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1. INTRODUCTION 

GP method is an effective method used to solve a non-linear programming 
problem.  It has certain advantages over the other optimization methods. Here, the 
advantage is that it is usually much simpler to work with the dual than the primal one.  
Solving a non-linear programming problem by GP method with degree of difficulty (DD) 
plays a significant role. (It is defined as DD = total number of terms in objective function 
and constraints – total number of decision variables – 1).  

Since late 1960’s, Geometric Programming (GP) has been known and used in 
various fields (like OR, Engineering sciences etc.). Duffin, Peterson and Zener [4] and 
Zener [11] discussed the basic theories on GP with engineering application in their 
books. Another famous book on GP and its application appeared in 1976 [2]. There are 
many references on applications and methods of GP in the survey paper by Ecker [5]. 
They described GP with positive or zero degree of difficulty. 

Today, most of the real-world decision-making problems in economic, 
environmental, social, and technical areas are multi-dimensional and multi-objectives 
ones. Multi-objective optimization problems differ from single-objective optimization 
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problem. It is significant to realize that multiple objectives are often non-commensurable 
and in conflict with each other in optimization problems. However, it is possible for 
him/her to state the desirability of achieving an aspiration level in an imprecise interval 
around it. An objective within exact target value is termed as a fuzzy goal. So, a multi-
objective model with fuzzy objectives is more realistic than deterministic of it. 

Zadeh [10] first gave the concept of fuzzy set theory. Later on, Bellman and 
Zadeh [2] used the fuzzy set theory to the decision-making problem. Tanaka [7] 
introduced the objective as fuzzy goal over the α-cut of a fuzzy constraint set and 
Zimmermann [12] gave the concept to solve multi-objective linear-programming 
problem. Fuzzy mathematical programming has been applied to several fields. 

Geometric programming is a special method used to solve a class of nonlinear 
programming problems; mainly we use this problem to solve optimal design problems 
where we minimize cost and /or weight, maximize volume and/ or efficiency etc. 
Generally, an engineering design and management science problem has multi-objective 
functions. In this case it is not suitable to use any single objective programming to find 
an optimal compromise solution. We can use fuzzy programming to determine such a 
solution. Biswal [3], Verma [9] developed fuzzy geometric programming technique to 
solve Multi-Objective Geometric Programming (MOGP) problem. Here we have 
discussed another fuzzy geometric programming technique to solve MOGPP. 

 

2. MULTI-OBJECTIVE OPTIMIZATION 

In recent years there has been an increase in research on multi-objective 
optimization methods. Decisions with multi-objectives are quite successful in 
government, military and other organizations. Researchers from a wide variety of 
disciplines such as mathematics, management science, economics, engineering and others 
have contributed to the solution methods for multi-objective optimization problems. The 
situation is formulated as a multi-objective optimization problem in which the goal is to 
minimize (or maximize) not a single objective function but several objective functions 
simultaneously. The purpose of multi-objective problems in the mathematical 
programming framework is to optimize the different objective problems, (say ‘k’ in 
number) simultaneously subject to a set of system constraints. For example, 

Minimize [ ]Tk tftftftf )(),...,(),()( 21=     (2.1) 

subject to jj btg ≤)(  j=1,2,…,m 

                  t > 0. 

Here now we shall describe the fuzzy optimization technique (through GP) to 
solve the above multi-objective problem. 

 
2.1. Multi-Objective Geometric Programming Problem (MOGPP) using Fuzzy 
Technique 

A multi-objective geometric programming problem can be stated as: 
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where jirjirksji aacc ,,)0(,)0( 00 >>  are all real numbers for j=1,2,..,m; i=1,2,.., 0
jT  ; 

k=1,2,…,m; s=1,2,…,. kT  
To solve this multi-objective geometric programming problem, we use the 

Zimmermann’s (1978) solution procedure. This procedure consists of the following 
steps:  

Step-1:  Solve the MOGPP as a single objective GP problem using only one 
objective at a time and ignoring the others. These solutions are known as ideal solution. 

Step-2: From the results of step-1, determine the corresponding values for every 
objective at each solution derived. With the values of all objectives at each ideal solution, 
pay-off matrix can be formulated as follows:  
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Here kttt ,...,, 21  are the ideal solutions of the objectives )(),...,(),( 21 tftftf k  
respectively. 

So { })(),...,(),(max 21 k
rrrr tftftfU =  and )(* r

rr tfL =  for kr ,...,2,1=  

[ rL  and rU  be lower and upper bounds of the thr  objective function )(tf r  for 
kr ,...,1= ]. 
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Step 3: Using aspiration levels of each objective of the MOGPP (2.1.1) may be 

written as follows: 
Find t so as to satisfy  
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t>0. 

Here objective functions of the problem (2.1.2) are considered as fuzzy 
constraints. This type of fuzzy constraints can be quantified by eliciting a corresponding 
membership function 
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Here )(tur  is a strictly monotonic decreasing function with respect to )(tfr . 
Following figure illustrates the graph of the membership function ))(( tfrrμ  
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                                                     Lr                                Ur           fr (t) 

                Figure-2.1: Membership function for minimization problem 

Having elicited the membership functions ))3.1.2(.( Eqninas  
,,...,2,1))(( krfortfrr =μ μr(fr(t)) a general aggregation 

function )(~ t
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So a fuzzy multi-objective decision making problem can be defined as 
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t>0.  

If we follow the fuzzy decision on fuzzy objective and constraint goals of 
Belman and Zadeh (1970) then using above said membership functions ( ( ))r rf tμ  
(r=1,2,….,k), the problem of choosing the maximizing decision to find the optimal 
solution t (i.e. t*). There are two types of fuzzy decision and they are 

(i) fuzzy decission based on minimum operator (like Zimmermann’s 
approach (1978)). 
(ii) convex-fuzzy decission based on addition operator (like  Tewari et. al. 
(1987)).  
Then the problem (2.1.4) is reduced to the following problems 
(i) (according to max-min operator) 

Maximize α (2.1.5) 
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So optimal decision variable t* with optimal objective value V*(t*) can be 

obtained by V*(t*) = )(*
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unconstrained geometric programming problem (for given λj j=1,2,…,k), 
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2.2. Example: Multi-Objective Primal Geometric Programming (MOPGP) Problem 
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In order to solve this MOGP problem, we shall first solve the two sub-problems  
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Solving the above problems by GP technique we have 
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Now the pay-off matrix is given below 
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The following figure illustrated the graph of the fuzzy membership function 
)(1 Xμ               
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Now the following figure illustrated the fuzzy membership function )(2 Xμ  
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     )(2 Xμ              
     

              1 
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According to max-addition operator, the MOGPP (2.2.1) reduces to the crisp 
problem 
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[considering equal importance on both objective fuctions i.e. λ1=λ2=1] 

For maximizing the above problem, we minimize 
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Degree of Difficulty of the problem (2.2.5) is =(4-(2+1))=1 
 
The dual problem of the above problem (2.2.5) is 
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Solving the above equation by Newton Raphson method we ultimately get,  
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The value of the objective function of the problem (2.2.6) is 8389.56)( * =wv . 
Therefore, by using primal-dual variables relation-ship, the value of the 

objective function of the problem (2.2.5) is 8389.56)( * =Xg  and the values of decisions 

variables are 36577.0*
1 =x , 63422.0*

2 =x . 
Thus, the values of the objective functions of the MOGPP (2.2.1) 

are 599.58)(796.6)( *
2

*
1 == XZandXZ . 

2.3. Applications:  

Problem-1: Gravel-Box problem 
80 cubic-meter of gravel is to be ferried across a river on a barrage .A box (with 

open top) is to be built for this purpose. After the entire grave has been ferried, the box is 
to be discarded. The transport cost per round trip of barrage of box is Rs 1 and the cost of 
materials of sides and bottom of box are Rs 10/m2 and Rs 80/m2 and ends of box Rs 
20/m2. Find the dimension of the box that is to be building for this purpose and total 
optimal cost. 

 

 

Let us assume the gravel box has length = mt1  
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width = mt2  

height = mt3  

∴ The area of the end of the gravel box = 2
32 mtt  

The area of the side of the gravel box = 2
31 mtt  

The area of the bottom of the gravel box = 2
21 mtt  

∴ The volume of the gravel box = 3
321 mttt  

Cost functions are:  
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The total cost (Rupees) 
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It is a posynomial function. 
As stated, this problem can be formulated as an unconstrained GP problem 
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subject to t1, t2, t3 >0 

Suppose that we now consider the following variant of the above problem 
(2.3.1) (similar discussion have done Duffin, Peterson and Zener(1967) in their book). It 
is required that the sides and bottom of the box should be made from scrap material but 
only 4 m2 of this scrap material are available. 

This variation of the problem leads us to the following constrained posynomial 
GP problem: 
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Not only minimizing total cost (= total transportation cost + material cost for 
two ends of the box) of the problem (2.3.2) but there is also another objective function 
which is to minimize the total number of trips. 



 S., Islam / Multi-Objective Geometic Programming Problem and its Applications 223 

Here no. of trips = .80

321 ttt
 

So, the problem is to determine dimensions of the box, 
i.e. to find Ttttt ),,( 321=  so as to satisfy 
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It may be written as a Multi-Objective Geometric Programming Problem 
(MOGPP) 
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Here two sub-problems are 
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and 

(Sub-problem-2)
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The above sub-problems (2.3.5) & (2.3.6) are two GP problem with DD = -1, 0 
respectively. Solving this MOGPP (2.3.4) by using fuzzy techniques, we have *

1t = 2.93, 
*
2t = 1.17 and *

3t = 0.43 and optimal objective goals =)( **
0 tg 86.78 and =)( **

1 tg 3.3. 
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Problem-2: Multi-Gravel box problem 
Suppose that to shift gravel in a finite number (say n) of open rectangular boxes 

of lengths t1i meters, widths t2i meters, and heights t3i meters (i=1,2,…,n). The bottom, 
sides and the ends of the each box cost Rs. ai, Rs. bi, and Rs. ci/m2. It costs Rs. 1 for each 
round trip of the boxes. Assuming that the boxes will have no salvage value, find the 

minimum cost of transporting d (= ∑
=

n

i
id

1
) m3 of gravels. 

 
As stated, this problem can be formulated as an unconstrained modified 

geometric programming problem 
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Suppose that we know the following variant of the above problem. It is required 
that the sides and bottom of the boxes should be made from scrap material but only w m2 
of these scrap materials are available. 

This variation of the problem leads us to the following constrained modified 
geometric programming problem: 
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 (2.3.8) 

In particular, the problem is to minimize the 3 cost functions i.e. 
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It may be written as a Multi-Objective Geometric Programming Problem 
(MOGPP) 
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 (2.3.10) 

In particular here we assume transporting d m3 of gravels by the three different 
open rectangular boxes. The final cost of each box is Rs. ci /m2 and the amount of the 

transporting gravels by three open rectangular boxes are ⎟
⎠
⎞

⎜
⎝
⎛

∑=
=

3

1i
idd  m3.  Input data of 

this MOGPP (2.3.10) is given in the table-1. It is a constrained posynomial MOGP 
problem. Solving this MOGPP (2.3.10) by the above specified fuzzy technique we get 
optimal solutions as shown in table-2. 
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Table-1 
Input data for the MOGPP (2.3.10) 

Boxes (i) ci (Rs. /m2) di (m3) w (m2) 
1 40 80 

15 2 30 90 
3 20 70 

 
Table-2 

Optimal solutions of the MOGPP (2.3.10) 
Boxe

s  (i) 
t1i 

(meter) 
t2i 

(meter) 
t3i  

(meter) 
)( **

1 tg  
(Rs.) 

)( **
2 tg

 (Rs.) 
)( **

3 tg
 (Rs.) 

1 2.33 1.14 0.57  
87.65 

 
94.54 

 
83.58 2 2.0 1.32 0.66 

3 1.49 1.47 0.74 
 

2.4. Conclusion 
 

Here, we have discussed multi−objective geometric programming problem 
based on fuzzy programming technique through geometric programming. We have also 
formulated the multi−objective optimization model of gravel box design problem and 
solved by fuzzy programming technique. Geometric Programming technique is used to 
derive the optimal solutions for different preferences on objective functions. The multi-
objective inventory models may also be solved by fuzzy geometric programming 
technique. 
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