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Abstract: Proving the program correctness and designing the correct programs are two 
connected theoretical problems, which are of great practical importance. The first is 
solved within program analysis, and the second one in program synthesis, although 
intertwining of these two processes is often due to connection between the analysis and 
synthesis of programs. Nevertheless, having in mind the automated methods of proving 
correctness and methods of automatic program synthesis, the difference is easy to tell. 
This paper presents denotative interpretation of programming calculation  explaining 
semantics by formulae ϕ and ψ, in such a way that they can be used for defining state 
sets for program P. 

Keywords: Dijkstra, denotative interpretation, predicate, terminate, operator. 

AMS Subject Classification: 03BXX 



 Markoski, B., Hotomski, P., Malbaški, D., Obradović, D., / Dijkstra's Interpretation 230

1. INTRODUCTION 

We are referring to, according to [Čub,1989] the main results based on 
matemathical-logical approach (Floyd, Manna, Waldinger, Weisman, Ness).  

For each program a question of termination and correctness is presented, and for 
two programs – the question of their equivalence. 

Using directed graph, a notion of abstract (non-interpreted) program is defined. 
Partially interpreted program is then obtained by using interpretation of functional, 
predicate and constants symbols. Realized program is obtained through the interpretation 
of free variables within a partially interpreted program. Functioning of realized program 
may be followed by its executing sequence. 

According to [Dijkstra, 1988] basic assumptions of programming logic are 
given. 

Interesting system is the one which would, starting from initial state, "terminate" 
in final state (which, as a rule, depends on choice of initial state). We assume that the 
input value is presented in the choice of initial state and that the output value is presented 
in the final state. "Condition characterizing a set of all initial states, from which 
activation surely leads to correct termination of events in such a way that leaves a system 
in final state satisfying given conclusion is called widest precondition regarding that 
conclusion" [Dijkstra, 1988].  

If a mechanism or machine as a system is noted as S, and desired conclusion as 
R, than the widest precondition may be noted as follows: 

wp(S,R) 

where wp is a function of two arguments of S and a predicate R. Semantics of 
some mechanism is known well enough if we know its predicate transformer, which tells 
us that for every conclusion R we may derive the widest precondition (noted as wp(S,R)). 

We may say that wp is a set of all states, such that execution starts in one of 
them. If S starts in state satisfying R and if execution terminates, than final state would 
satisfy R. More harsh condition may be given, that predicate P implies R for all states, 
i.e.  

P⇒ wp(S,R ).   

If starting state satisfies predicate P, then: 
1. S is required to terminate 
2. R becomes correct 
Since P⇒ wp(S,R ) is correct for all states, follows that wp(S,R ) is true 

whenever P is true. 
At the start, a mechanism S is placed (identical transformations(, such that no 

matter conclusion R follows wp(S,R)=R. This mechanism programmers recognize as 
"empty command". Dijkstra calls it "skip". 

If x is defined as a variable substitued by expression E, this command is 
presented as follows: 
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x : =E 

(where so-called operator "value assignation" Dijkstra calls "acquire value"). 
Final definition summarizing all beforehand assumptions is: 

wp("x:=E",R) = RE
X  for every conclusion R 

which may be considered, for every coordinated variable x and for every expression E of 
appropriate type, as a semantic definition of "value assignation" operator. 

To some programmers, natural broadening of value assignation command is 
very close, so-called "competitive value assignation". Simply, to certain number of 
different variables value assignation may be done simultaneously. Competitive value 
assignation is presented as a set (list) of different variables to which value is changed 
(separated by commas) on the left-hand side of a value assigning operator and a set (list) 
of identical number of expressions (separated by commas) on the right-hand side of a 
value assigning operator. 

x1,x2 : = E1,E2 

x1,x2, x3 : = E1,E2,E3 

 
2. PROGRAMMING CALCULATION 

Programming calculation is a special quantification calculation consisting of: 
1. Constants and variables called states and state variables, respectively 
2. Relation letters of length 1 marked as A,B,C 
3. Relation letters of length 2 marked P,S,... called programs 
4. Formulae marked ϑ,φ.Ψ, 
5. Special kinds of formulae marked {φ} P {Ψ} with main interpretation - if 

before execution of program P a formula φ was correct, than P must 
terminate and formula Ψ becomes true 

6. Axioms (precisely, axiom schemes) of assignation 

|⎯ {ϕx
e} x := e {ϕ}+ 

where ϕx
e marks expression formula ϕ where every occurrence of variable x is 

(simultaneously) replaced by expression e. Symbol "+" marks that from x := e is required 
to terminate, which reduced to calculation e. 

 
7. Rules of derivation 

 
ϕ ⇒ θ, {θ} P {ψ} 

{ϕ} P {ψ} 
 

{ϕ} P {θ}, θ ⇒ ψ 
{ϕ} P {ψ} 
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{ϕ} P {θ}, {θ} Q {ψ} 
{ϕ} P; Q {ψ} 

 
{ϕ ∧B} P {ϕ} 

{ϕ} while B do P {ϕ ∧ ¬B} 
 

The first two rules are named consequence rules. The third rule is sequence, and 
fourth is iteration. 

 
3. DENOTATIONAL INTERPRETATION 

Denotational interpretation of programming calculation [Dijkstra, 1988] gives 
semantics to formulae ϕ i ψ, υσ, using them to define sets of states for program P. 

Let P be a program with set of states D. Set of states may be further interpreted 
as a set of values for all variables within a program. For denotational interpretation this 
further precisement is not necessary, so we will stay at abstract states. We define sets Dϕ 
and Dψ as follows: 
 

Dϕ = {d | (d ∈ D) ∧ ϕ(d)} ⊆ D                 (1.1) 

Dψ = {d | (d ∈ D) ∧ ψ(d)} ⊆ D                                            (1.2) 

Additionally, mark  |⎯ α is interpreted as α = Τ, and |⎯ ¬ α as α = ⊥. 
 
Position 1.1. applies 
 

(∀d) ((d∈D) ⇒ |⎯ ¬ϕ(d)) ⇒ (Dϕ = ∅)                                  (1.3) 

 
Proof  Statement (∀d) ( (d∈D) ⇒ |⎯ ¬ϕ(d)) ) ⇒ (Dϕ = ∅) is same as  
 

(∀d) ((d∉D) ∨ |⎯ ¬ ϕ(d)) ⇒ (Dϕ = ∅)             (1.4) 

 
If d∉D applies, then, according to 1.1, d ∉ Dϕ. If |⎯ ¬ϕ(d) applies, then, also 

according to 1.1, d∉Dϕ. 

Position 1.2. applies 

(∀d) ((d∈D) ⇒ |⎯ ¬ ψ(d)) ⇒ (Dψ = ∅)                                  (1.5) 

 
Proof. Same as in previous position. 
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Position 1.3. If ϕ is defined, applies 
 

(∀d) ((d∈D) ⇒ ¬ |⎯ ϕ(d)) ⇔ (Dϕ = ∅)         (1.6) 

 
Proof. Implication from right to left must be proven. We will use contraposition, i.e. 
(p⇒q) ⇔ (¬q⇒¬p). Let left side as false. Its negation is   
 

(∃d') ((d'∈D) ∧ ϕ(d')) 

 
so, according to (1.1) it means d'∈D, i.e. Dϕ ≠ ∅. 
 
Position 1.4. Position 1.3. applies if in (1.6) ϕ is replaced by ψ. 
1.4.1. Execution function 

Let P is a program and D is a set of its states. Then execution function, marked 
[P], is copying 
 

[P]: D → D. 

Statement formulae ϕ and ψ are interpreted as copying 
 

ϕ, ψ: D → {⊥, Τ}. 

All three functions are partial in general case. With this interpretation, predicate  
 

{ϕ} P {ψ} 
 
has meaning: if a program P was in initial state d0 for which ϕ(d0) is applied and if it 
terminates, it will end in a state df ≡[P](d0) for which ψ(df). 
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Figure 1 

We will consider some special cases connected to the behavior of programming 
function [P], assuming that in all the following expressions states belong to set D of 
program states (i.e. states not connected to program P are excluded). 

 
1. P starts in state d0 ∈ Dϕ and terminates in state df ∈ Dψ (regular case). Then 

applies {|⎯ϕ(d)0} P {|⎯ ψ([P](d0))} where ψ([P](d0)) ≡ df. 
2. P starts in state d0 ∈ Dϕ and terminates in state df ∉ Dψ This means that if 

functions ϕ and ψ are well defined (in specification sense), the situation 
responds to the wrong reaction to good input. In this case applies 
{|⎯ ϕ(d)0} P {|⎯ ¬ ψ([P](d0))}. 

3. P starts in state d0 ∈ Dϕ but [P](d0) is not defined, which means that P from 
state d0 does not terminate. Let termin(s, d) is a polymorphism with co-
domain {⊥, Τ} where s is so-called syntax unit (program, subprogram, 
program segment, command, even a part of command). Function termin has 
value Τ if and only if s terminates. Otherwise termin gets value ⊥. the fact 
that P is not terminating from state d0 means |⎯ (d∈D) ((d0, d) ∉ [P]) or, 
which is the same, |⎯ ¬ termin(P, d0). 

4. P starts in state d' ∉ Dϕ (i.e. wrong input if ϕ is well defined according to 
specification). Then it is possible 

4.1. |⎯ ¬ termin(P, d') which is all right since it means that program 
does not terminate for wrong input so it is not robust. 

4.2. |⎯ termin(P, d') ∧ [P](d') ∈ Dψ, which marks correct reaction to 
wrong input. 
5. P starts in state d' ∉ Dϕ and terminates in state d'' ∉ Dψ which represents 

wrong reaction to wrong input, i.e. d' ∈ Dϕ ∧ d'' ≡ [P](d') ∉ Dψ. 
 

Let P be a program with set of states D and executing function [P]. Program P is 
totally correct considering predicates ϕ and ψ if and only if it applies 
 

|⎯ {ϕ} P {ψ}+ 
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which means that P must terminate. Program P is partially correct considering predicates 
ϕ and ψ if and only if it applies 

|⎯ {ϕ ∧ (P terminates)} P {ψ}, 

i.e. if termination is placed within precondition of expression {ϕ}P{ψ}. Notation for 
partial correctness is 

|⎯ {ϕ} P {ψ} 
 
Denotational interpretations of total and partial correctness are consequently 

|⎯ {ϕ} P {ψ}+⇔ |⎯(∀ d∈D) (|⎯ϕ(d)⇒ |⎯ termin(P,d) ∧ |⎯ ψ([P](d)))  

is total correctness (termination is also required) 
and expression 

 |⎯ {ϕ} P {ψ} ⇔   |⎯ (∀d∈D)(|⎯ ϕ(d) ∧ termin(P,d)  ⇒ |⎯ ψ([P](d))) 

is partial correctness, not requiring termination. 
This means that |⎯ {ϕ} P {ψ}may be generated even when program does not 

terminate. 
 

4. CONCLUSION 

 The problem of programs analysis and synthesis, being solved by using 
resolution procedure of proving and deduction of answers, was published by Z. Mann 
[Mann, 1969-1974]. The other approach to solving problem of program correctness is 
application of axiomatic definitions of semantics for Pascal programming language, as a 
special rule of programming logic [Floyd, 1967], [Hoare, 1969], [Hoare, Wirth, 1972-
1973]. Comparing these two approaches in solving problem of program correctness it 
may be concluded that they are significantly different in conception, but with one 
common feature: deductive system in predicate language. This is explained by derivation 
methods in definite predicate calculation, based on the formal theory deduction.. In this 
way, the problem of program correctness is brought into close relationship with 
automated checkup of existing proofs of mathematical theorems. Realized (deterministic, 
and these are the only ones considered here) program has only one, or none, executing 
sequence (when there is no one existing). Partially interpreted program may have several 
different executing sequences (within it, for every interpreted predicate is known whether 
it is correct or not, depending on output variables different execution paths are possible). 
Abstract program always has only one executing sequence (here is not known whether 
predicate P or its negation ~P is correct). 
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