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Abstract: We presented a comparison between several feature ranking methods used on 
two real datasets. We considered six ranking methods that can be divided into two broad 
categories: statistical and entropy-based. Four supervised learning algorithms are adopted 
to build models, namely, IB1, Naive Bayes, C4.5 decision tree and the RBF network. We 
showed that the selection of ranking methods could be important for classification 
accuracy. In our experiments, ranking methods with different supervised learning 
algorithms give quite different results for balanced accuracy. Our cases confirm that, in 
order to be sure that a subset of features giving the highest accuracy has been selected, 
the use of many different indices is recommended. 
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1. INTRODUCTION 

Feature selection can be defined as a process that chooses a minimum subset of 
M features from the original set of N features, so that the feature space is optimally 
reduced according to a certain evaluation criterion. As the dimensionality of a domain 
expands, the number of feature N increases. Finding the best feature subset is usually 
intractable [1] and many problems related to feature selection have been shown to be NP-
hard [2]. 
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Feature selection is an active field in computer science. It has been a fertile field 
of research and development since 1970s in statistical pattern recognition [3, 4, 5], 
machine learning and data mining [6, 7, 8, 9, 10, 11]. 

Feature selection is a fundamental problem in many different areas, especially in 
forecasting, document classification, bioinformatics, and object recognition or in 
modelling of complex technological processes [12, 13, 14, 15]. Datasets with thousands of 
features are not uncommon in such applications. All features may be important for some 
problems, but for some target concepts, only a small subset of features is usually 
relevant.  

Feature selection reduces the dimensionality of feature space, removes 
redundant, irrelevant, or noisy data. It brings the immediate effects for application: 
speeding up a data mining algorithm, improving the data quality and thereof the 
performance of data mining, and increasing the comprehensibility of the mining results. 

Feature selection algorithms may be divided into filters [16, 17], wrappers [1] 
and embedded approaches [6]. Filters methods evaluate quality of selected features, 
independent from the classification algorithm, while wrapper methods require application 
of a classifier (which should be trained on a given feature subset) to evaluate this quality. 
Embedded methods perform feature selection during learning of optimal parameters (for 
example, neural network weights between the input and the hidden layer). 

Some classification algorithms have inherited the ability to focus on relevant 
features and ignore irrelevant ones. Decision trees are a primary example of a class of 
such algorithms [18, 12]; but also multi-layer perceptron (MLP) neural networks, with 
strong regularization of the input layer, may exclude the irrelevant features in an 
automatic way [19]. Such methods may also benefit from independent feature selection. 
On the other hand, some algorithms have no provisions for feature selection. The k-
nearest neighbour algorithm is a family of such methods that classify novel examples by 
retrieving the nearest training example, strongly relying on feature selection methods to 
remove noisy features. 

Researchers have studied the various aspects of feature selection. Search is a 
key topic in the study of feature selection [13], such as search starting points, search 
directions, and search strategies. Another important aspect is how to measure the 
goodness of a feature subset [13]. There are filter methods [5, 20, 21], wrapper methods 
[22, 23, 8] and recently, hybrid methods [10, 24]. According to class information 
availability in data, there are supervised feature selection approaches [25, 7] as well as 
unsupervised feature selection approaches [26, 27, 14, 8]. 

The main aim of this paper was to experimentally verify the impact of different, 
entropy-based and statistical classifiers on classification accuracy. We have shown that 
there is no best ranking index for different datasets and different classifiers accuracy 
curves, as the function of the number of features used may significantly differ. The only 
way to be sure that the highest accuracy is obtained in practical problems is testing a 
given classifier on a number of feature subsets, obtained from different ranking indices. 

The paper is organized as follows. In the next section we briefly described 
general architecture for the most of the feature selection algorithms. Section 3 contains 
general issues concerning diverse feature ranking and feature selection techniques. 
Section 4 gives a brief overview of adopted algorithms, namely, IB1, Naive Bayes, C4.5 
decision tree and the radial basis function (RBF) network. Section 4 presents 
experimental evaluation. Final section contains discussion of the obtained results, some 
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closing remarks, and issues that remain to be addressed and that we intend to investigate 
in future work. 

2. GENERAL FEATURE SELECTION STRUCTURE 

It is possible to derive a general architecture from most of the feature selection 
algorithms. It consists of four basic steps (refer to Figure 1): subset generation, subset 
evaluation, stopping criterion, and result validation [7]. The feature selection algorithms 
create a subset, evaluate it, and loop until an ending criterion is satisfied [15]. Finally, the 
subset found is validated by the classifier algorithm on real data. 

Subset Generation Subset generation is a search procedure; it generates subsets 
of features for evaluation. The total number of candidate subsets is 2N, where N is the 
number of features in the original data set, which makes exhaustive search through the 
feature space infeasible with even moderate N. Non-deterministic search like 
evolutionary search is often used to build the subsets [28]. It is also possible to use 
heuristic search methods. There are two main families of these methods: forward 
addition [29] (starting with an empty subset, we add features after features by local 
search) or backward elimination (the opposite). 

Subset Evaluation Each subset generated by the generation procedure needs to 
be evaluated by a certain evaluation criterion and compared with the previous best subset 
with respect to this criterion. If it is found to be better, then it replaces the previous best 
subset. A simple method for evaluating a subset is to consider the performance of the 
classifier algorithm when it runs with that subset. The method is classified as a wrapper, 
because in this case, the classifier algorithm is wrapped in the loop. In contrast, filter 
methods do not rely on the classifier algorithm, but use other criteria based on correlation 
notions. 

 

Figure 1: General feature selection structure 

Stopping criteria Without a suitable stopping criterion, the feature selection 
process may run exhaustively before it stops. A feature selection process may stop under 
one of the following reasonable criteria: (1) a predefined number of features are selected, 
(2) a predefined number of iterations are reached, (3) in case addition (or deletion) of a 
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feature fails to produce a better subset, (4) an optimal subset according to the evaluation 
criterion is obtained. 

Validation The selected best feature subset needs to be validated by carrying 
out different tests on both the selected subset and the original set and comparing the 
results using artificial data sets and/or real-world data sets. 

3. FEATURE RANKING AND SELECTION 

Diverse feature ranking and feature selection techniques have been proposed in 
the machine learning literature. The purpose of these techniques is to discard irrelevant or 
redundant features from a given feature vector. For the purpose of this experiment, we 
used feature ranking and selection methods with two basic steps of general architecture: 
subset generation and subset evaluation for the ranking of each feature in every dataset. 
Filter method was used to evaluate each subset. 

In this paper, we consider evaluation of the practical usefulness of the following 
ranking, commonly used methods, statistical and entropy-based, with good performance 
in various domains: 

• Information Gain (IG) attribute evaluation, 
• Gain Ratio (GR) attribute evaluation, 
• Symmetrical Uncertainty (SU) attribute evaluation, 
• Relief-F (RF) attribute evaluation, 
• One-R (OR) attribute evaluation, 
• Chi-Squared (CS) attribute evaluation. 

Entropy is commonly used in the information theory measure [30], which 
characterizes the purity of an arbitrary collection of examples. It is in the foundation of 
the IG, GR, and SU attribute ranking methods. The entropy measure is considered a 
measure of the system’s unpredictability. The entropy of Y is 

∑−=
∈Yy

ypypYH ))((log)()( 2  (1) 

where p(y) is the marginal probability density function for the random variable Y. If the 
observed values of Y in the training data set S are partitioned according to the values of a 
second feature X, and the entropy of Y with respect to the partitions induced by X is less 
than the entropy of Y prior to partitioning, then there is a relationship between features Y 
and X. The entropy of Y after observing X is then: 
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where p(y |x ) is the conditional probability of y given x. 
3.1. Information Gain  

Given the entropy is a criterion of impurity in a training set S, we can define a 
measure reflecting additional information about Y provided by X that represents the 
amount by which the entropy of Y decreases [31]. This measure is known as IG. It is 
given by 
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IG is a symmetrical measure (refer to equation (3)). The information gained 
about Y after observing X is equal to the information gained about X after observing Y. A 
weakness of the IG criterion is that it is biased in favor of features with more values even 
when they are not more informative. 

3.2. Gain Ratio  

The Gain Ratio is the non-symmetrical measure that is introduced to 
compensate for the bias of the IG [31]. GR is given by 

)(XH
IGGR =  (4) 

As equation (4) presents, when the variable Y has to be predicted, we normalize 
the IG by dividing by the entropy of X, and vice versa. Due to this normalization, the GR 
values always fall in the range [0, 1]. A value of GR = 1 indicates that the knowledge of 
X completely predicts Y, and GR = 0 means that there is no relation between Y and X. In 
opposition to IG, the GR favors variables with fewer values. 

3.3. Symmetrical Uncertainty 

The Symmetrical Uncertainty criterion compensates for the inherent bias of IG 
by dividing it by the sum of the entropies of X and Y [31]. It is given by 

)()(2 XHYH
IGSU
+
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SU takes values, which are normalized to the range [0, 1] because of the 
correction factor 2. A value of SU = 1 means that the knowledge of one feature 
completely predicts, and the other SU = 0 indicates, that X and Y are uncorrelated. 
Similarly to GR, the SU is biased toward features with fewer values. 

3.4. Chi-Squared 

Feature Selection via chi square (X2) test is another, very commonly used 
method [32]. Chi-squared attribute evaluation evaluates the worth of a feature by 
computing the value of the chi-squared statistic with respect to the class. The initial 
hypothesis H0 is the assumption that the two features are unrelated, and it is tested by chi-
squared formula: 
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where Oij is the observed frequency and Eij is the expected (theoretical) 
frequency, asserted by the null hypothesis. The greater the value of χ2, the greater the 
evidence against the hypothesis H0 is. 
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3.5. One-R 

OneR is a simple algorithm proposed by Holte [33]. It builds one rule for each 
attribute in the training data and then selects the rule with the smallest error. It treats all 
numerically valued features as continuous and uses a straightforward method to divide 
the range of values into several disjoint intervals. It handles missing values by treating 
"missing" as a legitimate value.  

This is one of the most primitive schemes. It produces simple rules based on one 
feature only. Although it is a minimal form of classifier, it can be useful for determining 
a baseline performance as a benchmark for other learning schemes. 

3.6. Relief-F 

Relief-F attribute evaluation [34], evaluates the worth of a feature by repeatedly 
sampling an instance and considering the value of the given feature for the nearest 
instance of the same and different class. This attribute evaluation assigns a weight to each 
feature based on the ability of the feature to distinguish among the classes, and then 
selects those features whose weights exceed a user-defined threshold as relevant features. 
The weight computation is based on the probability of the nearest neighbors from two 
different classes having different values for a feature and the probability of two nearest 
neighbors of the same class having the same value of the feature. The higher the 
difference between these two probabilities, the more significant is the feature. Inherently, 
the measure is defined for a two-class problem, which can be extended to handle multiple 
classes, by splitting the problem into a series of two-class problems. 

4. CLASSIFICATION ALGORITHMS 

Methods of ranking rank each feature in the dataset. The results were validated 
using different algorithms for classification. A wide range of classification algorithms is 
available, each with its strengths and weaknesses. There is no single learning algorithm 
that works best on all supervised learning problems. Four widely used supervised 
learning algorithms are adopted here to build models, namely, IB1, Naive Bayes, C4.5 
decision tree and the radial basis function (RBF) network. The advantage of IB1 is that 
they are able to learn quickly from a very small dataset. An advantage of Naive Bayes 
classifier is that it requires a small amount of training data to estimate the parameters 
(means and variances of the variables) necessary for classification. C4.5 decision tree has 
various advantages: simple to understand and interpret, requires little data preparation, 
robust, performs well with large data in a short time. RBF network offers a number of 
advantages, including requiring less formal statistical training, ability to implicitly detect 
complex nonlinear relationships between dependent and independent variables, ability to 
detect all possible interactions between predictor variables, and the availability of 
multiple training algorithms. This section gives a brief overview of these algorithms. 
4.1. IB1 

IB1 is nearest neighbour classifier. It uses normalized Euclidean distance to find 
the training instance closest to the given test instance, and predicts the same class as this 
training instance. If multiple instances have the same (smallest) distance to the test 
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instance, the first one found is used. Nearest neighbour is one of the simplest 
learning/classification algorithms, and has been successfully applied to a broad range of 
problems [35].  

To classify an unclassified vector X, this algorithm ranks the neighbours of X 
amongst a given set of N data (Xi, ci), i = 1, 2, ..., N, and uses the class labels cj (j = 1, 2,  
..., K) of the K most similar neighbours to predict the class of the new vector X. In 
particular, the classes of these neighbours are weighted using the similarity between X 
and each of its neighbours, where similarity is measured by the Euclidean distance 
metric. Then, X is assigned the class label with the greatest number of votes among the K 
nearest class labels. 

The nearest neighbour classifier works based on the intuition that the 
classification of an instance is likely to be most similar to the classification of other 
instances that are nearby within the vector space. Compared to other classification 
methods such as Naive Bayes, nearest neighbour classifier does not rely on prior 
probabilities, and it is computationally efficient if the data set concerned is not very large. 
However, if the data sets are large, each distance calculation may become quite 
expensive. This reinforces the need for employing PCA and information gain-based 
feature ranking to reduce data dimensionality, in order to reduce the computation cost. 

4.2. Naive Bayes 

This classifier is based on the elementary Bayes’ Theorem. It can achieve 
relatively good performance on classification tasks [36]. Naive Bayes classifier greatly 
simplifies learning by assuming that features are independent given the class variable. 
More formally, this classifier is defined by discriminant functions: 

∏=
=

N

j
iiji cPcxPXf

1
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where X = (x1, x2, ...,  xN) denotes a feature vector and cj , j = 1, 2, ..., N, denote possible 
class labels. 

The training phase for learning a classifier consists of estimating conditional 
probabilities )( ij cxP  and prior probabilities P(ci). Here, P(ci) are estimated by counting 
the training examples that fall into class ci and then dividing the resulting count by the 
size of the training set. Similarly, conditional probabilities are estimated by simply 
observing the frequency distribution of feature xj within the training subset that is labeled 
as class ci. To classify a class-unknown test vector, the posterior probability of each class 
is calculated, given the feature values present in the test vector; and the test vector is 
assigned to the class that is of the highest probability. 

4.3. C4.5 Decision Tree 

Different methods exist to build decision trees, but all of them summarize given 
training data in a tree structure, with each branch representing an association between 
feature values and a class label. One of the most famous and most representative amongst 
these is the C4.5 tree [37]. The C4.5 tree works by recursively partitioning the training 
data set according to tests on the potential of feature values in separating the classes. The 
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decision tree is learned from a set of training examples through an iterative process of 
choosing a feature and splitting the given example set according to the values of that 
feature. The most important question is which of the features is the most influential in 
determining the classification and hence should be chosen first. Entropy measures or 
equivalently, information gains are used to select the most influential, which is intuitively 
deemed to be the feature of the lowest entropy (or of the highest information gain). This 
learning algorithm works by: a) computing the entropy measure for each feature, b) 
partitioning the set of examples according to the possible values of the feature that has 
the lowest entropy, and c) estimating probabilities, in a way exactly the same as with the 
Naive Bayes approach. Note that although feature tests are chosen one at a time in a 
greedy manner, they are dependent on results of previous tests. 

4.4. RBF Network 

A popular type of feed forward network is RBF network. RBF network has two 
layers, not counting the input layer. Each hidden unit essentially represents a particular 
point in input space, and its output, or activation, for a given instance depends on the 
distance between its point and the instance—which is just another point. Intuitively, the 
closer these two points are, the stronger is the activation. This is achieved by using a 
nonlinear transformation function to convert the distance into a similarity measure. A 
bell-shaped Gaussian activation function, whose width may be different for each hidden 
unit, is commonly used for this purpose. The hidden units are called RBFs because the 
points in instance space, for which a given hidden unit produces the same activation, 
form a hypersphere or hyperellipsoid.  

The output layer of an RBF network takes a linear combination of the outputs of 
the hidden units and—in classification problems—pipes it through the sigmoid function. 
The parameters that such a network learns are: (a) the centers and widths of the RBFs and 
(b) the weights used to form the linear combination of the outputs obtained from the 
hidden layer.  

One way to determine the first set of parameters is to use clustering, without 
looking at the class labels of the training instances at all. The simple k-means clustering 
algorithm can be applied, clustering each class independently to obtain k basis functions 
for each class. Intuitively, the resulting RBFs represent prototype instances. Afterwards, 
the second set of parameters can be learned, keeping the first parameters fixed. This 
involves learning a linear model using one of the techniques such as linear or logistic 
regression. If there are far fewer hidden units than training instances, this can be done 
very quickly. 

A disadvantage of RBF networks is that they give the same weight for every 
feature because all are treated equally in the distance computation. Hence, they cannot 
deal effectively with irrelevant features.  

5. EXPERIMENTS AND RESULTS 

Real datasets called "Statlog (Australian Credit Approval)" and "Statlog 
(German Credit Data)" were used for tests, taken from the UCI repository of machine 
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learning databases [38]. These datasets were used to compare different feature ranking 
and feature selection methods on data.  

German Credit Data 
This dataset classifies people described by a set of features as good or bad credit 

risks. Data set characteristics is multivariate, feature characteristics are categorical and 
integer. Number of instances is 1000, number of features is 20, and there are no missing 
values. 
Table 1: Results of ranking methods on German credit dataset 
German Credit Data - Ref IG GR SU CS OR RF 
1- checking_status 1 1 1 1 3 1 
2 - duration 3 20 3 3 2 3 
3 - credit_history 2 3 2 2 9 4 
4 - purpose 6 2 5 6 11 6 
5 - credit_amount 4 5 6 4 10 7 
6 - savings_status 5 6 13 5 6 9 
7 - employment 12 13 4 12 4 12 
8 - installment_commitment 7 15 15 7 8 8 
9 - personal_staus 15 14 12 15 7 19 
10 - other_parties 13 4 20 13 18 2 
11 - residence_since 14 10 14 14 17 14 
12 - property_magnitude 9 12 7 9 20 10 
13 - age 20 7 10 20 19 13 
14 - other_payment_plans 10 9 9 10 14 18 
15 - housing 17 19 17 17 12 17 
16 - existing_credits 19 17 19 19 15 11 
17 - job 18 18 18 18 16 5 
18 - num_dependents 8 8 8 8 13 16 
19 - own_telephone 16 16 16 16 1 15 
20 - foreign_worker 11 11 11 11 5 20 

Australian Credit Approval 
This file concerns credit card applications. Data set characteristics is 

multivariate; feature characteristics are categorical, integer and real. Number of instances 
is 690, number of features is 14, and there are missing values. This dataset is interesting 
because there is a good mix of features – continuous, nominal with small numbers of 
values, and nominal with larger numbers of values. There are also a few missing values. 
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Figure 2: Ranking methods and balanced classification accuracy for German credit 
dataset, Naive Bayes classifier 

  

Figure 3: Ranking methods and balanced classification accuracy for German credit 
dataset, C4.5 decision tree classifier 

The datasets described above have been used in tests. Six ranking methods have 
been used in each case: CS, OR, RF, IG, GR and SU. 

The ranking of features obtained for the training data is presented in Table 1 and 
Table 2.  
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Figure 4: Ranking methods and balanced classification accuracy for German credit 
dataset, IB1 classifier 

 

Figure 5: Ranking methods and balanced classification accuracy for German credit 
dataset, RBF network 

Significant differences are observed in the order of the features in different 
ranking methods on German credit dataset. The first feature ranked as top (1) is same in 
different ranking methods, except OR. The last 4 features ranked as bottom are the same 
in different ranking methods based on entropy indices and CS: 11, 16, 8, and 18.  
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Table 2: Results of ranking methods on Australian credit approval dataset 
Australian Credit Ap. - Ref IG GR SU CS OR RF 
A1 9 9 9 9 9 9 
A2 11 10 11 11 10 6 
A3 10 11 10 10 11 7 
A4 15 15 15 8 15 10 
A5 8 8 8 15 8 12 
A6 6 3 6 6 6 1 
A7 14 5 14 14 7 5 
A8 7 4 3 7 14 4 
A9 3 14 7 3 4 3 
A10 4 6 4 4 5 2 
A11 5 7 5 5 13 8 
A12 2 2 2 2 1 13 
A13 13 13 13 13 12 11 
A14 12 12 12 12 2 14 
A15 1 1 1 1 3 15 

 
On Australian credit approval dataset, the first feature ranked as top is the same 

in different ranking methods: 9. Less difference is observed in the order of the features in 
different ranking methods on this dataset, compared to German credit dataset. But, we 
have the same result with irrelevant features on both datasets. On Australian credit 
approval dataset, the last 4 features ranked as bottom are the same in different ranking 
methods based on entropy indices and CS: 1, 12, 13, 2.  

 

Figure 6: Ranking methods and balanced classification accuracy for Australian credit 
approval dataset, Naive Bayes classifier 
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Figure 7: Ranking methods and balanced classification accuracy for Australian credit 
approval dataset, C4.5 decision tree classifier 

Investigation of classification accuracy of the test data as a function of the n best 
features has been done for each ranking method. Four classifiers were used: Naive Bayes, 
C4.5 decision tree, IB1 classifier and RBF Network. Naive Bayes, C4.5 decision tree, 
IB1 classifier give deterministic results, simplifying the comparison (in contrast to these 
methods, neural classifiers give slightly different results after each restart). 

 

Figure 8: Ranking methods and balanced classification accuracy for Australian credit 
approval dataset, IB1 classifier 

The same calculations were performed for both datasets. First, the ranking 
algorithms were applied to the whole dataset, and classification accuracy was estimated 
using ten-fold crossvalidation. For the purpose of comparing different ranking methods 
this approach is sufficient, producing one ranking for each index. As for real application, 
this could lead to some overfitting, therefore ranking and classification should be done 
separately for each training partition. Good generalization may be obtained by selecting 
only those features that were highly ranked in all data partitions. 
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Figure 9: Ranking methods and balanced classification accuracy for Australian credit 
approval dataset, RBF network 

Classification results for German credit dataset are presented in Figure 2, to 
Figure 5. Classification accuracy for German credit dataset is influenced by the choice of 
ranking indices. Unfortunately, OR ranking method gives very similar poor results for 
balanced accuracy with all classifier, expecially IB1, C4.5 decision tree and RBF 
network. Others ranking methods give very similar good results for balanced accuracy. 

Classification results for Australian credit approval dataset are presented in 
Figure 6 to Figure 9. The quality of classification for this dataset is obviously influenced 
by the choice of ranking indices. Classification accuracy with RF ranking method is quite 
high for RBF network and Naive Bayes, but quite low with IB1 classifier. All ranking 
methods give better results for balanced accuracy for Australian credit approval dataset, 
then for German credit dataset. In this case, simple ranking is sufficient to obtain good 
results. 

6. CONCLUSIONS 

The problem of ranking has recently gained much attention in machine learning. 
Ranking methods may filter features to reduce dimensionality of the feature space. This 
is especially effective for classification methods that do not have any inherent feature 
selections built in, such as the nearest neighbour methods or some types of neural 
networks. Different entropy-based and statistical indices have been used for feature 
ranking, evaluated and compared using four different types of classifiers on two real 
benchmark data. Accuracy of the classifiers is influenced by the choice of ranking 
indices.  

There is no best ranking index, for different datasets and different classifiers 
accuracy curves as a function of the number of features used may significantly differ. 
Evaluation of ranking indices is fast. The only way to be sure that the highest accuracy is 
obtained in practical problems requires testing a given classifier on a number of feature 
subsets, obtained from different ranking indices. The number of tests needed to find the 
best feature subset is very small comparing to the cost of wrapper approach for larger 
number of features. 
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There are many questions and issues that remain to be addressed and that we 
intend to investigate in the future work. Several improvements of the ranking methods 
presented here are possible: 

• The algorithms and datasets will be selected according to precise criteria: 
entropy-based algorithms and several datasets, either real or artificial, with 
nominal, binary and continuous features. 

• Features with the lowest ranking values of various indices in all crossvalidations 
may be safely rejected. 

• The remaining features should be analyzed using selection methods that allow 
elimination of redundant and correlated features. 
These conclusions and recommendations will be tested on larger datasets using 

various classification algorithms in the near future. Future work will also focus on 
extending this work to more datasets, developing a more thorough analysis and building 
interpretable metamodels to extract those aspects of datasets responsible for the observed 
results. 
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