜ ⎟⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ q

∗  

The optimality of this feasible solution for (DP) follows from Theorem 4.1. 
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Theorem 4.3 (Strict Converse Duality) Let x∗  and ( , , , , , , , )z k v w s t yμ  be the optimal 
solutions of (P) and (DP), respectively, and that the hypotheses of Theorem 4.2 are 
fulfilled. If any one of the following three conditions holds: 

a) one of 
1

( , ) ( )T
i

r

f y B w
β

=

⋅ + ⋅∑ r r  is strictly ( , , )iη ρ θ -invex, 
1

( , ) ( )T
i q

q

h y D v
δ

=

⋅ − ⋅∑ q  is 

strictly ( , , )iη ρ θ′ -incave for 1, ,i s=  or 
1

( )
p

j j
j

gμ
=

⋅∑  is strictly 0( , , )η ρ θ -invex, and 

0
1

( )
s

i i i
i

t kρ ρ ρ
=

′+ + ≥∑ 0;   

b) either 
1 1 1

( , ) ( ) ( , ) ( )
s

T T
i i r r i q q

i r q

t f y B w k h y D v
β δ

= = =

⎡ ⎤⎛ ⎞
⋅ + ⋅ − ⋅ − ⋅⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑  is strictly ( , , )η ρ θ -

invex or 
1

( )
p

j j
j

gμ
=

⋅∑  is strictly 0( , , )η ρ θ -invex, and 0 0;ρ ρ+ ≥   

c)  ( )
1 1 1

( , ) ( ) ( , )
s

TT
i i r r i q q

i r q

t f y B w k h y D v
β δ

= = =

⎡ ⎤⎛ ⎞
⋅ + ⋅ − ⋅ − ⋅⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑  is strictly ( , , )η ρ θ -

pseudo-invex and 
1

( )
p

j j
j

gμ
=

⋅∑  is 0( , , )η ρ θ  -quasi-invex, and 0 0;ρ ρ+ ≥   

then ,x z∗ =  that is, z  is an optimal solution for problem (P) and  

1 1

sup ( , ) ( , ) ( ).T T
r q

y Y r q

f z y z B z h z y z D z k
β δ

∈ = =

⎡ ⎤⎛ ⎞⎛ ⎞
Ψ + − = Ψ⎢ ⎥⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑  

Proof: Suppose on the contrary that .x z∗ ≠  From Theorem 4.2 we know that there exist 
( , , ) ( )s t y K x∗ ∗ ∗ ∗∈  and ( , , , , ) ( , , )x k v w H s t yμ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∈  such that 
( , , , , , , , )x k v w s t yμ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗  is a feasible solution for (DP) with the optimal value 

 Now, if we proceed similarly as in the proof of Theorem 3.3, we arrive at the 
strict inequality  

( ).k ∗Ψ

1 1

sup ( , ) ( ) ( , ) ( ) ( ).T T
r q

y Y r q
f x y x B x h x y x D x k

β δ
∗ ∗ ∗ ∗ ∗ ∗

∈ = =

⎡ ⎤⎛ ⎞⎛ ⎞
Ψ + − > Ψ⎢ ⎥⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑  

But this contradicts the fact ( ) ( ),k k∗Ψ = Ψ  and we conclude that .x z∗ =   
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