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1. INTRODUCTION 

The notion of second order duality was first introduced by Mangasarian [15]. 
The motivation behind the construction of a second order dual was the applicability in the 
development of algorithms for certain problems. The second order dual has 
computational advantage over the first order dual as it provides a tighter bound for the 
value of the objective function when approximations are used. One more advantage of 
second order duality is that, if a feasible point for the problem is provided and first order 
duality does not hold then, one can use a second order dual to get a lower bound for the 
value of primal objective function [13]. Recently, several authors [1, 2 and 14] have 
studied second order duality for various classes of optimization problems.  
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Under the assumption that means, variances and covariances of the random 
variables are known, Sinha [18] established a way that a stochastic linear programming 
problem leads to a deterministic nonlinear programming problem, where the functions 
involve square roots of positive semi-definite quadratic forms. It is generally difficult to 
solve such problems because of non-differentiability of square root terms involved. 
However, it is useful to study the duality aspects of such problems, which may easily 
lead to the solution of these problems. First order duality for various forms of scalar as 
well as multiobjective optimization problems, involving square root terms of certain 
positive semi-definite quadratic forms have been studied by many authors (see, for 
example [6,7,14,16,18 and 19]). Practical applications of these problems can be found in 
multi-facility location problems and in portfolio selection problem.   

In this paper, a second order Mond-Weir type dual for a multiobjecitve 
optimization problem involving square root terms in objectives as well as the 
constraining functions is presented, and duality results are established. For this purpose, 
we introduce classes of generalized higher order η – bonvex and related functions. The 
results of this paper are more general than the corresponding results already existing in 
literature [4, 15]. 

2. PRELIMINARIES 

Let X be a nonempty subset of nR endowed with the Euclidean norm || ||⋅ .  

Definition 2.1 A function :f X R→  is said to be locally Lipschitz if for each bounded 
subset B of X, there exists a constant 0l ≥  such that  

( ) ( ) || ||f x f y l x y− ≤ − , 

for all ,x y B∈ . 

Definition 2.2 The directional derivative of a function :f X R→  at a point x B∈  in 

the direction nd R∈  is defined as 

0

( ) ( )( ; ) lim f x d f xf x d
α

α
α→

+ −′ = . 

Definition 2.3 ([10, 17]) A function :f X R→  is said to be quasi-differentiable at a 

point x if f possesses a directional derivative at x X∈  for each direction nd R∈  such 
that ( ; )f x d′  is convex with respect to d. 

It is known that if ( ), 1,2,...,if x i p=  are differentiable, then the functions 

1 2( ) ( ) ( )t
i i ix f x x B xθ = + , 1, 2,...,i p=  

are quasi-differentiable.  

Let 0( )L x  be the set of directions, i.e. 
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{ }0( ) : ( ; ) 0, 1, 2,...,n
iL x d R x d i pθ ′= ∈ < =  

and 0( )XT x be the tangent cone to X at x0, i.e. 

{ }0 0( ) : { } , 0,n
X k k k kT x d R d d x d Xα α= ∈ ∃ → → + ∈

 

Lemma 2.1 [3] Let ( )1( ) ( ),..., ( )px x xθ θ θ= , where :i X Rθ → , 1,2,...,i p=  are locally 

Lipschitz and possess directional derivatives at each point in each direction. If 0x  is a 
strict minimizer of ( )xθ  on X, then 

0 0( ) ( )XL x T x φ∩ = . 

Remark 2.1 [3] Let 0( )i xδθ  be the sub-differential of function , 1, 2,...,i i pθ =  at 0x , 

then we have for each 0( ), 1, 2,...,i iw x i pδθ∈ =  

0( ; )t
i iw d x dθ ′≤  

for all nd R∈ . 

From lemma 2.1, it follows that for all 0( ), 1, 2,...,i iw x i pδθ∈ =  the system 

0, 1,2,...,iw d i p′ < =  

has no solution in 0( )XT x .               

We shall need the following generalized Schwarz inequality in the sequel. 

Lemma 2.2 [11] Let B be an n n×  symmetric positive semi-definite matrix and , nx z R∈ , 
then  

1 2 1 2( ) ( ) ( ) ,t t tx Bz x Bx z Bz≤   

where equality holds if and only if Bx Bzλ=  for some 0λ ≥ . Evidently, if 1 2( ) 1,tz Bz =  
we have 1 2( ) ( ) .t tx Bz x Bx≤  

Lemma 2.3 [9] Let 1 2( ) ( )tx x Bxϕ = . Then ( )xϕ  is convex and ( )w xδϕ∈  if and only if 
1 2, 1, ( )t t tw Bz z Bz x Bz x Bx= ≤ = .  

Multiobjective optimization problems are encountered in many areas of human 
activity including engineering and management. For many interesting applications and 
development of multiobjective optimization, one may refer to [8]. In this paper, we study 
the following multiobjective optimization problem;  

(MOP) Minimize 1( ( ),..., ( ))px xθ θ  
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             subject to ( ) 0, 1, 2,..., .jG x j q≤ =  

Where 1 2( ) ( ) ( ) , 1, 2,...,t
i i ix f x x B x i pθ = + =  

 
1 2( ) ( ) ( ) , 1, 2,..., .t

j j jG x g x x C x j q= + =  

: , 1, 2,..., , : , 1, 2,...i jf X R i p g X R j q→ = → =  are twice differentiable; and 
, 1,2,...,iB i p=  and , 1,2,...,jC j q=  are n n×  positive semi-definite symmetric matrices.  

The functions ( ), 1,2,...,i x i pθ =  and ( ), 1, 2,...,jG x j q=
 
are quasi-differentiable 

functions. Thus (MOP) may be referred as a quasi-differentiable multiobjective 
optimization problem. Let S  be the set of all feasible solutions of (MOP). Here 
minimization means finding a strict minimizer.  

Definition 2.4 A point 0x S∈ is said to be strict minimizer for (MOP) if for all x S∈  
0( ) ( ),x xθ θ</  

that is there exists no x S∈ such that  
0( ) ( ).x xθ θ<  

To explore the applicability of optimality and duality results several authors   
[6,7,14,16,18 and 19]  have studied the above type of multiobjective optimization 
problems by weakening the convexity assumptions. We move a step further in this 
direction and introduce the classes of generalized higher order η -bonvex and related 
functions as follows: 

Let , : nX X Rη ψ × →  be vector valued functions, :b X X R+× → and 
: R Rφ → are real valued functions. 

Definition 2.5 The function : X Rθ →  is said to be generalized η -bonvex of order 

( 1)m ≥  at 0x S∈ with respect to mappings ,b φ , η and ψ  if there exist a vector nr R∈  
and a constant k R∈ such that for all x S∈  

0 0 2 01( , ) [ ( ) ( ) ( ) ]
2

tb x x x x r x rφ θ θ θ− + ∇ ≥   

0 0 2 0 0( , )[ ( ) ( ) ] || ( , ) || .t mx x x x r k x xη θ θ ψ∇ +∇ +  
Remark 2.2 If 0,k > then the function θ  is called strongly generalized η - bonvex of 
order .m  If 0k < , then the function θ  is called weakly generalized η - bonvex of order 
m . If 0k = and in addition 1,b Iφ= =  (identity map), we obtain the definition of  η – 
bonvex functions [4]. 
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Remark 2.3 If 0, 0r k= = , we obtain the definition of univexity [5]. If 
1, 0, 0b k p= = = and Iφ = , then the definition of generalized higher order η – 

bonvexity reduces to the definition of invexity [12]. 

We now present the following obvious implications of the above definition. 

Definition 2.6 The function : X Rθ →  is said to be generalized η −  pseudo bonvex of 

order ( 1)m ≥  at 0x S∈ with respect to mappings ,b φ , η and ψ  if there exist a vector 
nr R∈ and a constant k R∈ such that for all x S∈  

0 0 2 0 0( , )[ ( ) ( ) ] || ( , ) || 0t mx x x x r k x xη θ θ ψ∇ +∇ + ≥  

implies 0 0 2 01( , ) [ ( ) ( ) ( ) ] 0
2

tb x x x x r x rφ θ θ θ− + ∇ ≥  

or equivalently 0 0 2 01( , ) [ ( ) ( ) ( ) ] 0
2

tb x x x x r x rφ θ θ θ− + ∇ <  

implies 0 0 2 0 0( , )[ ( ) ( ) ] || ( , ) || 0t mx x x x r k x xη θ θ ψ∇ +∇ + <  

Definition 2.7 The function : X Rθ →  is said to be generalized η -strictly pseudo 

bonvex of order ( 1)m ≥  at 0x S∈ with respect to mappings ,b φ , η and ψ  if there exist a 
vector nr R∈  and a constant k R∈  such that for all x S∈  

0 0 2 0 0( , )[ ( ) ( ) ] || ( , ) || 0t mx x x x r k x xη θ θ ψ∇ +∇ + ≥  

implies 0 0 2 01( , ) [ ( ) ( ) ( ) ] 0
2

tb x x x x r x rφ θ θ θ− + ∇ > . 

Definition 2.8 The function : X Rθ →  is said to be generalized η - quasi bonvex of 

order ( 1)m ≥ at 0x S∈ with respect to mappings ,b φ , η and ψ  if there exist a vector 
nr R∈  and a constant k R∈  such that for all x S∈  

0 0 2 01( , ) [ ( ) ( ) ( ) ] 0
2

tb x x x x r x rφ θ θ θ− + ∇ ≤  

implies 0 0 2 0 0( , )[ ( ) ( ) ] || ( , ) || 0t mx x x x r k x xη θ θ ψ∇ +∇ + ≤ . 

3. OPTIMALITY 
We now derive the following necessary optimality conditions for (MOP). 

Theorem 3.1 If 0x is a strict minimizer for (MOP) and assume that IG  satisfies the 

Abadie constraint qualification at 0x , where 0{ : ( ) 0}jI j G x= = . Then, there exist 

, ,q n
jy R v R+∈ ∈  1, 2,... ,j q= pRλ +∈ , 

1

1
p

i
i

λ
=

=∑  and , 1, 2,...n
iz R i p∈ =  such that 
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 0 0

1 1 1 1
( ) ( ) 0

p p q q

i i i i i j j j j j
i i j j

f x B z y g x y C vλ λ
= = = =

∇ + + ∇ + =∑ ∑ ∑ ∑  (3.1) 

0( ) 0, 1, 2,...,j jy G x j q= =  (3.2) 

1, 1,...t
i i iz B z i p≤ =   (3.3) 

( ) 1, 1, 2,...,t
j j jv C v j q≤ =   (3.4) 

0 0 0 1 2( ) , 1,...,t t
i i ix B z x B x i p= =    (3.5) 

0 0 0 1 2( ) , 1, 2,...,t t
j j jv C x x C x j q= =   (3.6) 

 

Proof Since , 1,2,...,if i p=  are differentiable functions, , 1,2,...,iB i p=  are positive 
semi-definite matrices, we have from [9] that the functions 

1 2( ) ( ) ( ) , 1, 2,...,t
i i ix f x x B x i pθ = + =  are quasi-differentiable, hence locally Lipschitz 

and have directional derivatives ( ; )i x dθ ′  for all nd R∈ , 1, 2,...,i p= . Therefore 
, 1,2,...,i i pθ =  satisfy the conditions of Lemma 2.1.  

From Lemma 2.1 and Abadie constraint qualification, it follows that the system 

0, 1, 2,...,t
i d i pρ < =  

0, ,t
jw d j I≤ ∈  

is inconsistent for all 0( ), 1, 2,...,i i x i pρ δθ∈ =  and 0( ),j jw G x j Iδ∈ ∈ . Therefore by 

basic alternative theorem [3], there exists 0, 1,2,...,i i pλ ≥ =  not all zero and 
0,jy j I≥ ∈  such that: 

1

0
p

i i j j
i j I

y wλ ρ
= ∈

+ =∑ ∑  (3.7) 

for all 0
1( ,..., ) ( )p xρ ρ ρ δθ= ∈  and 0( ),j jw G x j Iδ∈ ∈ . Setting 0jy =  for all j not in 

I, we can rewrite (3.7) as 

1 1

0
p q

i i j j
i j

y wλ ρ
= =

+ =∑ ∑  (3.8) 

0( ) 0, 1, 2,...,j jy G x j q= =  (3.9) 

But 0( ), 1, 2,...,i x i pδθ =  is the set 
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{ }0 0 0 0 1 2( ) : 1, ( ) ,t t t
i i i i i i i i if x B z z B z x B z x B x∇ + ≤ =

 (3.10) 

for some n
iz R∈ . Similarly 0( )jG xδ  is the set 

{ }0 0 0 0 1 2( ) : 1, ( ) , ,t t t
j j j j j j j j jg x C v v C v v C x x C x j I∇ + ≤ = ∈

 (3.11) 

Hence from (3.10) and (3.11), we have 

0 0

1 1 1 1

( ) ( ) 0
p p q q

i i i i i j j j j j
i i j j

f x B z y g x y C vλ λ
= = = =

∇ + + ∇ + =∑ ∑ ∑ ∑  

0( ) 0, 1, 2,...,j jy G x j q= =  

1, 1,...t
i i iz B z i p≤ =     

( ) 1, 1, 2,...,t
j j jv C v j q≤ =      

0 0 0 1 2( ) , 1,...,t t
i i ix B z x B x i p= =           

0 0 0 1 2( ) , 1, 2,...,t t
j j jv C x x C x j q= = .        

4. DUALITY 
We now propose the following second order Mond-Weir type dual for (MOP).  

(MD)Maximize 2
1 1 1 1

1( ( ) ( ) ,...,
2

t tf u z B u r f u r+ − ∇  

21( ) ( ) )
2

t t
p p p pf u z B u r f u r+ − ∇  

subject to  

2 2

1 1
( ( ) ( ) ) ( ( ) ( ) ) 0

p q

i i i i i j j j j j
i j

f u B z f u r y g u C v g u rλ
= =

∇ + +∇ + ∇ + +∇ =∑ ∑  (4.1) 

21( ( ) ( ) ) 0
2

t t
j j j j jy g u v C u r g u r+ − ∇ ≥   (4.2)    

1, 1,...t
i i iz B z i p≤ =  (4.3) 

( ) 1, 1, 2,...,t
j j jv C v j q≤ =

 
(4.4) 

1
0, 1,..., , 0, 1,..., , 1

p

j i i
i

y j q i pλ λ
=

≥ = ≥ = =∑
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Theorem 4.1 (Weak duality) Let x  be feasible for (MOP) and ( , , , , , )u y z v rλ  be feasible 
for (MD). Further suppose that  

i. ( (.) )t
i i if B z+ ⋅ , 1,2,...,i p= be generalized η – pseudo bonvex of order m at 

u with respect to ,i ib φ , η and ψ , where 0ib > for all 1,2,...,i p= .  

ii. ( ( ) )t
j j j jy g C v⋅ + ⋅ , 1, 2,...,j q= be generalized η – quasi bonvex of order m 

at u with respect to ,j jb φ , η and ψ . 

iii. 0 ( ) 0, 1,...,ja a j qφ≤ ⇒ ≤ =   and  

0 ( ) 0, 1,...,ia a i pφ< ⇒ < =  

iv. 
1 1

0
p q

i i j
i j

k kλ
= =

+ ≥∑ ∑ . 

Then 

1 2 21( ) ( ) ( ) ( )
2

t t t
i i if x x B x f u u B z r f u r+ < + − ∇/  (4.5) 

Proof Let x be any feasible solution for (MOP) and ( , , , , , )u y z v rλ  be any  feasible 
solution  for (MD). Then we have  

1 2 21( ( ) ( ) ) ( ( ) ( ) ),
2

t t t
j j j j j j j jy g x x C x y g u v C u r g u r+ ≤ + − ∇  1,...,j q=   

Using relation (4.4) and Lemma 2.2, we have 

21( ( ) ) ( ( ) ( ) ),
2

t t t
j j j j j j j j jy g x v C x y g u v C u r g u r+ ≤ + − ∇   1,...,j q= , 

which can be rewritten as  

21( ( ) ) ( ( ) ) ( ) 0,
2

t t t
j j j j j j j j j jy g x v C x y g u v C u r y g u r+ − + + ∇ ≤ 1, 2,...,j q=  (4.6) 

Since 0 ( ) 0ja aφ≤ ⇒ ≤  and ( , ) 0, 1,..., ;jb x u j q≥ =  (4.6) yields  

21( , ) [ ( ( ) ) ( ( ) ) ( ) )] 0
2

t t t
j j j j j j j j j j j jb x u y g x v C x y g u v C u r y g u rφ + − + + ∇ ≤  

On using generalized η – quasi bonvexity of order m at u for ( ( ) )t
j j j jy g C v⋅ + ⋅  with 

respect to ,j jb φ , η and ψ , 1, 2,...,j q= , we have  

2( , )[ ( ) ( ) ] || ( , ) || 0, 1,...,t m
j j j j j j j jx u y g u y C v y g u r k x u j qη ψ∇ + +∇ + ≤ = . 

The above inequality yields  
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2

1 1
( , )[ ( ( ) ( ) )] ( ) || ( , ) ||

q q
t m

j j j j j j j j
j j

x u y g u y C v y g u r k x uη ψ
= =

∇ + +∇ ≤ −∑ ∑   (4.7) 

On using (4.1), the inequality (4.7) yields  

2

1 1
( , )[ ( ( ) ( ) ] ( ) || ( , ) ||

p q
t m

i i i i i j
i j

x u f u B z f u r k x uη λ ψ
= =

∇ + +∇ ≥∑ ∑  (4.8) 

Contrary to the result of the theorem, let  

1 2 21( ) ( ) ( ) ( )
2

t t t
i i i i i if x x B x f u u B z r f u r+ < + − ∇ , 1,...,i p=  

Using lemma 2.2, we have 

21( ) ( ) ( )
2

t t t
i i i i i i if x x B z f u u B z r f u r+ < + − ∇ , 1,...,i p=   (4.9) 

Since 0 ( ) 0ia aφ< ⇒ <  and 0ib >  for all 1,..., ,i p=  the inequalities in (4.9) lead to  

21( , ) [( ( ) ) ( ) ( ) ] 0, 1,..,
2

t t t
i i i i i i i i ib x u f x x B z f u u B z r f u r i pφ + − − + ∇ < =  

From generalized η – pseudo bonvexity of order m for ( ( ) )t
i i if B z⋅ + ⋅  at u with respect to 

,i ib φ , η and ψ , 1, 2,...,i p= , we have  

 2( , )[ ( ) ( ) ] || ( , ) || 0, 1,...,t m
i i i i ix u f u B z f u r k x u i pη ψ∇ + +∇ + < =  

Since 0, 1,2,...,i i pλ ≥ =  and 
1

1
p

i
i

λ
=

=∑ , we obtain 

2

1 1
( , )[ ( ( ) ( ) )] ( ) || ( , ) || 0

p p
t m

i i i i i i i
i i

x u f u B z f u r k x uη λ λ ψ
= =

∇ + +∇ + <∑ ∑ . 

Using hypothesis (iv), the above inequality yields  

2

1 1
( , )[ ( ( ) ( ) )] ( ) || ( , ) ||

p q
t m

i i i i i j
i j

x u f u B z f u r k x uη λ ψ
= =

∇ + +∇ <∑ ∑ , 

a contradiction to (4.8).  

Hence 1 2 21( ) ( ) ( ) ( ) .
2

t t t
i i if x x B x f u u B z r f u r+ < + − ∇/  

Theorem 4.2 (strong duality) Let 0x be a strict minimizer for (MOP) and assume that 
Abadie constraint qualification holds at 0x . Then, there exist 0 ,pRλ +∈  

0 0 0, ,q n n
i jy R z R v R+∈ ∈ ∈ such that 0 0 0 0 0 0( , , , , , 0)x y z v rλ =  is feasible for (MD) and 

the corresponding values of (MOP) and (MD) are equal. Further, if the assumptions of 
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weak duality Theorem 4.1 hold, then 0 0 0 0 0 0( , , , , , 0)x y z v rλ =  is a strict maximizer for 
(MD).  

Proof Since 0x is a strict minimizer for (MOP) and Abadie constraint qualification is 
satisfied at 0x , then by Theorem 3.1 there exist 0 0 0 0, , ,p q n n

i jR y R z R v Rλ + +∈ ∈ ∈ ∈ , such 
that  

0 0 0 0 0 0 0 0

1 1 1 1
( ) ( ) 0

p p q q

i i i i i j i j j j
i i j j

f x B z y g x y C vλ λ
= = = =

∇ + + ∇ + =∑ ∑ ∑ ∑
0 0 0 0 1 2( ( ) ( ) ) 0, 1,...,t
j j jy g x x C x j q+ = =  

0 0 1, 1,...t
i i iz B z i p≤ =         

0 0( ) 1, 1, 2,...,t
j j jv C v j q≤ =   

0 0 0 0 1 2( ) , 1,...,t t
i i ix B z x B x i p= =       

0 0 0 0 1 2( ) , 1, 2,...,t t
j j jv C x x C x j q= =    

0 0 0

1
0, 0, 1.

p

i
i

y λ λ
=

≥ ≥ =∑  

Hence 0 0 0 0 0 0( , , , , , 0)x y z v rλ =  is feasible for (MD) and the corresponding 
values of objective functions are equal. Weak duality Theorem 4.1 implies that 

0 0 0 0 0 0( , , , , , 0)x y z v rλ =  is a strict maximizer for (MD).  

Theorem 4.3 (strict converse duality) Let 0x and 0 0 0 0 0 0( , , , , , )u y v z rλ  be strict extrema 
for (MOP) and (MD) respectively, such that  

0 0 0 0 1 2 0 0 0 0 0 2 0 0

1 1

1( ( ) ( ) ) ( ( ) ( ) )
2

p p
t t t

i i i i i i i i
i i

f x x B x f u u B z r f u rλ λ
= =

+ = + − ∇∑ ∑  (4.10) 

Further, suppose that   

i. 0 0( ( ) )t
j j j jy g C v⋅ + ⋅  be generalized η – quasi bonvex of order m with respect 

to ,j jb φ , η and ψ , 1, 2,...,j q= at 0u . 

ii. 0 0

1
( ( ) )

p
t

i i i i
i

f B zλ
=

⋅ + ⋅∑  be generalized η – strict pseudo bonvex of order m 

with respect to ,b φ , η and ψ at 0u . 

iii.  0 ( ) 0, 1,...,ja a j qφ≤ ⇒ ≤ =  and ( ) 0 0a aφ > ⇒ > . 
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iv. 
1

0
q

j
j

k k
=

+ ≥∑ . 

Then 0 0x u= , that is, 0u is a strict minimizer for (MOP).  

Proof Suppose that 0 0x u≠ . 

Since 0x  is feasible for (MOP) and 0 0 0 0 0 0( , , , , , )u y v z rλ  is feasible for (MD), we have 
for 1,..., ,j q=  

0 0 0 0 1 2 0 0 0 0 0 2 0 01( ( ) ( ) ) ( ( ) ( ) ) 0.
2

t t t
j j j j j j j jy g x x C x y g u v C u r g u r+ − + − ∇ ≤   

Using Lemma 2.2, for 1,...,j q= , we have 

0 0 0 0 0 0 0 0 0 2 0 01( ( ) ) ( ( ) ( ) ) 0
2

t t t
j j j j j j j j jy g x v C x y g u v C u r g u r+ − + − ∇ ≤  (4.11) 

Since 0 0( , ) 0jb x u ≥ , inequalities in (4.11) along with hypothesis (iii) yields  

0 0 0 0 0 0 0 0 0 0 0 2 0 0 01( , ) [ ( ( ) ) ( ( ) ) ( ) )] 0
2

t t t
j j j j j j j j j j j jb x u y g x v C x y g u v C u r y g u rφ + − + + ∇ ≤

 

On using generalized η – quasi bonvexity of order m at 0u for 0 0( ( ) )t
j j j jy g C v⋅ + ⋅  with 

respect to ,j jb φ , η and ψ , 1, 2,...,j q= , we have  

0 0 0 0 0 0 2 0 0 0 0 0( , )[ ( ) ( ) ] || ( , ) || 0, 1,...,t m
j j j j j j j jx u y g u y C v y g u r k x u j qη ψ∇ + +∇ + ≤ =  

The above inequality yields 

 0 0 0 0 0 0 2 0 0 0 0 0

1 1
( , )[ ( ( ) ( ) )] ( ) || ( , ) ||

q q
t m

j j j j j j j j
j j

x u y g u y C v y g u r k x uη ψ
= =

∇ + +∇ ≤ −∑ ∑ . 

Using the dual constraint (4.1) in the above inequality, we have  

0 0 0 0 0 2 0 0 0 0

1 1
( , )[ ( ( ) ( ) ] ( ) || ( , ) ||

p q
t m

i i i i i j
i j

x u f u B z f u r k x uη λ ψ
= =

∇ + +∇ ≥∑ ∑  

Using hypothesis (iv), we have 

0 0 0 0 0 2 0 0 0 0

1

( , )[ ( ( ) ( ) ] || ( , ) || 0
p

t m
i i i i i

i

x u f u B z f u r k x uη λ ψ
=

∇ + +∇ + ≥∑ . 
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Now generalized η – strict pseudo bonvexity of order m at 0u for the function 
0 0

1
( ( ) )

p
t

i i i i
i

f B zλ
=

⋅ + ⋅∑  with respect to ,b φ , η and ψ  implies 

0 0 0 0 0 0 0 0 0 0

1 1
( , ) [ ( ( ) ) ( ( ) )

p p
t t

i i i i i i i i
i i

b x u f x x B z f u u B zφ λ λ
= =

+ − +∑ ∑
 

0 0 2 0 0

1

1 ( ( )) ] 0
2

p
t

i i
i

r f u rλ
=

+ ∇ >∑ . 

Since 0 0( , ) 0b x u > , the above inequality along with hypothesis (iii) yields 

0 0 0 0 0 0 0 0 0 2 0

1 1

1( ( ) ) ( ( ) ( ) )
2

p p
t t t

i i i i i i i i i
i i

f x x B z f u u B z r f u rλ λ
= =

+ > + − ∇∑ ∑ , 

which on using Lemma 2.2 contradicts (4.10).  

5. A FRACTIONAL CASE 
We now consider the following quasi-differentiable multiobjective fractional 

programming problem (MOFP) in which the components of the objective functions are 
the ratios of the functions that are the sums of differentiable terms and square root terms 
of certain positive semi-definite quadratic forms, whereas the constraining functions are 
the same as those for (MOP). 

(MOFP) Maximize 
1 21 2

1 1
1 2 1 2

1 1

( ) ( )( ) ( )
,...,

( ) ( ) ( ) ( )

tt
p p

t t
p p

f x x B xf x x B x
h x x D x h x x D x

⎛ ⎞−−⎜ ⎟
⎜ ⎟+ +⎝ ⎠

 

 subject to ( ) 0, 1, 2,...,jG x j q≤ = , 

where 1 2( ) ( ) ( ) , 1, 2,..., .t
j j jG x g x x C x j q= + =  

: , : , 1, 2,...,i if X R h X R i p→ → =  and : , 1, 2,...jg X R j q→ =  are twice differentiable; 
and , , 1,2,...,i iB D i p=  and , 1, 2,...,jC j q=  are n n×  positive semi-definite symmetric 
matrices. Let S  be the set of all feasible solutions of (MOFP). We also assume that 

1 2( ) ( ) 0t
i if x x B x− ≥  and 1 2( ) ( ) 0t

i ih x x D x+ > , 1, 2,...,i p= . Here minimization means 
finding strict minimizer. 

We present the following two duality models for (MOFP): 

(MD1) Minimize 1( ,..., )pσ σ  

 subject to 2 2

1

[ ( ) ( ) ( ) ( ) ]
p

i i i i i i i i i i i i
i

f u h u B z D w f u r h u rλ σ σ σ
=

∇ − ∇ − − +∇ − ∇∑   
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2

1

( ( ) ( ) ) 0
q

j j j j j
j

y g u C v g u r
=

− ∇ + +∇ =∑
 

(5.1) 

21( ) ( ) ( ( ) ( ))
2

t t t
i i i i i i i i i i if u h u u B z u D w r f u h u rσ σ σ− − − − ∇ −

 
 

2

1 1

1( ( ) ) ( ( )) 0
2

m m
t t

j j j j j j
j j

y g u v C u r y g u r
= =

− + + ∇ ≤∑ ∑ , 1, 2,...,i p=  (5.2)  

1, 1, 1,...t t
i i i i i iz B z w B w i p≤ ≤ =  

( ) 1, 1, 2,...,t
j j jv C v j q≤ =  

( )
0, 1,2,...,

( )

t
i i i

i t
i i i

f u u B z
i p

h u u D w
σ

−
= ≥ =

+  
(5.3) 

1
0, 1,..., , 0, 1,..., , 1

p

j i i
i

y j q i pλ λ
=

≥ = ≥ = =∑  

(MD2) Minimize 1( ,..., )pσ σ  

 subject to 2 2

1

[ ( ) ( ) ( ) ( ) ]
p

i i i i i i i i i i i i
i

f u h u B z D w f u r h u rλ σ σ σ
=

∇ − ∇ − − +∇ − ∇∑   

2

1

( ( ) ( ) ) 0
q

j j j j j
j

y g u C v g u r
=

− ∇ + +∇ =∑   (5.4) 

21( ) ( ) ( ( ) ( )) 0,
2

t t t
i i i i i i i i i i if u h u u B z u D w r f u h u rσ σ σ− − − − ∇ − ≤  

1, 2,...,i p=  

21( ( ) ) ( ) 0
2

t t
j j j j j jy g u v C u r y g u r+ − ∇ ≥

 
 (5.5) 

1, 1, 1,...t t
i i i i i iz B z w B w i p≤ ≤ =  

( ) 1, 1, 2,...,t
j j jv C v j q≤ =  

( )
0, 1,2,...,

( )

t
i i i

i t
i i i

f u u B z
i p

h u u D w
σ

−
= ≥ =

+
 

1
0, 1,..., , 0, 1,..., , 1

p

j i i
i

y j q i pλ λ
=

≥ = ≥ = =∑ . 
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Duality results between (MOFP) and its corresponding two duals can be 
established on the same lines as those obtained in the case of multiobjective optimization 
problem (MOP). 

6. CONCLUSION 
In this paper, we have studied a second order Mond-Weir type dual for a quasi-

differentiable programming problem with square root terms in the objective as well as in 
the constraining functions. For this purpose, we have introduced the notion of generalized 
higher order η – bonvexity. We have also considered a fractional case. The results can 
easily be extended to second order Mangasarian type dual. It would be interesting to 
extend the results for other classes of optimization problems, viz. minimax programming 
problem and minimax fractional programming problem. 

Acknowledgement : The authors would like to thank Prof. Davinder Bhatia (Retd.) and 
Dr. Pankaj Gupta, Department of Operational Research, University of Delhi for their 
keen interest and continuous help throughout the preparation of this article.  

 

REFERENCES 

[1] Ahmad, I., and Husain, Z., “Second order (F, α, ρ, d) – convexity and duality in multiobjective 
Programming”, Inform. Sci., 176 (2006) 3094-3103.  

[2] Ahmad, I., Husain, Z., and Al-Homidan, S., “Second order duality in nondifferentiable 
fractional Programming”, Nonlinear Anal. Real World Appl., 12 (2011) 1103-1110. 

[3] Bazaraa, M.S., Sherali, H.D., and shetty, C.M., Nonlinear programming: Theory and 
Algorithms, John Wiley and Sons, New York, 1993. 

[4] Bector, C. R., and Chandra, S., “Generalized bonvexity and higher order duality for fractional 
Programming”, Opsearch, 24 (1987) 143-154. 

[5] Bector, C. R., Suneja, S. K., and Gupta, S., “Univex functions and univex nonlinear 
programming”, Proceedings of the Administrative Sciences Association of Canada, (1992) 
115-124. 

[6] Bhatia, D., “A note on duality theorem for nonlinear programming problem”, Management 
Sc., 16 (1970) 604- 606. 

[7] Chandra, S., Craven B. D., and Mond, B., “Generalized concavity and duality with a square 
root term”, Optimization 16 (5) (1985) 653-662. 

[8] Chinchuluun, A., and Pardalos, P. M., “A survey of multiobjective optimization”, Ann. Oper. 
Res., 154 (2007) 29- 50. 

[9] Craven, B.D., and Mond, B., “Sufficient Fritz-John optimization conditions for non- 
differentiable convex programming”, J. Aust. Math. Soc., Series B, 19 (1976) 462-468. 

[10] Craven, B. D., “On quasidifferentiable optimization”, J. Aus. Math. Soc., series A, 41 (1986) 
64-78. 

[11] Eisenberg, E., “Support of a convex function”, Bull. Amer. Math. Soc., 68 (1962) 192-195. 
[12] Hanson, M. A., “On sufficiency of Kuhn Tucker conditions”, J. Math. Anal. Appl., 80 (1981) 

545- 550. 
[13] Hanson, M. A., “Second order invexity and duality in mathematical programming”, Opsearch, 

30 (1993) 313-320. 
[14] Jayswal, A., Kumar, D., and Kumar, R., “Second order duality for nondifferentiable 

multiobjective programming problem involving (F, α, ρ, d) – V – type I functions”, Optim. 
Lett., 4 (2) (2010) 211-226. 



 R.R. Sahay, G. Bhatia / Optimality And Second Order Duality 235 

[15] Mangasarian, O. L., “Second and higher order duality in nonlinear programming”, J. Math. 
Anal. Appl., 51 (1975) 607- 620. 

[16] Mond, B., Husain, I., and Prasad,  M.V.D., “Duality for a class of nondifferentiable multiple 
objective programming problems”, J. Inf. Opt. Sciences, 9 (3) (1988) 331-341. 

[17] Schechter, M., “More on subgradient duality”, J. Math. Anal. Appl., 71 (1979) 251-262. 
[18] Sinha, S. M., “A duality theorem for nonlinear programming”, Management Sc., 12 (1966) 

385- 390. 
[19] Zhang, J., and Mond, B, “Duality for a nondifferentiable programming problem”, Bull. Aus. 

Math. Soc. 55 (1997) 29-44. 
 

 


