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Abstract: In this paper a multilevel programming problem, that is, three level 
programming problem is considered. It involves three optimization problems where the 
constraint region of the first level problem is implicitly determined by two other 
optimization problems. The objective function of the first level is indefinite quadratic, the 
second one is linear and the third one is linear fractional. The feasible region is a convex 
polyhedron. Considering the relationship between feasible solutions to the problem and 
bases of the coefficient sub-matrix associated to the variables of the third level, an 
enumerative algorithm is proposed, which finds an optimum solution to the given 
problem. It is illustrated with the help of an example. 
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1. INTRODUCTION 

There are many planning and/or decision making situations that can be properly 
represented by a multi level programming model. The most important characteristic of 
multilevel programming problems is that a planner at a certain level of hierarchy may 
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have his objective function and decision space determined partially by other levels. 
Mathematically, a multi level programming problem can be formulated as 

1
1 1( ,...., )kX

Max f X X  

 
2

2 1( ,...., )kX
Max f X X  

  : 

  : 

 1( ,...., )
k

k kX
Max f X X  

 (X1, X2, ..., Xk) ∈ S 

where S is a convex feasible set and fj (X1, ..., Xk), j = 1, 2, ...,k be linear / non-linear with 
respect to X1, X2, …, Xk where X1 = (x11, x12, …, 

11nx ), …., Xk = 
kk1 k2 kn(x , x ,..., x ) . 

This system has interacting decision making units within a hierarchical structure 
where each level performs its policies after knowing completely the decisions of superior 
levels. 

A multilevel programming problem can be found in many decision making 
situations. Candler and Norton [6] presented a version of this problem in an economic 
policy context. 

A number of methods have been developed to solve a multilevel programming 
problem. The most notable among them are cutting plane method [2, 8, 9, 19], branch 
and bound method [7, 15, 17] and by ranking the extreme points [3, 12]. These 
algorithms have been applied to a number of special problems such as the optimization of 
a concave quadratic function and bilinear programming problems [8]. H. Konno and T. 
Kuno [9] have proposed an algorithm for solving a linear multiplicative programming 
problem by the combination of the parametric simplex method and the standard convex 
minimization method. 

H.I. Calvete and C. Gale [4] have shown the existence of an extreme point 
which solves a bi-level programming problem where the objective functions of both 
levels are quasi-concave. 

(BLPP) has been used by researchers in several fields ranging from economics 
to transportation engineering. (BLPP) is used to model problems involving multiple 
decision makers. These problems include traffic signal optimization [16], structural 
design [14] and genetic algorithms [5]. A parametric method for solving (BLPP) has been 
discussed by Faisca, Dua, Rustem, Saraiva and Pistikopoulas [13]. 

A bibliography of references on bi-level and multilevel programming problems, 
which is updated biannually, can be found in [18]. 

 
2. APPLICATIONS 

Consider a programming problem in which the government is at first level. 
During the planning period, the government proposes certain goals. In order to optimize 
the achievement of such goals, it formulates certain policy measures such as taxes and 
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subsidies. The industries at the second level design their course of action keeping such 
policy measures in mind so that their objectives are fulfilled. The industries supply their 
products to the consumers in a certain area. The customers at the third level are at liberty 
to make their purchases from any industry. In doing so, the customers will consider 
economic criteria such as cost optimization. 

This is a three level programming problem in which the government’s 
objectives are at least in partial conflict with the two sectors industry and consumers, the 
policy makers face an optimization problem subject to the optimization problems for 
industries as well as for the consumers. 

In this paper, an enumerative algorithm for the three level integer programming 
problem (TIPP) is developed. The problem is mathematically stated as: 
(TIPP): 

1
1 1 2 3 11 1 2 3 12 1 2 3( , , ) ( , , ). ( , , )

X
Max Z X X X Z X X X Z X X X=  

where X2 solves 

2
2 1 2 3 2 1 2 2 2 3 2( , , ) ;

X
Max Z X X X c X d X e X α= + + +  for a given X1 

where X3 solves 

3

31 1 31 2 31 3 3
3 1 2 3

32 1 32 2 32 3 3

( , , ) ;
X

c X d X e X
Max Z X X X

c X d X e X
α
β

+ + +
=

+ + +
 for a given X1 and X2 

subject to 

A1X1 + A2X2 + A3X3 = b 

X1, X2, X3 ≥ 0 and integers, 

where  Z11 (X1, X2, X3) = c11X1 + d11X2 + e11X3 + α1 

Z12(X1, X2, X3) = c12X1 + d12X2 + e12X3 + β1 

X1 ∈ 1n\ , X2 ∈ 2n\  and X3 ∈ 3n\  are the variables controlled by the leader 
and the first and second follower respectively. 
 Here,  c11, c12, c2, c31, c32 ∈ 1n\ ; 

d11, d12, d2, d31, d32 ∈ 2n\ ; 

e11, e12, e2, e31, e32, ∈ 3n\ ;  α11, β1, α2, α3, β3 ∈ \; A1 ∈ 1m n×\ ; 

A2 ∈ 2m n×\ ; A3 ∈ 3m n×\  and b ∈ \m. 

Assume that 

(c32X1 + d32X2 + e32X3 + β3) > 0, ∀ (X1, X2, X3) ∈ S, 

where S = {(X1, X2, X3);  A1X1 + A2X2 + A3X3 = b;  X1, X2, X3 ≥ 0} 
is non-empty and compact. A3 has full row rank and m < n3. 
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The projection of S onto 1n\  is denoted by 

S1 = {X1 ∈ 1n\  : (X1, X2, X3) ∈ S}. 

The projection of S into 1 2n n+\  is denoted by 

S2 = {(X1, X2) ∈ 1 2n n+\  : (X1, X2, X3) ∈ S}. 

For each 1 1X S∈ , the feasible region of the first follower’s problem is denoted by 

2 3
1 2 3 2 2 3 3 1 1 2 3( ) {( , ) :  A ;   X , 0}n nS X X X X A X b A X X+= ∈ + = − ≥\ . 

For each 1 2(X , X )  ∈ S2, the feasible region of the second follower’s problem is 
denoted by 

3
1 2 3 3 3 1 1 2 2 3( , ) { :  A ;  X 0}nS X X X X b A X A X= ∈ = − − ≥\ . 

It is also assumed that the optimal solution of the first follower and the second 
follower’s problem is singleton. 

The inducible region or the feasible region of the relaxed leader’s problem is 
given by 

2 3
1 2 3 1 2 3 2 1 2 2 2 3 2X ,X

1 1 2 2 3 3 2 3

IR {(X , X ,X ) : X 0;  X , X  solves Max (c X d X e X )

s.to. A X A X A X b,  X 0,X 0}.

= ≥ + + + α

+ + = ≥ ≥
 

The inducible region or the feasible region of the first follower’s problem is 
given by 

3

31 1 31 2 31 3 3
1 1 2 3 1 2 3 X

32 1 32 2 32 3 3

1 1 2 2 3 3 3

c X d X e X
IR {(X ,X ,X ) : X 0;  X 0, X  solves Max

c X d X e X
s.to A X A X A X b,  X 0}.

+ + + α
= ≥ ≥

+ + +β

+ + = ≥

 

In the above (TIPP) problem, if we remove the restriction that X1, X2, X3 are 
integers, then the problem reduces to three level programming problem. 

Result: The optimal solution to the three level programming problem (TPP) 
occurs at an extreme point of S, provided S is regular. 
Proof. Since Z11(X1, X2, X3) and Z12(X1, X2, X3) are positive for all (X1, X2, X3) ∈ S, 
therefore, Z1(X1, X2, X3) is both quasi-concave and quasi-convex on S. 

Z2(X1, X2, X3) is linear; hence it is both convex and concave. Since it is also 
differentiable, therefore, in particular, it is quasi-concave. Z3(X1, X2, X3) is a ratio of two 
affine functions, hence it is quasi-concave. 

Thus, we get that the objective function at each level of (TPP) is quasi concave 
in nature and maximum of quasi-concave function occurs at an extreme point. If S is 
regular, there is an extreme point of the feasible region S which is an optimal solution to 
the quasi-concave (TPP) problem. 
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3. ALGORITHMIC DEVELOPMENT 

In the course of the algorithm, the Gomory cut is applied to obtain optimal, 
integer solution of (TIPP). For each 1 1X S∈ , a point of the inducible region (IR) is 
obtained by solving the linear programming problem: 

2
1 2 2 2 3 2( ) :

X
LP X Max d X e X α+ +  

subject to (X2, X3) ∈ S( 1X ) 

where 2 2 1 2c Xα α= + . 

For each 1 2 2( , )X X S∈ , a point of IR1 is obtained by solving the linear 
fractional programming problem: 

3

31 3 3
1 2

32 3 3

( , ) :
X

e X
FP X X Max

e X
α
β

+
+

 

subject to X3 ∈ S 1 2( , )X X , 

3 31 1 31 2 3c X d Xα α= + +  

3 32 1 32 2 3c X d Xβ β= + + . 

Hence, an extreme point X3 of S 1 2( , )X X  can be found which solves 
FP 1 2( , )X X  and the point so obtained 1 2 3( , , )X X X  ∈ IR1. Since a basis B of A3 is 
associated to 3X , we can associate a basis B of A3 to each point of IR and IR1. 
Therefore, we need only to consider it. 

To solve FP 1 2( , )X X , we consider the parametric approach. Consider the linear 
parametric problem: 

1 2 31 3 3 32 3 3( , ) : ( ) [( ) ( )]LP X X F Max e X e Xλ α λ β= + − +  

Subject to X3 ∈ S 1 2( , )X X . 
Consider the basis B of A3. 
To obtain points of IR and IR1, there must exist 1 1X S∈  and 1 2( , )X X  ∈ S2, 

such that B is a feasible basis of LP 1 2( , )X X . For some λ, B should also verify the 
optimality conditions of problem LP 1 2( , )X X  and F(λ) = 0 for at least one of the value of 
λ. 

While verifying the optimality conditions, we will get a lower bound λA and an 
upper bound λu for λ. Hence, for at least one λ, F(λ) = 0 implies that 

31 3 3
3 1 2 3

32 3 3

( , , ) uB
B

B

e X
Z X X X

e X
α

λ λ
β

+
≤ = ≤

+
A  (1) 
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where X3B stands for the variables of 3X  associated with the basis B, i.e., 

1
3 1 1 2 2

1
1 2 1 1 2 2

( );

0,   0,   ( ) 0.
BX B b A X A X

X X B b A X A X

−

−

= − −

≥ ≥ − − ≥
 

Since a basis B should verify the optimality conditions of the problem 
1 2( , )LP X X , before the start of a new iteration, we have to check the optimality 

condition: 

(OC) 1
31 32 31 32 3 3( ) 0,j j B B je e e e B A j Vλ λ −− − − ≤ ∀ ∈ , 

where 31 32 and j je e  are the jth components of vectors e31 and e32, respectively; 31
Be  and 32

Be  
are the m-row vectors of e31  and e32, associated to the basic variables of B, 3

jA  is the jth 
component of A3 and V3 is the set of indices controlled by the third level. 

While checking this condition, we obtain the interval [λA, λu] for the parameter 

λ. If λA = −∞ or λu = ∞, the interval [λA, λu] will be open at the extremes. If no such λ 
exists, so that basis B verifies condition (1), then this base is of no interest because it is 
impossible to obtain a point of the inducible region corresponding to it. 

Now, points of IR which corresponds to the basis B is obtained by solving the 
indefinite quadratic programming problem: 
IQP(B) : Max (c11X1 + c12X2 + B

11e X3B + α1) (c12X1 + d12X2 + 12
Be X3B + β1) 

subject to A1X1 + A2X2 + A3X3B = b 

X1, X2, X3B ≥ 0 and integers. 

Note that while B is analyzed, variables of the third level not associated to B are 
equal to zero. Suppose that IQP (B) is feasible and (OC) is verified. Let the solution so 
obtained be X1 = X1

*. Now, points of IR1 which corresponds to the basis B is obtained by 
solving the linear programming problem: 
LP(B) : Max d2X2 + e2X3B + 2α̂  

subject to A2X2 + A3X3B = b − A1X1
* 

X2, X3B ≥ 0 and integers, 

where *
2 2 2 1ˆ c Xα α= + . 

Again, while B is analyzed, variables of the third level not associated to B are 
equal to zero. 

Suppose LP(B) is feasible and (OC) is verified, then the optimal solution so 
obtained X* = (X1

*, X2
*, X3

*) is the best point of IR1. 
Now, we look for a new basis which can improve the values of Z1 and Z2 

obtained so far. 
Let T be the set of indices associated to basis B. Let V1, V2 and V3 be the set of 

indices controlled by the first level, second level and third level problems, respectively. 
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Lemma : Any basis from A3 capable of providing a point of IR1 better than X* must 
include at least one vector whose index belongs to the set 

C = {j ∈ V3 − T : j ∈ C1 and j ∈ C2}, where 

C1 = {j ∈ V3 − T : Lj < 0} 

and  C2 = {j ∈ V3 − T : zj − cj < 0}, 

12 11 12 11
11 12( ) ( ) ( )( )j j j j j j j j jL Z z d Z z c z d z cθ= − + − − − −  is the jth reduced cost coefficient in 

the optimal integer solution of IQP(B) and (zj − cj) is the jth reduced cost coefficient in the 
optimal integer solution of LP(B). 

Proof: (i) Let Z1(X*) denote the value of the first level objective function at X*. 

According to X*, the matrix [A1 A3] is decomposed into [B N] where B is an 
(m×m) basis matrix associated to the basic variables of X*. 
Let *

BX  be a basic feasible solution and ˆ
BX  be the new basic feasible solution obtained 

by entering aj into the basis and departing br. Then, 

*
*ˆ ˆ   and  0r

i i r r

Bij
B B B B

rj rj

XY
X X X X

Y Y
= − = >  

i.e., *ˆ ˆ and  
i i rB B ij BX X Y Xθ θ= − = . 

Given, * * * *
11 1 12 1  and  ZT T

B B B BZ C X D Xα β= + = + , the new value of the objective 
function is 

1 11 12
ˆ ˆ ˆ( ) ( ). ( )Z X Z X Z X=  

1 1
1 1

ˆˆ ˆˆ
i i i i

m m

B B B B
i i

c X d Xα β
= =

⎛ ⎞⎛ ⎞
= + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑  

* *
1 1

1 1

ˆˆ( ) ( )
i i r i i i

m m

B B ij B B B ij B
i i
i r i r

c X Y c d X Y dθ θ α θ θ β
= =
≠ ≠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − + + − + +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑  

* *
1 1

1 1
( ) ( )

i i i i

m m

B B ij j B B ij j
i i
i r i r

c X Y c d X Y dθ θ α θ θ β
= =
≠ ≠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − + + − + +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑  

[∵
rB

ˆˆ   and d
rB j jc c d= = ] 

* *
1 1

1 1 1 1
i i i i i i

m m m m

B B B ij j B B B ij j
i i i i

c X c Y c d X d Y dθ θ α θ θ β
= = = =

⎛ ⎞⎛ ⎞= − + + − + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑  
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* 11 * 12
11 12( )( )j j j jZ z c Z z dθ θ θ θ= − + − +  

* * * 12 * 11 11 12
11 12 11 12( ( ) ( ) ( )( )j j j j j j j jZ Z Z z d Z z c z c z dθ θ= − − + − − − −  

* *
11 12 jZ Z Lθ= −  

> * *
11 12Z Z  (∵θ > 0 and Lj < 0) 

= Z1(X*) 

Thus, *
1 1

ˆ( ) ( )Z X Z X> . 
Hence, in order to improve the first level, we must consider those aj’s for which 

Lj < 0. 
If X* solves IQP (B), then Lj ≥ 0  ∀ j ∈ V1 and ∀j ∈ T. 
Let Z2(X*) denote the value of the second level objective function at X*. Again, 

[A2 A3] can be decomposed into [B N] where B is an (m×m) basis matrix associated to 
the basic variables of X*. 

Let *
BX  be the b.f.s. obtained by phase I of the simplex method. Let ˆ

BX  be the 
new b.f.s. obtained by entering aj into the basis and departing br. Then, the new value of 
the objective function is 

2
1

ˆ ˆ ˆˆ ˆ( ) .
i i r r

m

B B B B
i
i r

Z X c X c X
=
≠

= +∑  

* *
*

1

r r

i i

m
B B

B B ij j
i rj rj
i r

X X
c X Y c

Y Y=
≠

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
∑  

*
*

1 1

r

i i i

m m
B

B B j B ij
i irj

X
c X c c Y

Y= =

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

∑ ∑  

= Z2(X*) − θ(zj − cj) 

> Z2(X*) (∵ θ> 0 and zj − cj < 0) 

Thus, *
2 2

ˆ( ) ( )Z X Z X> . 

Hence, in order to improve the second level objective function, we must 
consider those aj’s for which (zj − cj) < 0. If X* solves LP(B), then (zj − cj) ≥ 0 ∀ j ∈ V2 
and ∀ j ∈ T. 

If C = φ, we cannot improve Z1 and Z2, hence the current best integer point is 
optimum to (TIPP). If we have previously built sets C1, C2, ...., Ci, the new basis B should 
include at least one index from each sets C1, C2, ..., Ci.  

Let E1 = U {Ci}. Suppose IQP(B) is not feasible or IQP(B) is feasible but its 
optimal solution does not verify (1), then this basis is of no longer interest.  
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If D denotes the set of indices associated to B, then the new basis should not 
include all vectors with indices in the set D. If we have previously built sets D1, D2, ...., 
Di, the new basis should not include all vectors with indices in each of these sets. Let E2 
= U{Di}. 

To select indices which form the new basis, it is suggested to solve for wj using 
the following system: 

(PI) : 11, ,  C
1,

0,j j j
j

j C E
w

otherwise
δ δ

∈ ∈⎧
≥ = ⎨

⎩
∑  

2
j j j j

j j

1, j D,  D E
w 1,     

0, otherwise
∈ ∈⎧

δ ≤ δ − δ = ⎨
⎩

∑ ∑  

j
j

w m=∑  

wj ∈ {0, 1}, j ∈ V3. 

The required indices correspond to j where wj = 1. 
Remark: 1. If the basis so formed has rank k < m, then ˆ[ , ]NB B N=  where B̂  is a matrix 
of independent vectors of B and N is a matrix of (m − k) vectors of A3 is a basis from A3. 

The optimum of the problem 
 

1X
Max Z1(X1, X2, X3) = (c11X1 + d11X2 + e11X3 + α1)(c12X1 + d12X2 + e12X3 + β1) 

where X2 solves   

2X
Max Z2(X1, X2, X3) = c2X1 + d2X2 + e2X3 + α2, for a given X1 

subject to (X1, X2, X3) ∈ S, 

is a lower bound on the optimum of (TIPP). Hence, at some stage of the algorithm if an 
integer point of IR1 provides this optimum, then that point is the optimum solution to 
(TIPP). 

Here, we are considering the leader’s problem as: 

(IQP):
1X

Max  Z1(X1, X2, X3)  

= (c11X1 + d11X2 + e11X3 + α1) (c12X1 + d12X2 + e12X3 + β1) 

subject to (X1, X2, X3) ∈ S. 

The first follower’s problem is: 
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(LP): 
2X

Max  Z2(X1, X2, X3) = c2X1 + d2X2 + e2X3 + α2, for a given X1  

subject to (X1, X2, X3) ∈ S. 
 

4. STEPWISE DESCRIPTION OF THE ALGORITHM 

Step 0 : Solve the problem 
1X

Max  Z1(X1, X2, X3)  

subject to  (X1 , X2 , X3) ∈ S 
 
0.1. If it is not feasible, stop. (TIPP) is not feasible. 
0.2. If the optimal solution is not an integer solution, then apply Gomory's 

cutting plane method to find an integer solution. Let X* = (X1
*, X2

*, X3
*) be 

an optimal integer solution. 
 

Step 1: Put X1 = X1
* in the first follower’s problem. Find the integer solution to LP(X1

*). 
Let (X2

1, X3
1) be its optimal solution. 

 
1.1. If X2

* = X2
1, go to step 3, otherwise go to step 2. 

 
Step 2: If X2

* ≠ X2
1, find the second best solution of leader’s problem (IQP) and go to 

step 1. 

Step 3 : Put X1 = X1
* and X2 = X2

* in the second follower’s problem. Solve it by the 
parametric approach. Let 3X̂  be the optimal integer solution. 

If X3
* = 3X̂ , then, (X1

*, X2
*, *

3X ) is the optimal integer solution for (TIPP). 

If X3
* ≠ 3X̂ , stop. (X1

*, X2
*, 3X̂ ) is the current best integer point of IR1. Set E1 

= φ, E2 = φ. 
 

Step 4 : Solve IQP (B).  
 
4.1. If IQP (B) is not feasible or if optimal solution does not verify (1), then 

compute D. Set E2 = E2 ∪ {D}. Go to step 7. 
4.2. If IQP (B) is feasible and (1) is verified, then compare this optimal solution 

with the current best integer point of IR1 and update if necessary. Let the optimal integer 
point be 1 2 3( ,  ,  )o o oX X X . Construct C1 = {j ∈ V3 − T : Lj < 0}. 

 
Step 5: Solve LP(B) for a given X1 = 1

oX . 

5.1. Let its optimal integer solution be ** **
2 3( ,  )X X  and (1) is verified. 

5.2. If **
2X  ≠ 2

oX , then find the next best solution of IQP (B) and go to step 4. 
5.3. If **

2X  = 2
oX , construct C2 = {j ∈ V3 − T: zj − cj < 0}. 
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Step 6 : Computer C = {j ∈ V3 − T: j ∈ C1 and j ∈ C2}. 

6.1. If C = φ, stop. The current best integer point of IR1 is the optimal solution to 
(TIPP). Otherwise set E1 = E1 ∪ {C}. 

 
Step 7 :  Solve PI. 

 
7.1. If PI is not feasible, stop. The current best integer point of IR1 is optimal to 

(TIPP). 
 

Step 8: If PI is feasible, construct B and compute [λA, λu] by solving (OC). If no solution  
exist for (OC), compute D, set E2= E2 ∪ {D} and go to step 8. Otherwise go to step 4. 

EXAMPLE : Consider the three level integer programming problem: 

(TIPP) : 
1

1 1 2 3 1 2 3 4( 2 4)( 2 1)
x

Max Z x x x x x x x= + + + − − + + +  

where x2, solves 

2X
Max  Z2 = 2x2 + x3 + 3x4 

where x3, x4, x5, x6, x7, x8 solves, for a given x1 and x2 

1 2 3 4
3

1 2 5

2 3 2 3
5 11 29
x x x x

Max Z
x x x
+ + −

=
+ + +

 

subject to  

− 3x1 + 7x2 + x3  + x5  = 10 

14x1 + 4x2 + x6  = 6 

x1 + x2 + x3 − x4 + x7 = 5 

2x1 + x2 + 2x4 + x8     = 8 

x1, x2, ..., x8 ≥ 0 and integers. 

Solution : Solve (IQP) given by 

(IQP) :Max Z1 = (x1 + x2 + 2x3 + 4) (−x1 − x2 +  x3 + 2x4 + 1) 

subject to 

− 3x1 + 7x2 + x3 + x5 = 10 

14x1 + 4x2 + x6 = 6 

x1 + x2 + x3 − x4 + x7  = 5 

2x1 + x2 + 2x4 + x8 = 8 
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x1, ...., x8 ≥ 0 and integers. 

The optimal table of (IQP) is given by 

cj → 1 1 2 0 0 0 0 0 

dj → −1 −1 1 2 0 0 0 0 

CB DB VB XB x1 x2 x3 x4 x5 x6 x7 x8 

0 0 x5 1 −5 11/2 0 0 1 0 −1 −1/2 

0 0 x6 6 14 4 0 0 0 1 0 0 

2 1 x3 9 2 3/2 1 0 0 0 1 ½ 

0 2 x4 4 1 ½ 0 1 0 0 0 ½ 

Z11 = 22 11
j jz c− →  3 2 0 0 0 0 2 1 

Z12 = 18 12
j jz d− →  5 7/2 0 0 0 0 1 3/2 

 Lj → 164-5θ 113-7θ 0 0 0 0 58-2θ 51-3/2θ 
 
 
Here, Lj ≥ 0  ∀ j. 
The optimal integer solution is given by 

* * * * * * * * * * * *
1 2 3 1 2 3 4 5 6 7 8( , , ) ( , , , , , , , ) (0,0,9,4,1,6,0,0)X X X X x x x x x x x x= = =  

Put x1
* = 0 and solve the follower’s problem: 
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LP(x1
*) = Max Z2 = 2x2 + x3 + 3x4 

subject to  

7x2 + x3 + x5 = 10 

4x2 + x6 = 6 

x2 + x3 − x4 + x7 = 5 

x2 +2x4 + x8 = 8 

x2, ..., x8 ≥ 0 and integers. 

The optimal integer solution is 
1 1 1 1 1 1 1 1 1
2 3 2 3 4 5 6 7 8( , ) ( , , , , , , ) (0,  9,  4,  1,  6,  0,  0).X X x x x x x x x= =  

We get 1 *
2 2x x=  = 0. 

Put *
1 0x =  and *

2 0x =  in the second follower’s problem: 

FP * * 3 4
1 2 3

5

2 3
( , ) :

29
x x

x x Max Z
x
−

=
+

 

subject to  

x3 + x5 = 10 

+ x6 = 6 

x3 − x4+ x7 = 5 (1) 

2x4 + x8 = 8 

x3, ..., x8 ≥ 0 and integers 

Solve * *
1 2( , )FP x x  by parametric approach. 

The linear parametric problem is given by 
* *
1 2 3 3 4 5( , ) : ( ) (2 3 ) ( 29)FP x x F Max Z x x xλ λ= = − − +  

subject to the constraints (1). 

Optimal integer solution of * *
1 2( , )LP x x  is given by 

3 3 4 5 6 7 8
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , , , , ) (5,  0,  5,  6,  0,  8)X x x x x x x= =  with 

[ , ] [ 2,  1]uλ λ = −A  and F(λ) = 0 for λ = 10/34 = 0.29. 

Here, *
3 3

ˆX X≠ . 

The current best integer point of IR1 is (0, 0, 5, 0, 5, 6, 0, 8).  
Set E1 = φ and E2 = φ. 

Basis B1 is given by the vectors with indices 3, 5, 6, and 8.  
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Solve IQP (B1) given by 
IQP (B1) : Max (x1 + 2x3 + 4) (−x1 + x3 + 1) 
subject to 

−3x1+ x3 + x5   = 10 

14x1+ x6 = 6 

x1 + x3 = 5 

2x1 + x8 = 8 

x1, x3, x5, x6, x8 ≥ 0 and integers. 

The optimal integer solution is 

1 3 5 6 8( ,  ,  ,  ,  ) (0, 5, 5, 6, 8)o o o o o oX x x x x x= = , with Z1 = 84. Since 3
10( ) [ 2, 1]
34

oZ X = ∈ − , 

condition (1) is verified. Note that variables of the third level not associated to B1 which 
are not to be considered while solving problem IQP(B1) are included in the construction 
of the set C1. The reduced cost Lj of x4 is negative in the optimal solution of problem 
IQP(B1), therefore, we have 

C1 = {j ∈ V3 − T: Lj < 0} = {4}. 

For x1 = 1
ox  = 0, solve LP(B1) given by 

LP(B1) : Max 2x2 + x3 

subject to 7x2 + x3 + x5 = 10 

4x2 + x6  = 6 

x2 + x3 = 5 

x2 + x8 = 8 

x2, x3, x5, x6, x8 ≥ 0 and integers. 

The optimal integer solution obtained is 

** ** ** ** ** **
2 2 3 5 6 8( , , , , ) (0, 5, 5, 6, 3)X x x x x x= = , with Z2 = 5. 

Since **
3 2

10( ) [ 2,1]
34

Z X = ∈ − , condition (1) is verified. Here, **
2 2 0ox x= = . Again, the 

variables of the third level not associated to B1, are not considered while solving problem 
LP(B1) and are included in order to construct the set C2. 

C2 = {j ∈ V3 − T : zj − cj < 0} = {4}. 

Thus, from above, we get 

C = {j ∈ V3 − T: j ∈ C1 and j ∈ C2] = {4}. 
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E1 = E1 ∪ {C} = {{4}}. 

Solve the problem (PI) to obtain a new base which may provide us a better point of IR1, 

(PI ): w4 ≥ 1 

w3 + w4 + w5 + w6 + w7 + w8 = 4 

wi ∈ {0, 1}. 

Choose w3 = w4 = w5 = w6 = 1. 
Here, the new basis B2 associated to variables x3, x4, x5 and x6 and having rank 4. 

To find [λA, λu], that is, to check if the new base B2 satisfies the optimality 
condition, solve (OC):- 

(OC) : 1
31 32 31 32 3( ) 0j j B B je e e e B Aλ λ −− − − ≤     3 {3,  4,  5,  6,  7,  8}j V∀ ∈ = . 

⇒  

11 0 1 0 1 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0

0 [(2, 3,0,0) (0,0,1,0)] 0
1 1 0 0 1 1 0 0 1 0
0 2 0 0 0 2 0 0 0 1

λ

−
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − ≤
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

Solving, we get λ ∈ [0, 1]. 
A new iteration begins for the base B2. 
Solve IQP (B2) given by −IQP(B2) : Max (x1 + 2x3 + 4) (−x1 + x3 + 2x4 + 1) 

subject to −3x1 + x3  + x5     = 10 

14x1 + x6  = 6 

x1 + x3 − x4 = 5 

2x1 + 2x4 = 8 

x1, x3, x4, x5, x6 ≥ 0 and integers. 

The optimal integer solution is given by 

3 4 5 6( , , , , ) (0,  9,  4,  1,  6)o o o o o oX x x x x x= =  with  

Z1 = 612 > 84. 

0
3

1( ) [0,1]
5

Z X = ∈ , therefore, (1) is verified. Update the current best integer point of 

inducible region as (0, 0, 9, 4, 1, 6, 0, 0).  
Here C1 = {j ∈ V3 − T : Lj < 0} = {φ}. 

For, x1° = 0, solve LP (B2) :  

LP(B2) : Max 2x2 + x3 + 3x4 

subject to 7x2 + x3 + x5 = 10 
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4x2 + x6 = 6 

x2 + x3 − x4 = 5 

x2 +  2x4 = 8 

x2, x3, x4, x5, x6 ≥ 0. 

The optimal integer solution is 
** ** ** ** ** **
2 2 3 4 5 6( , , , , ) (0,  9,  4,  1,  6)X x x x x x= = , with Z2 = 21 > 5. 

**
3 2

1( ) [0,1]
5

Z X = ∈ , therefore, (1) is verified. Update the current best integer 

point of IR1 as (0, 0, 9, 4, 1, 6, 0, 0). Here **
2 2 0ox x= = . 

C2 = {j ∈ V3 − T : zj − cj < 0} = {φ}. 

Thus, C = {j ∈ V3 − T : j ∈ C1 and j ∈ C2} = {φ}. 
The current best integer point is (0, 0, 9, 4, 1, 6, 0, 0) with Max Z1 = 612, Max 

Z2 = 21 and Max Z3 = 1/5. This is the optimal integer solution for (TIPP). 
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