
Yugoslav Journal of Operations Research
Volume 20 (2010), Number 2, 229-236
DOI:10.2298/YJOR1002229M

DIJKSTRA'S INTERPRETATION OF THE APPROACH TO
SOLVING A PROBLEM OF PROGRAM CORRECTNESS

Branko MARKOSKI
Technical Faculty, "Mihajlo Pupin", University of Novi Sad,

Zrenjanin, Serbia
markoni@uns.ac.rs

Petar HOTOMSKI

Technical Faculty "Mihajlo Pupin", University of Novi Sad,
Zrenjanin, Serbia

 Dušan MALBAŠKI

Faculty of Technical Sciences,
 Institute of Computing and Control, University of Novi Sad, Serbia

 Danilo OBRADOVIĆ

 Faculty of Technical Sciences,
 Institute of Computing and Control, University of Novi Sad, Serbia

Received: June 2006 / Accepted: November 2010

Abstract: Proving the program correctness and designing the correct programs are two
connected theoretical problems, which are of great practical importance. The first is
solved within program analysis, and the second one in program synthesis, although
intertwining of these two processes is often due to connection between the analysis and
synthesis of programs. Nevertheless, having in mind the automated methods of proving
correctness and methods of automatic program synthesis, the difference is easy to tell.
This paper presents denotative interpretation of programming calculation explaining
semantics by formulae ϕ and ψ, in such a way that they can be used for defining state
sets for program P.

Keywords: Dijkstra, denotative interpretation, predicate, terminate, operator.

AMS Subject Classification: 03BXX

 Markoski, B., Hotomski, P., Malbaški, D., Obradović, D., / Dijkstra's Interpretation 230

1. INTRODUCTION

We are referring to, according to [Čub,1989] the main results based on
matemathical-logical approach (Floyd, Manna, Waldinger, Weisman, Ness).

For each program a question of termination and correctness is presented, and for
two programs – the question of their equivalence.

Using directed graph, a notion of abstract (non-interpreted) program is defined.
Partially interpreted program is then obtained by using interpretation of functional,
predicate and constants symbols. Realized program is obtained through the interpretation
of free variables within a partially interpreted program. Functioning of realized program
may be followed by its executing sequence.

According to [Dijkstra, 1988] basic assumptions of programming logic are
given.

Interesting system is the one which would, starting from initial state, "terminate"
in final state (which, as a rule, depends on choice of initial state). We assume that the
input value is presented in the choice of initial state and that the output value is presented
in the final state. "Condition characterizing a set of all initial states, from which
activation surely leads to correct termination of events in such a way that leaves a system
in final state satisfying given conclusion is called widest precondition regarding that
conclusion" [Dijkstra, 1988].

If a mechanism or machine as a system is noted as S, and desired conclusion as
R, than the widest precondition may be noted as follows:

wp(S,R)

where wp is a function of two arguments of S and a predicate R. Semantics of
some mechanism is known well enough if we know its predicate transformer, which tells
us that for every conclusion R we may derive the widest precondition (noted as wp(S,R)).

We may say that wp is a set of all states, such that execution starts in one of
them. If S starts in state satisfying R and if execution terminates, than final state would
satisfy R. More harsh condition may be given, that predicate P implies R for all states,
i.e.

P⇒ wp(S,R).

If starting state satisfies predicate P, then:
1. S is required to terminate
2. R becomes correct
Since P⇒ wp(S,R) is correct for all states, follows that wp(S,R) is true

whenever P is true.
At the start, a mechanism S is placed (identical transformations(, such that no

matter conclusion R follows wp(S,R)=R. This mechanism programmers recognize as
"empty command". Dijkstra calls it "skip".

If x is defined as a variable substitued by expression E, this command is
presented as follows:

 Markoski, B., Hotomski, P., Malbaški, D., Obradović, D., / Dijkstra's Interpretation 231

x : =E

(where so-called operator "value assignation" Dijkstra calls "acquire value").
Final definition summarizing all beforehand assumptions is:

wp("x:=E",R) = RE
X for every conclusion R

which may be considered, for every coordinated variable x and for every expression E of
appropriate type, as a semantic definition of "value assignation" operator.

To some programmers, natural broadening of value assignation command is
very close, so-called "competitive value assignation". Simply, to certain number of
different variables value assignation may be done simultaneously. Competitive value
assignation is presented as a set (list) of different variables to which value is changed
(separated by commas) on the left-hand side of a value assigning operator and a set (list)
of identical number of expressions (separated by commas) on the right-hand side of a
value assigning operator.

x1,x2 : = E1,E2

x1,x2, x3 : = E1,E2,E3

2. PROGRAMMING CALCULATION

Programming calculation is a special quantification calculation consisting of:
1. Constants and variables called states and state variables, respectively
2. Relation letters of length 1 marked as A,B,C
3. Relation letters of length 2 marked P,S,... called programs
4. Formulae marked ϑ,φ.Ψ,
5. Special kinds of formulae marked {φ} P {Ψ} with main interpretation - if

before execution of program P a formula φ was correct, than P must
terminate and formula Ψ becomes true

6. Axioms (precisely, axiom schemes) of assignation

|⎯ {ϕx
e} x := e {ϕ}+

where ϕx
e marks expression formula ϕ where every occurrence of variable x is

(simultaneously) replaced by expression e. Symbol "+" marks that from x := e is required
to terminate, which reduced to calculation e.

7. Rules of derivation

ϕ ⇒ θ, {θ} P {ψ}

{ϕ} P {ψ}

{ϕ} P {θ}, θ ⇒ ψ
{ϕ} P {ψ}

 Markoski, B., Hotomski, P., Malbaški, D., Obradović, D., / Dijkstra's Interpretation 232

{ϕ} P {θ}, {θ} Q {ψ}
{ϕ} P; Q {ψ}

{ϕ ∧B} P {ϕ}

{ϕ} while B do P {ϕ ∧ ¬B}

The first two rules are named consequence rules. The third rule is sequence, and
fourth is iteration.

3. DENOTATIONAL INTERPRETATION

Denotational interpretation of programming calculation [Dijkstra, 1988] gives
semantics to formulae ϕ i ψ, υσ, using them to define sets of states for program P.

Let P be a program with set of states D. Set of states may be further interpreted
as a set of values for all variables within a program. For denotational interpretation this
further precisement is not necessary, so we will stay at abstract states. We define sets Dϕ
and Dψ as follows:

Dϕ = {d | (d ∈ D) ∧ ϕ(d)} ⊆ D (1.1)

Dψ = {d | (d ∈ D) ∧ ψ(d)} ⊆ D (1.2)

Additionally, mark |⎯ α is interpreted as α = Τ, and |⎯ ¬ α as α = ⊥.

Position 1.1. applies

(∀d) ((d∈D) ⇒ |⎯ ¬ϕ(d)) ⇒ (Dϕ = ∅) (1.3)

Proof Statement (∀d) ((d∈D) ⇒ |⎯ ¬ϕ(d))) ⇒ (Dϕ = ∅) is same as

(∀d) ((d∉D) ∨ |⎯ ¬ ϕ(d)) ⇒ (Dϕ = ∅) (1.4)

If d∉D applies, then, according to 1.1, d ∉ Dϕ. If |⎯ ¬ϕ(d) applies, then, also

according to 1.1, d∉Dϕ.

Position 1.2. applies

(∀d) ((d∈D) ⇒ |⎯ ¬ ψ(d)) ⇒ (Dψ = ∅) (1.5)

Proof. Same as in previous position.

 Markoski, B., Hotomski, P., Malbaški, D., Obradović, D., / Dijkstra's Interpretation 233

Position 1.3. If ϕ is defined, applies

(∀d) ((d∈D) ⇒ ¬ |⎯ ϕ(d)) ⇔ (Dϕ = ∅) (1.6)

Proof. Implication from right to left must be proven. We will use contraposition, i.e.
(p⇒q) ⇔ (¬q⇒¬p). Let left side as false. Its negation is

(∃d') ((d'∈D) ∧ ϕ(d'))

so, according to (1.1) it means d'∈D, i.e. Dϕ ≠ ∅.

Position 1.4. Position 1.3. applies if in (1.6) ϕ is replaced by ψ.
1.4.1. Execution function

Let P is a program and D is a set of its states. Then execution function, marked
[P], is copying

[P]: D → D.

Statement formulae ϕ and ψ are interpreted as copying

ϕ, ψ: D → {⊥, Τ}.

All three functions are partial in general case. With this interpretation, predicate

{ϕ} P {ψ}

has meaning: if a program P was in initial state d0 for which ϕ(d0) is applied and if it
terminates, it will end in a state df ≡[P](d0) for which ψ(df).

 Markoski, B., Hotomski, P., Malbaški, D., Obradović, D., / Dijkstra's Interpretation 234

D

Dφ

Dψ

D

Dφ

Dψ

 (1)

 (2)

(3
)

(4.1)

(4.2)

(5)

Figure 1

We will consider some special cases connected to the behavior of programming
function [P], assuming that in all the following expressions states belong to set D of
program states (i.e. states not connected to program P are excluded).

1. P starts in state d0 ∈ Dϕ and terminates in state df ∈ Dψ (regular case). Then

applies {|⎯ϕ(d)0} P {|⎯ ψ([P](d0))} where ψ([P](d0)) ≡ df.
2. P starts in state d0 ∈ Dϕ and terminates in state df ∉ Dψ This means that if

functions ϕ and ψ are well defined (in specification sense), the situation
responds to the wrong reaction to good input. In this case applies
{|⎯ ϕ(d)0} P {|⎯ ¬ ψ([P](d0))}.

3. P starts in state d0 ∈ Dϕ but [P](d0) is not defined, which means that P from
state d0 does not terminate. Let termin(s, d) is a polymorphism with co-
domain {⊥, Τ} where s is so-called syntax unit (program, subprogram,
program segment, command, even a part of command). Function termin has
value Τ if and only if s terminates. Otherwise termin gets value ⊥. the fact
that P is not terminating from state d0 means |⎯ (d∈D) ((d0, d) ∉ [P]) or,
which is the same, |⎯ ¬ termin(P, d0).

4. P starts in state d' ∉ Dϕ (i.e. wrong input if ϕ is well defined according to
specification). Then it is possible

4.1. |⎯ ¬ termin(P, d') which is all right since it means that program
does not terminate for wrong input so it is not robust.

4.2. |⎯ termin(P, d') ∧ [P](d') ∈ Dψ, which marks correct reaction to
wrong input.
5. P starts in state d' ∉ Dϕ and terminates in state d'' ∉ Dψ which represents

wrong reaction to wrong input, i.e. d' ∈ Dϕ ∧ d'' ≡ [P](d') ∉ Dψ.

Let P be a program with set of states D and executing function [P]. Program P is
totally correct considering predicates ϕ and ψ if and only if it applies

|⎯ {ϕ} P {ψ}+

 Markoski, B., Hotomski, P., Malbaški, D., Obradović, D., / Dijkstra's Interpretation 235

which means that P must terminate. Program P is partially correct considering predicates
ϕ and ψ if and only if it applies

|⎯ {ϕ ∧ (P terminates)} P {ψ},

i.e. if termination is placed within precondition of expression {ϕ}P{ψ}. Notation for
partial correctness is

|⎯ {ϕ} P {ψ}

Denotational interpretations of total and partial correctness are consequently

|⎯ {ϕ} P {ψ}+⇔ |⎯(∀ d∈D) (|⎯ϕ(d)⇒ |⎯ termin(P,d) ∧ |⎯ ψ([P](d)))

is total correctness (termination is also required)
and expression

 |⎯ {ϕ} P {ψ} ⇔ |⎯ (∀d∈D)(|⎯ ϕ(d) ∧ termin(P,d) ⇒ |⎯ ψ([P](d)))

is partial correctness, not requiring termination.
This means that |⎯ {ϕ} P {ψ}may be generated even when program does not

terminate.

4. CONCLUSION

 The problem of programs analysis and synthesis, being solved by using
resolution procedure of proving and deduction of answers, was published by Z. Mann
[Mann, 1969-1974]. The other approach to solving problem of program correctness is
application of axiomatic definitions of semantics for Pascal programming language, as a
special rule of programming logic [Floyd, 1967], [Hoare, 1969], [Hoare, Wirth, 1972-
1973]. Comparing these two approaches in solving problem of program correctness it
may be concluded that they are significantly different in conception, but with one
common feature: deductive system in predicate language. This is explained by derivation
methods in definite predicate calculation, based on the formal theory deduction.. In this
way, the problem of program correctness is brought into close relationship with
automated checkup of existing proofs of mathematical theorems. Realized (deterministic,
and these are the only ones considered here) program has only one, or none, executing
sequence (when there is no one existing). Partially interpreted program may have several
different executing sequences (within it, for every interpreted predicate is known whether
it is correct or not, depending on output variables different execution paths are possible).
Abstract program always has only one executing sequence (here is not known whether
predicate P or its negation ~P is correct).

 Markoski, B., Hotomski, P., Malbaški, D., Obradović, D., / Dijkstra's Interpretation 236

5. REFERENCES

[1] Floyd, R.W., ”Assigning meanings to programs”, In: Proc. Sym. in Applied Math.,
Mathematical Aspects of Computer Science, American Mathematical Society, 19, 1980, 19-32.

[2] Hoare, C.A.R., “An axiomatic basis for computer programming”, Communications of the
ACM, 12 (1980) 576-583.

[3] Hoare, C.A.R., “Notes on data structuring” In: Dahl, Dijkstra, Hoare Structured programing,
Academic Press, (1980) 83-174.

[4] Hoare, C.A.R., and Wirth, N., “An axiomatic definition of the programming language
Pascal”, Acta Informatica, 2,1983, 335-355.

[5] Manna, Z., “The correctness of programs”, Journal of Computer and System Science, 3 (2)
1979.

[6] Dijkstra, E.W., A Discipline of Programming, Prentice –Hall, 1993.
[7] Paul, C., and Jorgensen, Software Testing, CRC Press, 1995.
[8] Dijkstra, E.W., A Discipline of Programming, Prentice Hall PTR, Upper Saddle River,NJ,

1997.
[9] Sands, D., “Total correctness by local inprovement in program transformation”, Proceedings

of the 22nd ACM SIGPLAN –SIGAST symposium on Principles of programming languages, S.
Francisko, California, United States, 1995.

[10] De Boer, F.S., Gabbrielli, and Meo, M.C., “A timed concurrent constraint language”,
Information and Computation, August 25, 2000.

[11] Valencia, F.D., “Reactive constraint programming”, Tech.rep., Centre for Basic Research in
Computer Science (Brics), Denmark, 2000

[12] Lacey, D., Jones, D.N., Wyk, E.V., and Frederiksen, C.C., “Proving correctness of complier
optimations by temporal logic”, Proceedings of the 29th ACM SIGPLAN –SIGAST Symposium
on Principles of programming languages, Portland, United States, 2002.

[13] Harrison-Gegg, T.S, Buce, G.R., Ganetyky, D., Rebecca, Olson, C.M., and Wilson, J.D.,
“Studing program correctness”, Proceedings of the 8th Annual Coference on Innovation and
Technology in Computer Science Education, Thessaloniki, Greece ,2003.

[14] Scott, E., Zadirov, A., Feinberg, S., and Jayakody, R., Proceedings of Informing Science
Educational Technology Education Joint Conference, Pori, Finland, 2003.

