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1. INTRODUCTION 

In the optimization theory, convexity and its different generalizations play an 
important role. Mangasarian [16] introduced the concept of pseudoconvex functions as a 
generalization of the convex functions. Chew and Choo [5] introduced a new class of 
functions both pseudoconvex and pseudoconcave known as pseudolinear functions. 
Chew and Choo [5] obtained first and second order characterizations for pseudolinear 
functions. Komlosi [11] and Rapcsak [22] studied and characterized higher order 
pseudolinear functions. Rueda [23] introduced the concept of η − pseudolinear functions 
and Ansari et al. [2] have derived several characterizations for η − pseudolinear 
functions. Recently, Giorgi and Rueda [10] have extended some results of Chew and 
Choo [5] and obtained the conditions for a feasible solution to be efficient and properly 
efficient. Ansari and Rezaei [1] introduced the concept of η − pseudolinear functions for 
nondifferentiable locally Lipschitz functions, and characterized η − pseudolinear 
functions and related programs. 

In fractional programming, we study the optimization problems in which 
objective functions are ratios of two functions. These problems arise in different areas of 
modern research such as economics [4], information theory [17], engineering design [26], 
and heat exchange networking [29].  Schaible [24] and Bector [3] have studied duality in 
fractional programming for single objective functions. Duality in multiobjective 
fractional programming problems involving generalized convex functions have been 
widely studied by Chandra et al. [7], Egudo [8], Mukherjee and Rao [20], Weir [27] and 
Kuk et al. [15]. For more references and further details please see; Mishra and Giorgi 
[18]. Kaul et al. [12] have studied Mond-Weir-type of dual for the multiobjective 
fractional programming problems involving pseudolinear and η − pseudolinear functions 
and derived various duality results. Duality for nonsmooth multiobjective fractional 
programming problems involving generalized convex functions have been studied by 
Kim [13], Kuk [14], Stancu-Minasian et al. [25] and Nobakhtian [21]. 

In the present paper, we shall establish the necessary and sufficient conditions 
for a feasible solution to be efficient for a nonsmooth multiobjective fractional 
programming problem involving η − pseudolinear functions. Furthermore, we show the 
equivalence between efficiency and proper efficiency under certain boundedness 
condition. We also derive weak and strong duality results for corresponding Mond-Weir 
subgradient type dual problem. The results of this paper extend several results of Chew 
and Choo [5], Kaul et al. [12] and Giorgi and Rueda [10] to the nonsmooth case. 

2. DEFINITIONS AND PRELIMINARIES 

Let nR  be the n dimensional− Euclidean space and .,.  denotes the usual inner 

product in .nR  Let nK R⊆  be a nonempty set. Let : nK K Rη × →  be a map.  

 The following conventions for vectors in nR  will be adopted: 
  1. x y=   if and only if ,i ix y=  for all 1,2,..., ;i n=  
  2. ,if and only if for all 1,2,..., ;i ix y x y i n> > =  
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  3. ,if and only if for all 1,2,..., ;i ix y x y i n≥ ≥ =  
  4. ,if and only if for all 1,2,..., but .i ix y x y i n x y≥ ≥ = ≠  
 

Definition 2.1 [6]. A function :f K R→  is said to be Lipschitz (of rank M ) near ,x  if 
there exists a nonnegative scalar M and a positive constant ,ε such that 

( ) ( )f x f x M x x′ ′′ ′ ′′− ≤ −  for all , ,x x x Bε′ ′′∈ +  

where x Bε+  is open ball of radius ,ε about .x  The function f  is said to be Lipschitz on 
,K if the above condition is satisfied for all .x K∈  

 

Definition 2.2 [6]. Let :f K R→  be locally Lipschitz at a given point .x K∈  The 
Clarke’s generalized directional derivative of f  at x K∈  in the direction of a vector 

,v K∈ denoted by ( );f x vo  is defined by 

( ) ( )( ; ) limsup .

0

f y tv f yf x v
ty x

t

+ −
=

→
↓

o  

We know that the usual one sided directional derivative of f  at  x K∈  in the direction 
of a vector ,v K∈ denoted by ( ; )f x v′   is defined by 

( ) ( )( ; ) lim ,
0

f x tv f xf x v
tt

+ −′ =
↓

 

whenever the limit exists. Obviously, ( ); ( ; ).f x v f x v′≥o  
 

Definition 2.3 [6]. Let :f K R→  be locally Lipschitz at a given point .x K∈  The 

Clarke’s generalized subdifferential of at ,f x K∈  denoted by ( )c f x∂  is defined by 

{ }( ) , .( ) : , , for allc n nf x f x v v v Rξ ξ∂ = ∈ ≥ ∈o  

Definition 2.4 [19]. Let x  be an arbitrary point of .K  The set K  is said to be invex at 
x  with respect to ,η  if for all ,y K∈  

[ ]0,1( , ) , for all tx t y x Kη+ ∈ ∈ . 

The set K  is said to be invex with respect to η  if K  is invex with respect to η  for all 
.x K∈   

 

Condition C [19]. Let nK R⊆  be an invex set with respect toη , then η  is said to satisfy 
the condition C, if   

1.  ( , ( , )) ( , )x x t y x t y xη η η+ = −   
2.  ( , ( , )) (1 ) ( , ).y x t y x t y xη η η+ = −  
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Yang et al. [28] have shown that 

( ( , ), ) ( , ).x t y x x t y xη η η+ =   (1) 

Definition 2.5 [1]. A locally Lipschitz function : nf K R R⊆ →  is said to be 

1. pseudoinvex with respect to η if for all ,x y K∈ and for some ( )c f xξ ∈∂  
, ( , ) 0 implies ( ) ( )y x f y f xξ η ≥ ≥ . 

2. pseudoincave with respect toη if  for all ,x y K∈  and for some ( )c f xξ ∈∂
 
 

, ( , ) 0 implies ( ) ( ).y x f y f xξ η ≤ ≤
 

3.  η − pseudolinear if f is both pseudoinvex and pseudoincave with respect to   
the same .η   

 

Lemma 2.1 [1]. Let K  be an invex set with respect to ,: nK K Rη × →  that satisfies the 
condition C. Then f is pseudolinear with respect to η  on K  if and only if there exists a 

function :p K K R+× → such that for all ,x y K∈ and for some ( ),c f xξ ∈∂   

( ) ( ) ( , ) , ( , ) .f y f x p x y y xξ η= +  

Definition 2.6 [6]. A real valued function f is said to be regular at x  if for all ,nv R∈  
one sided directional derivative ( ; )f x v′  exists and ( )( , ) , .f x v f x v′ = o  

Lemma 2.2 [6]. Let f  and g be Lipschitz near x  and suppose that ( ) 0.g x ≠  Then f
g

 

is Lipschitz near x  and  

( ) 2( )

( ) ( ) ( ) ( ) .
( )

c c
fc
g g

g x f x f x g xx
x

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∂ − ∂
∂ ⊂  

If in addition ( ) 0, ( ) 0f x g x≥ >  and if f  and g−  are regular at ,x  then equality holds 

and 
f
g

 is regular at .x   
 

Lemma 2.3.  Let f  and g are two η − pseudolinear functions defined on an open invex 

subset K  of  nR  with the same proportional function ( , )p x y  and ( ) 0g x >  for every x  

in .K  If f  and g−  are regular on K  and η  satisfies the condition C  on .K  Then f
g

 

is also  η − pseudolinear with respect to a new proportional function 

( ) ( , )( , ) .
( )

g x p x yp x y
g y

=  
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Proof: Since f  and g  are η − pseudolinear with respect to the same proportional 
function ,p  it follows that for any x  and y  in ,K  

,( ) ( ) ( , ) , ( , )f y f x p x y y xξ η= +  for some ( )c f xξ ∈∂   (2) 

,( ) ( ) ( , ) , ( , )g y g x p x y y xζ η= +  for some ( ).c g xζ ∈∂   (3) 

Now using the Lemma 2.2, we have for some ( )c f xξ ∈∂  and ( )c g xζ ∈∂  

( )

,

( ) ( ) ( )( , ) , ( , ) ( , ) , ( , )2( ) ( ( ))

( ) , ( , ) ( ) , ( , )
( , ) 2( )

( ) ( ) ( )
( ) ( ) ( )

f x g x f xcp x y x y p x y y xg x g x

g x y x f x y x
p x y

g x

g y f y f x
g x g y g x

ξ ζη η

ξ η ζ η

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

−∂ =

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 

by using (2) and (3). 
Thus 

,
( ) ( ) ( ) ( , ) ( ) , ( , )( )( ) ( ) ( )

f y f x g x p x y f xc y xg xg y g x g y
η⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠

= + ∂  

which implies that f
g

 is η − pseudolinear with respect to the proportional function  

( ) ( , )( , ) .
( )

g x p x yp x y
g y

=  

Throughout the paper we assume that : nK K Rη × →  satisfies the condition C. 
We consider the following nonsmooth multiobjective fractional programming 

problem: 

    (NMFP)    1 2

1 2

( )( ) ( )
min , ,...,

( ) ( ) ( )
k

k

f xf x f x
g x g x g x

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

subject to   { }( ) 0, 1,2,..., ,j xh j m≤ ∈
 

 

where { } { }: , : , 1,2,..., ; : , 1,2,...,i i jf K R g K R i I k h K R j J m→ → ∈ = → ∈ =
 

are 

locally Lipschitz  functions on a nonempty invex subset .nK R⊆  Now on, we assume 
that the functions f  and g−  are regular on K  and ( ) 0,f x >  ( ) 0g x >  for all .nx R∈  

Let { }( ): 0,j xP x K h j J= ∈ ≤ ∈ and { }( ) ,( ) : 0j xJ x j J h= ∈ =
 
for some x K∈  

denote the set of all feasible solutions for (NMFP) and active constraints index set at 
x K∈  respectively. 
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Definition 2.7. A feasible solution x  is said to be an efficient (Pareto optimal) solution 
for (NMFP), if there exist no x P∈  such that  

( ) ( )
,

( ) ( )
i i

i i

f x f x
g x g x

≤          for all 1, 2, ...,i k=  

and ( ) ( )
,

( ) ( )
r r

r r

f x f x
g x g x

<        for some .r  

 
Definition 2.8 [9]. A feasible solution x  is said to be properly efficient solution for 
(NMFP) if it is efficient and if there exists a scalar 0,M >  such that for each ,i  

( ) ( ) ( ) ( )
,

( ) ( ) ( ) ( )
i i r r

i i r r

f x f x f x f xM
g x g x g x g x

⎡ ⎤
− ≤ −⎢ ⎥

⎣ ⎦
 

for some r  such that 

( )
( )

( )
( )

rr

r r

f xf x
g x g x>  whenever x P∈ with 

( ) ( )

( ) ( )
.i i

i i

f x f x

g x g x
<

 
 

3. EFFICIENCY 

In this section, we shall establish the necessary and sufficient conditions for a 
feasible solution to be efficient and show the equivalence between efficiency and proper 
efficiency under certain boundedness condition. 

Now, we shall prove the following theorem analogous to Proposition 3.2 of 
Chew and Choo [5] for the problem (NMFP) by the use of Lemma 2.1, Lemma 2.2 and 
Lemma 2.3.  
 
Theorem 3.1. Let x  be a feasible solution for the problem (NMFP). Let the functions if  

and ig  be η -pseudolinear on invex set nK R⊆  with respect to same proportional 

function ( )1, 2, ...,ip i k= and jh  be η -pseudolinear on K  with proportional function 

jq   for ( ) .j J x∈ Then x  is an efficient solution of (NMFP), if and only if there exist 

0, 1, 2,..., ;i i kλ > = 0, ( )j j J xμ ≥ ∈  and for some 
( )

( )
c i

i
i

f x
g x

ξ
⎛ ⎞

∈∂ ⎜ ⎟
⎝ ⎠

 and ( ),c
j jh xζ ∈∂  

such that   

1
.

( )
0i i j j

x

k

i j J
λ ξ μ ζ+ =∑ ∑

= ∈
 (4) 



 S.K. Mishra, B.B. Upadhyay / Efficiency And Duality In Nonsmooth 9

Proof:  Suppose iλ  and jμ exist and satisfy the given condition and (4). Let x  is not 
efficient. Therefore, there exists a point ,y K∈  such that 

( ) ( )
,

( ) ( )
i i

i i

f x f y
g x g y

≥   for all i  

and 

( ) ( )
,

( ) ( )
r r

r r

f x f y
g x g y

>  for some .r  

Then 

( ( ) ( ))
( )

0
,( )
j

j j
j

h y h x
q x yj J x

μ
≥ −∑

∈
 

( ) ,, ,
( )

j j y x
j J x

μ ζ η= ∑
∈

 where ( )c
j jh xζ ∈∂

 

, ( , )
1

i i

k
y x

i
λ ξ η= − ∑

=
 

( ) ( )

( ) ( ) ( )
0

,1
i i i

i i i

k f y f x
p x y g y g xi
λ ⎛ ⎞

= − − >∑ ⎜ ⎟
= ⎝ ⎠

, by Lemma 2.3, 

which leads to a contradiction.  
Conversely, we assume that x  is an efficient solution. Therefore, for 1 ,r k≤ ≤  

for some

 

i
( )

( )
c i

i

f x
g x

ξ
⎛ ⎞

∈∂ ⎜ ⎟
⎝ ⎠  

and j ( )j
ch xζ ∈∂  the system of inequalities:  

i

, ( , ) 0; ( )

, ( , ) 0; 1,2,..., 1, 1,...,

( ), ( , ) 0; for some r ( )

j x x j J x

x x i r r k

f xc rx x r g xr

ζ η

ξ η

ξ η ξ

⎫
⎪
⎪
⎪
⎬
⎪

⎛ ⎞⎪
⎜ ⎟⎪⎝ ⎠⎭

≤ ∈

≤ = − +

< ∈∂

 (5) 

has no solution .x K∈  For if x  is a solution of the system  and 
( , ) (0 1)y x t x x tη= + < ≤ , then for ( )j J x∈  and using  (1), it follows that 

, ( , ) , ( , ) 0,j jy x t x xζ η ζ η= ≤  where ( )c
j jh xζ ∈∂  

and thus we get  

( ) ( ) 0.j jh y h x≤ =  
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If ( )j J x∉  then ( ) 0jh x <  and so ( ) 0,j yh <  when t  is sufficiently small. Therefore for 
small t , y is a point of .K  Using the Lemma 2.3 and (5), we obtain 

( ) ( )
( , ) , ( , ) 0,

( ) ( )
i i

i i
i i

f y f x
tp x y x x i r

g y g x
ξ η− = ≤ ≠  

and   

( ) ( )

( ) (
0

)
r r

r r

f y f x
g y g x

− < . 

This contradicts the choice of .x  
Hence system (4) has no solution in the nonempty invex set .K  

Applying Farkas’ Lemma [16], there exist 0,
ir

λ ≥ 0
jrμ ≥  and 

( )

( )
c i

i
i

f x
g x

ξ
⎛ ⎞

∈∂ ⎜ ⎟
⎝ ⎠

 

( )c
j jh xζ ∈∂

 
such that 

( )
.

i ji r r jri r j J x
λ ξ ξ μ ζ

≠ ∈
+ = −∑ ∑  (6) 

Summing (6) over ,r we get (4) with  

1 , .
1i ji j

k
r rr i r

λ λ μ μ= + =∑ ∑
≠ =

 

This completes the proof. 
   
Definition 3.1 [5]. A feasible point x  for the problem (NMFP) is said to satisfy the 
boundedness condition, if the set  

( ) ( )( , ) ( ) ( )
| , ,

( , ) ( ) ( ) ( ) ( )
j ji i i

j i i j j

f x f xp x x f x f x
x K

p x x g x g x g x g x
⎧ ⎫⎪ ⎪∈ > <⎨ ⎬
⎪ ⎪⎩ ⎭

 (7) 

is bounded from above, ( )
where ( , ) ( , ).

( )
i

i i
i

g x
p x y p x y

g y
=  

 
The following theorem extends the Proposition 3.5 of Chew and Choo [5] and 

the Proposition 2 of Giorgi and Rueda [10] to the nonsmooth η − pseudolinear case.  
 
Theorem 3.2. Every efficient solution of the problem (NMFP) involving η −  
pseudolinear functions, satisfying the boundedness condition is a properly efficient 
solution of the problem (NMFP). 
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Proof: Let x  be an efficient solution. Then from Theorem 2.1, it follows that there exist 
0 and 0,i jλ μ ≥> such that 

( )1
.i i j ji j J x

k
λ ξ μ ζ

= ∈
= −∑ ∑

 
Therefore, for any feasible ,x  we have 

( )
, ( , ) , ( , ) .

1 i i j j

k
x x x x

i j J x
λ ξ η μ ζ η= −∑ ∑

= ∈
 

We observe that for any ,x K∈  

, ( , ) 0.
1

i i

k
x x

i
λ ξ η ≥∑

=
 (8) 

Otherwise, we would arrive at a contradiction as in the first part of Theorem 3.1.  

Since the set defined by (7) is bounded above, therefore following set is also 
bounded from above: 

( ) ( ) ( )( ) ( )
( ) .

( ) ( ) ( ) ( ) ( )

,
1 | , , ,1 ,

,
j i j ji i

i j i i j j

xx

x x

p x x f x ff x fk x K i j k
p x x g x g g x g

λ
λ

⎧ ⎫⎪ ⎪− ∈ > < ≤ ≤⎨ ⎬
⎪ ⎪⎩ ⎭

  (9) 

Let 0M >  be a real number that is an upper bound of the set defined by (9).  
Now, we shall show that x  is a properly efficient solution of the problem (NMFP). 
Assume that there exist r  and ,x K∈ such that 

( ) ( )

( ) ( )
.r r

r r

x

x

f f x
g g x

<  

Then, 

, ( , ) 0,r x xξ η <  for some
( )

.
( )

c r
r

r

f x
g x

ξ
⎛ ⎞

∈∂ ⎜ ⎟
⎝ ⎠

  (10) 

Let us define 

{ } ., ( , ) max , ( , ) | , ( , ) 0s s i i ix x x x x xλ ξ η λ ξ η ξ η− = >   (11) 

Using (8), (10) and (11), we get 

, ( , ) ( 1)( , ( , ) ).r r s sx x k x xλ ξ η λ ξ η≤ − −  

Therefore, 

( ) ( ) ( )( ) ( )
.

( ) ( ) ( ) ( ) ( )

,( 1)
,

s r s sr r

r r r s s s

xx

x x

p x x f x ff f x k
g g x p x x g x g

λ
λ

⎛ ⎞⎛ ⎞
− ≤ − −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
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Using the definition of ,M we get 

( ) ( )( ) ( )

( ) ( ) ( ) ( )
.s sr r

r r s s

xx

x x

f x ff f x M
g g x g x g

⎛ ⎞⎛ ⎞
− ≤ −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

Hence, x  is a properly efficient solution of the problem (NMFP). 
 

4. DUALITY 

 For the nonsmooth multiobjective fractional programming problem (NMFP), 
we consider the following Mond-Weir subgradient type dual problem: 

(NMFD)  Maximize   1 2

1 2

( )( ) ( )
, ,...,

( ) ( ) ( )
k

k

f uf u f u
g u g u g u

⎛ ⎞
⎜ ⎟
⎝ ⎠

  

subject to ( )
1

( )0 ( )
( )

c i
i

ii

k f u c th u
g u

λ μ
=

⎛ ⎞
∈ ∂ + ∂∑ ⎜ ⎟

⎝ ⎠
 

( ) 0,t h uμ ≥  

0,μ ≥  

0, 1, 2,..., .i i kλ > =  

Theorem 4.1 (Weak Duality). Let y  be a feasible solution for (NMFP) and ( ), ,u λ μ  be 

a feasible solution for the (NMFD) such that if  and ig  are η − pseudolinear functions 

with respect to the same proportional function ( )1,2,...,ip i k=  and thμ  is 
η − pseudolinear with respect to ,q  then the following cannot hold 

( ) ( )
, 1,2,..., .

( ) ( )
i i

i i

f y f u
i k

g y f u
≤ =  

Proof: We assume that the above inequality is satisfied. Using Lemma 2.1 and Lemma 

2.3, the η − pseudolinearity of  i

i

f
g

 
on K  with respect to proportional function ip  

implies that 

 
( ), , ( , ) 0,i ip y u y uξ η ≤  for all 1,2,...,i k=  and for some 

( )
( )

jc
i

j

f u
g u

ξ
⎛ ⎞

∈∂ ⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
( ), , ( , ) 0 ,j jp y u y uξ η < for some j  and 

( )
.

( )
jc

j
j

f u
g u

ξ
⎛ ⎞

∈∂ ⎜ ⎟⎜ ⎟
⎝ ⎠

 

Since ( ), 0,ip y u >  for all 1,2,..., ,i k=  we get 

, ( , ) 0,i y uξ η ≤
 
 for all 1, 2, ...,i k=  and for some 

( )
( )

c i
i

i

f u
g u

ξ
⎛ ⎞

∈∂ ⎜ ⎟
⎝ ⎠
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, ( , ) 0,j y uξ η <  for some j  and 
( )

.
( )

jc
j

j

f u
g u

ξ
⎛ ⎞

∈∂ ⎜ ⎟⎜ ⎟
⎝ ⎠

 

Since 0,iλ > for each 1, 2, ..., ,i k=  we get 

1
, ( , ) 0.

k

i i
i

y uλ ξ η
=

<∑  (12) 

As y  is feasible in (NMFP) and ( , , )u yλ in (NMDP), it follows that 

( ) 0t h yμ ≤
 and 

( ) 0.t h uμ ≥  

Using η − pseudolinearity of ,t hμ  we get 

( , ) , ( , ) 0,q y u y uζ η ≤  for some ( ( )).c t h uζ μ∈∂  

Since ( , ) 0,q y u >  we get   

, ( , ) 0.y uζ η ≤  (13) 

From (12) and (13), we get a contradiction to the first dual constraint of the problem 
(NMFD).  
 

In the following theorems, we have weakened the conditions of 
η − pseudolinearity on the objective and constraint functions. 
 
Theorem 4.2 (Weak Duality). If y  is a feasible solution for the problem (NMFP) and 

( ), ,u λ μ is a feasible solution for the problem (NMFD) involving η -pseudolinear 

functions, such that 
1

i
i

i

k

i

f

g
λ

=
∑  is η − pseudolinear with respect to p  and t hμ  is 

η − pseudolinear with respect to ,q  then the following inequality cannot hold 

( ) ( )
, 1, 2,..., .

( ) ( )
i i

i i

f y f u
i k

g y g u
≤ =  

Proof:  Assume that the above inequality is satisfied. Since 0,iλ >  for each i=1, 2, ..., k,  
we get   

1 1

( ) ( )
.

( ) ( )

k k
i i

i i
i ii i

f y f u
g y g u

λ λ
= =

<∑ ∑  
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Using the η − pseudolinearity of 
1

k
i

i
i i

f
g

λ
=
∑  inequality (3) of Theorem 4.1 is 

obtained. Rest of the proof is on the lines of the proof of Theorem 4.1. 
 

Theorem 4.3. Let us assume that x is a feasible solution for the problem (NMFP) 
and ( , , )u λ μ  is a feasible solution for the problem (NMFD) involving η -pseudolinear 
functions, such that 

( ) ( )
, 1,2,..., .

( ) ( )
i i

i i

f x f u
i k

g x g u
= =  (14) 

 

If for all feasible solutions ( , , )u λ μ of (NMFD), 
1

k
i

i
i i

f
g

λ
=
∑  is η − pseudolinear with 

respect to p  and t hμ  is η -pseudolinear with respect to q  then x is a properly efficient 

solution for (NMFP) and ( , , )u λ μ  is a properly efficient solution for (NMFD).   
 
Proof: Let us assume that x  is not an efficient solution of (NMFP), then there exists 
some ,y K∈  such that   

( ) ( )
, 1, 2,..., .

( ) ( )
i i

i i

f y f x
i k

g y g x
≤ =  

Now by the given assumption 
( ) ( )

, 1,2,..., ,
( ) ( )

i i

i i

f x f u
i k

g x g u
= =  we arrive at a 

contradiction to the Theorem 4.2. Hence x is an efficient solution for (NMFP). 
Proceeding in the same way we can prove that ( ), ,u λ μ is an efficient solution for 
(NMFD). 
 Now assume that x is an efficient solution of (NMFP). Therefore for every 
scalar 0,M >   there exists some x K∗ ∈  and an index ,i  such that 

* *

* *

( ) ( ) ( ) ( )
,

( ) ( )( ) ( )
i i k k

i ki k

f x f x f x f x
M

g x g xg x g x
⎛ ⎞

− > −⎜ ⎟
⎝ ⎠

 

for all k  satisfying 
*

*

( ) ( )
,

( )( )
k k

kk

f x f x
g xg x

>  

whenever  
*

*

( ) ( )
.

( )( )
i i

ii

f x f x
g xg x

<  
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Therefore, the difference 
*

*

( ) ( )
( ) ( )

i i

i i

f x f x
g x g x

⎛ ⎞
−⎜ ⎟

⎝ ⎠
can be made arbitrarily large and hence for 

0,λ > we get the following inequality  

*

*
1

( ) ( )
0.

( ) ( )

k
i i

i
i i i

f x f x
g x g x

λ
=

− >∑  (15) 

Since x∗  is a feasible solution for the problem (NMFP) and ( ), ,u λ μ   is a feasible 
solution for the problem (NMFD), we get  

*( ) 0h x ≤  (16)
   

1
0,

k

i i
i
λ ξ ζ

=

+ =∑ where
( )
( )

c i
i

i

f u
g u

ξ
⎛ ⎞

∈∂ ⎜ ⎟
⎝ ⎠

 and ( ( ))c t h uζ μ∈∂             (17) 

( ) 0t h uμ ≥  (18) 

0μ≥  (19) 

0, 1, 2,..., .i i kλ > =  (20) 
 

Using (16), (18) and (19), we get
 

*( ) ( ).t th x h uμ μ≤  

Since t hμ  is η − pseudolinear with respect to ,q we obtain that      

* *( , ) , ( , ) 0,q u x x uζ η ≤ for some ( ( )).c t h uζ μ∈∂  

As  *( , ) 0,q u x >
 
it follows that 

*, ( , ) 0,x uζ η ≤  for some ( ( )).c t h uζ μ∈∂  

Using (17), we obtain  

*

1
, ( , ) 0,

k

i i
i

x uλ ξ η
=

≥∑  where 
( )

( )
c i

i
i

f u
g u

ξ
⎛ ⎞

∈∂ ⎜ ⎟
⎝ ⎠

. 

Using η -pseudolinearity of 
1

k
i

i
i i

f
g

λ
=
∑  with respect to ,p  it follows that 

( ) ( )

( )( )1 1
0.i i

i i
iii i

k kf x f u
g ug x

λ λ
∗

∗= =
− ≥∑ ∑  (21) 
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Using (14) in (21), we get 

0

0

( ) ( )

( ) ( )
0,

1
i i

i
i i

k f x f x
g x g xi

λ
⎛ ⎞

− ≤∑ ⎜ ⎟
= ⎝ ⎠

 

which is a contradiction to  (15). Hence, x is a properly efficient solution for (NMFP). 
Now we assume that ( ), ,u λ μ is not properly efficient solution for (NMFP). 

Therefore, for every scalar 0,M > there exist a feasible point * * *( , , )u λ μ
 
in (NMFD) and 

an index i  such that   

* *

* *

( ) ( ) ( ) ( )
,

( ) ( )( ) ( )
i i k k

i ki k

f u f u f u f u
M

g u g ug u g u
⎛ ⎞

− > −⎜ ⎟
⎝ ⎠

 

for all k  satisfying 
*

*

( ) ( )
,

( )( )
k k

kk

f u f u
g ug u

<  

whenever  
*

*

( ) ( )
.

( )( )
i i

ii

f u f u
g ug u

>  

Therefore, the difference 
*

*

( ) ( )
( )( )

i i

ii

f u f u
g ug u

⎛ ⎞
−⎜ ⎟

⎝ ⎠
 can be made arbitrarily large and 

hence for 0,λ > we get 

*

*
1

( ) ( )
0

( )( )

k
i i

i
i ii

f u f u
g ug u

λ
=

⎛ ⎞
− >⎜ ⎟

⎝ ⎠
∑  (22) 

Since andx ( ), ,u λ μ  are feasible solutions for (NMFP) and (NMFD) respectively, it 
follows as in the first part of the theorem that 

0

1 0

( ) ( )
0

( ) ( )

k
i i

i
i i i

f u f u
g u g u

λ
=

⎛ ⎞
− ≤⎜ ⎟

⎝ ⎠
∑ , 

which is a contradiction to (22). Thus, ( ), ,u λ μ is a properly efficient solution for 
(NMFD). 

 
The proof of the following theorem can be given on the lines of the proof of 

Theorem 3.4 of Giorgio and Rueda [10] in the light of the above Theorem 4.3. 
 
Theorem 4.4 (Strong Duality). Let x  be an efficient solution for the problem (NMFP). 
Then there exist , ,k mR y Rλ ∈ ∈  such that ( ), ,x yλ  is feasible solution for (NMFD). 
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Further, if for all feasible solutions ( , , )u λ μ  for (NMFP), 
1

i
i

i

k

i

f
g

λ
=
∑  is η -pseudolinear 

with respect to p  and t hμ  is η − pseudolinear with respect to ,q  then ( ), ,x yλ is 
properly efficient solution for (NMFD). 
 
 

5. CONCLUSIONS 

In this paper, we have obtained conditions under which a feasible solution is an 
efficient solution and established that under certain boundedness condition an efficient 
solution is properly efficient solution for (NMFP) involving η -pseudolinear functions. 
We further formulated Mond-Weir subgradient type of dual for (NMFP) and derived 
several weak and strong duality results. The results presented in this paper extend several 
results of Chew and Choo [5], Giorgi and Rueda [10] and Kaul et al. [12] to the 
nonsmooth case. 

 
Acknowledgement. The authors are thankful to the referees for careful reading of the 
manuscript and their valuable suggestions that helped to improve the paper in its present 
form. 
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