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1. INTRODUCTION 

The classical EOQ (Economic Order Quantity) model assumes that the demand 
rate is constant. However, in the real market, the demand for any product cannot be 
constant. Reaserchers have paid much attention to inventory modelling with time-
dependent demand. Silver and Meal [1] developed a heuristic approach to determine 
EOQ in the general case of a deterministic time-varying demand pattern. Donaldson [2] 
discussed the classical no-shortage inventory policy for the case of a linear, time-
dependent demand. His treatment was fully analytical and much computational effort was 
needed in order to get the optimal solution. Silver [3], using Silver-Meal heuristic, 
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obtained an appropriate solution procedure for the case of a positive linear trend in 
demand to reduce the computational effort needed in Donaldson [2]. Subsequent 
contributions in this type of modelling came from researchers such as Ritchie 
([4],[5],[6]), Kicks and Donaldson [7], Buchanon [8], Mitra, Cox and Jesse [9], Ritchie 
and Tsado [10], Goyal [11], Goyal, Kusy and Soni [12], and others. 

All these works assume no shortages in inventory. However, shortages are 
unavoidable in many inventory systems due to various uncertainties. It is also important, 
from the managerial point of view, to reduce average total cost. Deb and Chaudhuri [13] 
were the first to modify the procedure of Silver [3] by allowing inventory shortages 
which are completely backordered. The problem was reconsidered by Murdeshwar [14], 
Dave [15] and Goyal [16]. All these models deal with a replenishment policy that allows 
shortages in all cycles except the last one. Each of the cycles during which shortages are 
permitted starts with replenishment and ends with shortage. Hariga [17] called it the 
DAC (an abbreviation for Deb and Chaudhuri) replenishment policy. It has also been 
termed as the IFS (inventory followed by shortage) policy. Goyal, Morin and Nebebe 
[18] suggested a new replenishment policy in which shortages are permitted in every 
cycle. In this policy, each cycle starts with a shortage until replenishment is made 
followed by a period of positive inventory. Hariga [17] called it the GMN (an 
abbreviation for Goyal, Morin and Nebebe) replenishment policy; it is also called the SFI 
(shortage followed by inventory) policy. None of these researchers took into account the 
physical decay or deterioration of goods over time.  

Researchers then started working on inventory models with time-varying 
demands for items which undergo decay or deterioration. The effect of deterioration is an 
important feature of inventory systems. Food items, photographic films, chemicals, 
electronic goods, pharmaceuticals, etc. are some examples of deteriorating items. Various 
types of order-level inventory models for deteriorating items with no shortages were 
considered by Dave and Patel [19], Bahari-Kashani [20], Chung and Ting [21], and 
others. Some models for deteriorating items with trended demand and shortages were 
developed by Gowsami and Chaudhuri [22], Hariga [23], Giri, Goswami and Chaudhuri 
[24], Jalan, Giri and Chaudhuri [25], Teng [26], Lin, Tan and Lee [27], etc. Some of the 
recent works for deteriorating items are of Fujiwara [28], Hariga and Benkherouf [29], 
Wee [30], Chakrabarti and Chaudhuri [31], Jalan and Chaudhuri ([32], [33]), 
Chakraborti, Giri and Chaudhuri ([34], [35], [36]) etc. 

All of the above models are purely inventory replenishment models. The 
classical economic production lot-size (EPLS) model in inventory literature assumes that 
the demand rate and the production rate are predetermined and inflexible. However, it is 
usually observed in the real market that the demands for products such as fashionable 
clothes, electronic goods, etc. increase rapidly after gaining consumer acceptance. 
Therefore, consideration of time-varying demand in the EPLS model is quite appropriate. 
Hong, Sandrapaty and Hayya [37] developed an inventory model for a linearly increasing 
demand with a finite production rate. Goswami and Chaudhuri [38] discussed a lot-size 
model with a linearly increasing demand and finite production rate, considering 
shortages. These two models assume that the production rate is uniform. However, the 
production rate may go up or down with the demand rate. The above mentioned situation 
is normally seen with highly demandable goods. Khouja [39] and Khouja and Mehrez 
[40] presented the EPLS model taking the production rate to be a decision variable. They 
considered a constant demand, a single production cycle and no shortage. Zhou ([41], 
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[42]) developed the EPLS models taking linear trend in demand with shortages over a 
finite planning schedule. In these models, he assumed that the production rate is adjusted 
at the beginning of each production cycle to cope with an increasing demand, and the 
cost of adjusting the production rate depends linearly on the magnitude of change in the 
production rate. Giri and Chaudhuri [43] discussed a production lot-size model with 
shortages and time-dependent demand. The model is developed over an infinite planning 
horizon where the unit production cost is taken to be a function of the production rate, the 
demand varies linearly with time, and the shortages in inventory are permitted and fully 
back-ordered. Significant contributions to the study of the EPLS models came from 
researchers such as Yan and Cheng [44], Balkhi [45] and Balkhi, Goyal and Giri [46]. 

In the present paper, we discuss the EPLS model for a deteriorating item over a 
finite planning horizon with a linear trend in demand and shortages. The machine 
production rate is assumed to be finite. The production-inventory system in each cycle 
consists of four stages. The initial stock in each cycle is zero and shortages begin to 
accumulate at the very beginning of the cycle. Production starts after a certain time and 
the accumulated shortages are fully supplied after adjusting current demands and 
deterioration and then inventory becomes zero. As production continues, inventory 
begins to build up continuously after adjusting demands and deterioration. Production 
stops at a certain time. The accumulated inventory is sufficient enough to adjust demands 
and deterioration for the rest of the cycle. The cycle ends with zero inventory. The 
reasons for selecting this type of production-inventory cycle are as follows: 

At the initial stage, shortages may occur due to several reasons, such as delay in 
machine maintenance, shortage of raw materials, shortage of labour, etc. Subsequently, 
shortages continue to accumulate for some time. When these problems are removed, 
production starts. In the second stage, shortages are gradually cleared after adjusting 
demands. As production continues, the inventory builds up. It is necessary to stop 
production after some time due to reasons such as limitation of warehouse space, 
maintenance of machines, etc. At the final stage, there is no production and the 
accumulated inventory is gradually depleted and ultimately becomes zero due to 
demands and deterioration.  

In the present paper, we assume a uniform production rate which is actually the 
CDPR (critical design production rate) of the manufacturing machine. Production starts 
and stops after some time to make room for machine maintenance. The demand rate in 
this model is assumed to be linearly time varying, and we consider the cases of both 
increasing and decreasing demands. The assumption is quite appropriate from a realistic 
point of view because the demand for some items such as electronic goods, fashionable 
clothes, luxury goods, etc. increases steadily after consumer acceptance, while the 
demand for the obsolete items decreases steadily. It is assumed that a constant fraction 

,  (0 < < 1)θ θ  of the on-hand inventory deteriorates per unit time. The optimal number 
of cycles that minimizes the average system cost over a finite time horizon is determined. 
The results are illustrated with numerical examples. The sensitivity of the optimal 
solution to changes in different parameters is also examined. 
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2. ASSUMPTIONS AND NOTATIONS  

The following assumptions and notations have been used in developing the 
model. 

(i) The time-dependent demand rate is ( ) =f t a bt+ , > 0a , 0b ≠ . Here a  is 
the initial rate of demand, b  is the rate with which the demand rate changes. 

(ii) Shortages are allowed and are completely backlogged.  
(iii) The time horizon H is finite. 
(iv) The time horizon is divided into a finite number of replenishment cycles, 

e.g. n, each of which is taken to be of equal duration for the sake of simplicity. 
(v) The production rate P is finite and constant. 
(vi) The inventory holding cost hC  per unit per unit time, the shortage cost sC  

per unit per unit time, the set up cost sA  per cycle and the production cost pC  are known 
and constant. 

(vii) A constant fraction θ , (0 < < 1),θ  of the on-hand inventory deteriorates 
per unit time.  

 

3. FORMULATION AND SOLUTION OF THE MODEL  

The initial stock of the i-th cycle (i=1,2, - - - -n) is zero. Shortages begin to 
accumulate over 1 1[ ,  ]i iT t− . Production starts at time 1it . The accumulated shortages are 
fully supplied during 1 2[ ,  ]i it t  after adjusting current demands. The inventory becomes 
zero at 2it . As production continues, inventory begins to pile up continuously after 
adjusting demands and deterioration. Production stops at time 3it . The accumulated 
inventory is sufficient enough to adjust demands and deterioration over the interval 

3[ ,  ]i it T . Subsequently, the cycle ends with zero inventory. It then repeats itself. Here 1it , 

2it , 3it  and iT  are connected by the following relations (see Appendix I).  

1 2 1

2 1

3 2

= (1 )
= (1 )             
= (1 )

=

i i i i i

i i i

i i i i i

i

t u t u T
t rT r T
t v T v t

HT i
n

−

−

+ −⎧
⎪ + −⎪
⎪ + −
⎨
⎪
⎪
⎪
⎩

 ( )A  

Here 0 < < 1,  0 < < 1,  0 < < 1,  = 1,2,3,....., .i ir u v i n  
For every machine, there exists a critical design production rate which is taken 

as the production rate in the proposed model. Here we assumed that the time of shortage 
is a fixed proportion of each cycle; but the times at which production starts and stops in 
each cycle taken to be variables. 3 1i it t−  denote the time during which the machine is in 
operation. 
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The instantaneous inventory level )(tI  at any time ),( 1 ii TTt −∈  is governed by 
the following differential equations: 

1 1 1
( ) = ( ) =  ,            ,     ( ) = 0;i i i

dI t f t a bt T t t with I T
dt − −− − − ≤ ≤  (1) 

1 2 2
( ) = ( ) =  ,           ,     ( ) = 0;i i i

dI t P f t P a bt t t t with I t
dt

− − − ≤ ≤  (2) 

0)(,,)()()(
232 =≤≤−−=−=+ iii tIwithtttbtaPtfPtI

dt
tdI θ  (3) 

3
( ) ( ) = ( ) =  ,         ,     ( ) = 0.i i i

dI t I t f t a bt t t T with I T
dt

θ+ − − − ≤ ≤  (4) 

The solution of equation (1) is  

2  2
1 1 1 1( ) = ( ) ( ) ,            .            

2i i i i
bI t a t T t T T t t− − −− − − − ≤ ≤  (5) 

The solution of equation (2) is  

2 2
1 1 1 1 1 2( ) ( ) = ( ) ( ) ( ) ,    .

2i i i i i i
bI t I t P t t a t t t t t t t− − − − − − ≤ ≤  

Substituting the value of )( 1itI  from equation (5), the above relation becomes  

2  2
1 1 1 1 2( ) = ( ) ( ) ( ) ,       .

2i i i i i
bI t P t t a t T t T t t t− −− − − − − ≤ ≤  (6)  

The solution of equation (3) 

( ) ( ) ( )2 2 2
2 2

2 3

( )( ) = {1 } { } {1 } , 

  . 

t t t t t ti i i
i

i i

P a b bI t e t t e e

t t t

θ θ θ

θ θ θ
− − −−

− − − + −

≤ ≤
   (7) 

The solution of equation (4) is  

 3 3 3
3 2

3
3 3

( )  ( ) = ( ) ( )

 ( ) ,   .  

t t tt t ti i i
i

tt i
i i i

a be I t e I t e e e e

b te t e t t T

θ θ θθ θ θ

θθ

θ θ

θ

− − − + −

− − ≤ ≤
 

Putting the value of )( 3itI  from equation (7) in the above relation and then 
simplifying, we get 
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3 2 2 2
22

32

( ) = { ( ) ( 1) }           

{ ( 1)} , .  
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From the relations in (A), we get  
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Putting 2( ) = 0iI t  and using relation (B), we have from equation (6),  

= 1 { 2( 1)}.  
2i

a bHu r i
P nP

− − + −  (9) 

Putting ( ) = 0iI T  in equation (8), we get  

( ) ( ) ( )3 2 2
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22
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Putting the values of 2it , 3it  and iT  from the relations in (B), in the above 
equation, we get (see Appendix-II) 

(1 )1= [1 { }  
(1 )

1 { ( 1) }].

H r
n

i
n bH bv ln a i e

H r P n
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The shortage during the time interval 1 1[ ,  ]i iT t−  is  

 1
1

1

2 3  2  3
1 1 1 1 1 1

= [ ( )]

= ( ) .     
2 6 2 3
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i i i i i i
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 The shortage during the time interval 1 2[ ,  ]i it t  is 



 S. Khanra, K.S. Chaudhuri / A Production-Inventory Model 35 

 2
2

1

 2 2 2
1 1 1

1

2 2 3 3
2 1 1 1 2 1

 2 2
1 2 1 2 1

= [ ( )] 

= [ ( ) ( ) ( )]      
2

= ( ) ( ) ( )
2 2 6

 ( ) ( ) .
2 2

ti
i ti

ti
i i iti

i i i i i i

i i i i i

Sh I t dt

ba t T t T P t t dt

a a bt T t T t t

b PT t t t t

− −

− −

−

−

− + − − −

− − − + −

− − − −

∫

∫
 (13) 

The total shortage in the i-th cycle is (see Appendix-III) 

1 2
2

3 2 2 2
2

2 3

=

2= [ ( 1) 3 3 (1 )
6
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Using (7), the inventory during the time interval 2 3[ ,  ]i it t  is 

( )2 3
1 3 2 2 2
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Using (8), the inventory during 3[ , ]i it T  is 

3 2 2 2 3
2 22
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3 3 32
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The total inventory in the i-th cycle is (see Appendix IV)  
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The amount of deteriorated item in the i-th cycle is iIvθ . 
If CUT be the average cost during the time horizon (0, H), then  
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Now our aim is to minimize CUT , 0 < < 1r , 0 < < 1iu , 0 < < 1iv  for i= 1, 2, 
3,. . . n.  

This is a constrained minimization problem and can be solved by various 
optimization techniques (such as Box Complex Algorithm, Penalty Search Method, etc.) 
or by various software packages (such as Mathematica). For a fixed n, we can find the 
minimum value of CUT  and optimum value of r. Afterwards, we find the minimum of 
set of minimum values of CUT  for different values of n. Finally, the corresponding 
values of n and r constitute the optimum solutions of n and r. 

 
4. NUMERICAL EXAMPLE 

Let us take the parameter values of the inventory system for an increasing 
demand as a =50, b =3, P =110, H =6, = 4.5,Ch  = 10,Cs  = 12,Cp  = 80,As  

= 0.03θ  in appropriate units. Using Mathematica, the optimum solution is found to be 
* = 0.333684,r  * = 5n , total shortages 

=1
= = 10.8199n

ii
S Sh∑ , total inventory= 

=1
= = 43.8785,n

ii
I Iv∑  = 120.241CUT  which are shown in the Table 1. Here *n  
denote the optimum number of inventory cycles within a fixed finite horizon that 
minimizes the average inventory cost and *r  indicates the optimum time during which 
shortage occurs within each inventory cycle. For a decreasing demand, we have taken 

= 3b −  and the remaining parameters are the same. For decreasing demand, the optimum 
solution is * = 0.315917,r  * = 4,n  = 11.7198,S  = 52.3408,I  = 115.262CUT  which 
are shown in Table 2. For constant demand, we have taken = 0b  and the remaining 
parameters are the same. For constant demand, the optimum solution is * = 0.327282,r  

* = 5,  n = 10.5167,  S = 44.463,  I = 120.210CUT  which are shown in the Table 3. 
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Table 1: Optimal solution for increasing demand ( > 0)b  

n    r     S     I     CUT  

1   0.343000   61.7991   211.68   287.793  
2   0.343764   28.4931   108.37   161.935  
3   0.338148   18.4598   72.7569   129.694  
4   0.335355   13.6447   54.743   120.416  
5   0.333684   10.8199   43.8785   120.241  
6   0.332573   8.9634   36.6112   124.594  
7   0.339856   8.5162   30.6495   131.536  
8   0.331406   6.6816   27.4825   140.089  
 

Table 2: Optimal solution for decreasing demand ( < 0)b  
n    r      S     I     CUT  

1   0.285522   40.8463   212.5483   253.575  
2   0.305262   22.3914   105.374   149.339  
3   0.31231   15.3907   69.9541   122.314  
4   0.315917   11.7198   52.3408   115.262  
5   0.318107   9.46143   43.0704   116.325  
6   0.319577   7.93229   34.8095   121.412  
7   0.320633   6.82849   29.8095   128.86  
8   0.321427   5.99423   26.068   137.772  
 
Table 3: Optimal solution for constant demand ( = 0)b  
n     r      S     I    CUT  

1   0.327997   52.8114   222.372   281.473  
2   0.327592   26.3414   111.165   160.612  
3   0.327427   17.5432   74.107   129.266  
4   0.327339   13.1503   55.580   120.27  
5   0.327284   10.5167   44.463   120.210  
6   0.327247   8.7620   37.053   124.616  
7   0.327220   7.5090   31.759   131.573  
8   0.327200   6.6569   27.789   140.126  

The time-inventory relationship is pictorially shown in Figure 1. 
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5. SENSITIVITY ANALYSIS  

We now study the effects of changes in the values of the system parameters sC , 

hC , pC , θ , sA , a , b , P  on the optimal solution. The sensitivity analysis is performed 

by changing each of the parameters by 50 % , 20 % , -20 % , -50 % , taking one 
parameter at a time and keeping the remaining parameters unchanged. The analysis is 
based on the results obtained in Table 1.  

On the basis of the results shown in Table 4, the following observations can be 
made: 

(1) *CUT , *I  both increase while *S , *r  both decrease with the increase in the 
value of the parameter sC . *CUT  has low sensitivity and *I , *S , *r  have moderate 
sensitivity to changes in sC . 

(2) *CUT , *S , *r  increase while *I  decreases with the increase in the value of 
the parameter hC . *CUT , *I , *S , *r  have moderate sensitivity to changes in hC . 

(3) *CUT , *S , *r  increase while *I  decreases with the increase in the value of 
the parameter pC . *CUT , *I , *S , *r  have low sensitivity to changes in pC . 

(4) *CUT , *S , *r  increase while *I  decreases with the increase in the value of 
the parameter θ . *CUT , *I , *S , *r  have low sensitivity to changes in θ . 

(5) *CUT , *I , *S , *r  increase or decrease with the increase or decrease in the 
value of the parameter sA . However, *r  is almost insensitive and *CUT , *I , *S  are 
moderately sensitive to changes in sA . 

(6) *r  is almost insensitive and *CUT , *I , *S  are moderately sensitive to 
changes in a . 

(7) *CUT , *S , *I  increase while *r  decreases with the increase in the value of 
the parameter b . These are almost insensitive to changes in the parameter b . 
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(8) *CUT , *I , *S , *r  increase or decrease with the increase or decrease in the 
value of the parameter P . However, *r  is almost insensitive and *CUT , *I , *S  are 
moderately sensitive to changes in P . The model has no feasible solution for 50 %  
negative error in P . However, this outcome may be due to the choice of the particular 
parameter values in this numerical example. 
Table 4: Sensitivity analysis for the optimal solution when > 0b  
parameter %  change 

of 
parameter 

No. of 
cycle 

*n  

*r change 
in %  

*S change 
in %  

*I change 
in %  

*CUT change 
in %  

50 5 -24.99 -43.625 26.874 5.631 
20 5 -11.759 -22.058 12.029 2.586 
-20 5 15.907 34.161 -15.417 -3.458 sC  

-50 4 54.336 67.795 -27.029 -13.953 
50 5 27.268 61.591 -25.627 11.840 
20 5 11.621 24.473 -11.342 5.170 
-20 4 -12.687 -4.684 42.035 -7.141 hC  

-50 3 -35.467 -30.466 134.313 -23.269 
50 5 05.654 04.912 -02.488 01.081 
20 5 00.982 01.966 -00.9866 00.438 
-20 5 -00.992 -00.775 00.3938 -00.439 pC  

-50 5 -02.499 -05.4705 02.541 -01.109 
50 5 02.403 04.843 -02.448 01.071 
20 5 00.969 01.938 -00.991 00.431 
-20 5 -00.979 -01.939 01.006 -00.436 

θ  

-50 5 -02.466 -04.852 02.544 -01.098 
50 3 1.338 70.610 65.801 24.496 
20 4 0.501 26.107 24.760 9.017 
-20 5 -0.054 -0.107 8.773 -8.479 sA  

-50 6 -0.333 -17.158 -16.562 -29.646 
50 4 -00.710 -08.015 -10.021 -15.253 
20 4 -00.054 -18.418 -7.184 -03.247 
-20 4 01.215 25.747 23.884 00.167 

a  

-50 4 02.889 09.906 06.707 07.621 
50 5 07.876 -02.846 -03.423 -01.189 
20 5 00.325 -00.268 -01.146 -00.378 
-20 5 -00.340 00.007 00.782 00.251 

b  

-50 5 -00.887 00.536 01.583 00.388 
50 5 02.766 38.560 39.483 17.454 
20 5 00.137 19.244 19.741 08.718 

P  

-20 4 -00.255 -09.751 -12.242 -16.169 
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-50 - - - - - 

6. CONCLUDING REMARKS  

The production inventory model developed here incorporates the following 
practical features: 

1. It is applicable to an inventory which deteriorates over time. 
2. It is concerned with a linearly time-varying demand. 
3. It allows shortages in inventory. 
4. It is suitable for a finite planning horizon. 
5. The item in stock is manufactured at a uniform rate. 
 
The production inventory cycle is also based on some practical considerations. 

Each cycle starts with a zero stock. Production cannot start at the very beginning of the 
cycle due to some practical difficulties such as delay in machine setup, shortages of raw 
materials, shortages of man power, etc. As a result, shortage continues to accumulate for 
some time at the very beginning of the cycle. Once the practical difficulties are removed, 
production starts at a rate greater than the demand rate. Inventory continues to build up 
after clearing the backlog, meeting the current demands and adjusting stock-loss due to 
deterioration. It then becomes necessary to stop production after some time due to 
difficulties such as limitation of warehouse space, machine failure, etc. The demands and 
deterioration for the remaining portion of the cycle period are met from the accumulated 
stock. 

Numerical examples clearly show that both shortages and inventory continue to 
decrease when the number of cycles increases within a finite time-horizon. This trend is 
evidenced in both the case of increasing and decreasing demands.  
 

Appendix-I 

The interval 1 1[ ,  ]i iT t−  being a fraction (0 < < 1)i iu u  of the interval 1 2[ ,  ]i iT t− , 
we get  

1 1 2 1= ( )i i i i it T u t T− −− −  

1 2 1,   = (1 ) .i i i i ior t u t u T −+ −  

Again, the interval 1 2[ ,  ]i iT t−  being a fraction (0 < < 1)r r  of the interval 

1[ ,  ]i iT T− , we similarly have  

2 1= (1 ) .i i it rT r T −+ −  

Also, considering 2 3[ ,  ]i it t  to be fraction of (0 < < 1)i iv v  of 2[ ,  ],i it T  we 
similarly get  

3 2= (1 )i i i i it v T v t+ −  



 S. Khanra, K.S. Chaudhuri / A Production-Inventory Model 41 

Appendix II 

We have 2 = ( 1)i i
Ht T r
n

− −  

3and   = ( 1)(1 ).i i i
Ht T r v
n

− − −  

Therefore, we have from (10),  

( 1)(1 ) ( 1) ( 1)
0 = { } {1 }

H H Hr v r rin n nP ae e e
θ θ θ

θ θ
− − − −

− − −  

( 1)

2

( 1) [{ 1} ( 1)]
H r
nb H r i He i

n n

θθ θ
θ

−+ −
+ − − −  

( 1)(1 ) ( 1)1,   = [1 { ( 1) }]
H Hr v rin nP P bH bor e a r i e

P n

θ θ

θ θ θ
− − −

− + + − −  

1 [ { }]P bHi ba
P nθ θ

+ + −  

( 1)(1 ) 1,   = [[1 { ( 1) }]
H r vin bH bor e a r i

P n

θ

θ
− −

− + + − −  

(1 ) ( 1)1 { } ]
H Hr r
n nbHi ba e e

P n

θ θ

θ
− −

+ + −  

Taking logarithm on both sides, we get  

1( 1)(1 ) = [1 { ( 1) }i
H bH br v ln a r i
n P n

θ
θ

− − − + + − −  

(1 )1 { }] ( 1)
H r
n bHi b He a r

P n n

θ θ
θ

−
+ + − + −  

1(1 ) = [1 { ( 1) }i
H bH br v ln a r i
n P n

θ
θ

− − + + − −  

(1 )1   { }]
H r
n bHi be a

P n

θ

θ
−

+ + −  

(1 )1 1= [1 { ( 1) } { }]
(1 )

H r
n

i
n bH b bHi bv ln a r i e a

H r P n P n

θ

θ θ θ
−

− + + − − + + −
−
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Appendix-III 

We have  

2 1 =  ;i i
Ht T r
n−−  

2 1 = ( 2 2) ;i i
Ht T r i
n−+ + −  

2 1 = (1 )  ;i i i
Ht t u r
n

− −  

2 1 = { (1 ) 2 2}i i i
Ht t r u i
n

+ + + −  

The total shortage in the i-th cycle 

1 2=i i iSh Sh Sh+  

 3 2 2 2  2
1 2 1 2 1 2 1 2

2
3 2 2 2 2

2

= ( ) ( )
3 2 2 2 6

2= { ( 1) 3 3 (1 ) 3 ( 1) ( 1)
6

i i i i i i i i

i

b a P b bT t T t t t T t

H bH Hi ar pr u b i r i
n nn

− − −+ − − − − +

− + − − − − + −
 

}1)( 3−++ ir
n

bH  

 

Appendix IV 

The total inventory in the i-th cycle is  

1 2

( )2 3 3 2 3
3 2 2 2 2

( )2 3 2 3
3 2 32 2 2

( ) (2 2 2 2 3
3 2 32 2 3

=
1 1 1 1= { ( ) ( )( )}

1 1 1 1 1 { ( ) ( ) ( )}

1 1 1 { ( )
2

i i i

t t t t t Ti i i i i i
i i

t t t t Ti i i i i
i i i i

t t ti i i i
i i i

Iv Iv Iv

P t t e e e e e

a t t e e e e T t

t
b t t e t e

θ θ θ θ θ

θ θ θ θ

θ θ

θ θ θ θ

θ θθ θ θ

θ θ θ θ

− − −

− − −

−

+

− + − + − −

+ − − − + + − − −

+ − − − + + )2 3
3

 2 22 3
2 3 33 2

( ) ( )2 3
3 2 2 2

( )2
2 2 2

1

1 1 1 ( 1) ( ) ( ) ( )]
2

1 1 1= [ ( ) }

1 1 1 { ( ) }

ti

t t Ti i i
i i i i i

t T t Ti i i i
i i

t Ti i
i i

t e e e T t T t

P t t e e

a t T e

θ θ θ

θ θ

θ

θ

θ
θθ θ

θ θ θ

θ θ θ

−

− −

− −

−

−

+ − − − − + −

− + −
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( ) ( )2  2 22 2 2
2 2 2 3 3

( ) ( ) ( )2 3 2
3 2 22 2

2
( )2  2 2

2 23

1 1 1 1 { ( ) }
2

= { ( ) } { ( ) 1}

  { ( ) ( 1) ( 1) }
2

t T t Ti i i i i
i i i
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We have  

3 2 = (1 )i i i
Ht t v r
n

− −  

2 = ( 1)i i
Ht T r
n

− −  

3 = ( 1)(1 )i i i
Ht T r v
n

− − −  

2 = ( 2 1)i i
Ht T r i
n

+ + −  

So,  
( 1) ( 1)(1 )

2

( 1)

2

2 2 ( 1)

3 2

= [ (1 ) ]

 [ ( 1) 1 ]

 [ ( 1)( 2 1) ( 1) { ( 1) 1} ]
2
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i i

H r
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H r
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a H r e
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θ θ

θ

θ

θ
θ

θ
θ

θ θ θ
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