
Yugoslav Journal of Operations Research
23 (2013) Number 3, 327-341
DOI: 10.2298/YJOR121101007J

LANGUAGES FOR MODEL-DRIVEN DEVELOPMENT OF

USER INTERFACES: REVIEW OF THE STATE OF THE
ART

Mlađan JOVANOVIĆ
Faculty of Electrical Engineering, University of Belgrade, Serbia

mladjan@rcub.bg.ac.rs
Dušan STARČEVIĆ

Faculty of Organizational Sciences, University of Belgrade, Serbia
starcev@fon.bg.ac.rs

Zoran JOVANOVIĆ
Faculty of Electrical Engineering, University of Belgrade, Serbia

zoran@rcub.bg.ac.rs

Received: November 2012 / Accepted: February 2013

Abstract: In model-driven user interface development, several models are used to
describe different aspects of user interface when level of detail varies. The relations
between the models are established through model transformations. The Model Driven
Engineering (MDE) approach has been proposed in software engineering domain in order
to provide techniques and tools to deal with models in the automated way. In this paper,
we will review existing user interface languages that gain wider acceptance, and discuss
their applicability for model-driven user interface development.

Keywords: User interface, model-driven development, user interface description languages,
transformation languages.

МSC: 68N15, 68N19, 68T35, 68U35.

1. INTRODUCTION

Model-driven user interface development (MDUID) uses models to describe
static and dynamic system properties on different levels of abstractions, and applies

 M. Jovanović, D.Starčević, Z. Jovanović / Languages For Model-Driven Development 328

transformations of one model to another. Model Driven Architecture (MDA) is an
official proposal for system specification and interoperability based on the use of
hierarchically organized formal models [1]. However, Human-Computer Interaction
(HCI) community still has not reached general consensus on models for engineering user
interfaces. Therefore, classical MDA-approaches have been lacking solid foundation for
user interface development, although some UI development methodologies have been
aligned with the OMG (Object Management Group) standards, as for example the UML-
based architecture Wisdom [2] and an MDA compliant environment around UsiXML-
based tools [3]. The Cameleon Reference Framework [4] proposes types of UI models for
different levels of abstractions, namely the task model, the abstract user interface (AUI)
model, the concrete user interface (CUI) model and the final user interface (FUI). As in
the MDA, transformation tools are used to move from one layer of abstraction to another
or to adapt these models to different contexts of use. In practice, we can find a number of
approaches for model-driven user interface development. Each of them is specific in
terms of involved models, their underlying structure and tools for their manipulation.
Here we can speak about different languages used for UI description and transformations
between UI models, namely UIDL (User Interface Description Language) and UITL
(User Interface Transformation Language).
For this reason, we will review several technologies and discuss their applicability for
MDUID. This paper proposes a comparative survey of languages for MDUID with the
emphasis on UITLs. The goal of the paper is not to identify the best technology for UI
development, but to analyse existing languages and help UI designers to choose the most
suitable technology in the specific context of development.

The paper is organized as follows. Section 2 reviews existing UIDLs. Section 3
describes previous works in the field of MDUID and gives a comparative survey on
UITLs. Section 4 concludes the paper.

2. USER INTERFACE DESCRIPTION LANGUAGES

User interface description languages are closely related to programming styles
and can be divided in two categories – declarative and imperative. Declarative languages
indicate what to show on user interface, while imperative tell how to show user interface
component. The key advantage of declarative programming is that you just say what you
want, and leave it to an automatic tool to figure out how to produce it. That contrasts with
conventional imperative programming, where the programmer has to say, step-by-step,
how to reach the desired state. Current declarative languages commonly take forms of
markup specifications such as HTML, XML and related languages. Imperative languages
include conventional programming languages such as procedural, object-oriented and
script languages. Using particular user interface description language is determined by
the purpose and application domain of the software system, and also depends on
individual preferences of user interface developer. Web environment usually imposes
usage of declarative languages. This assumes the existence of an automatic algorithm,
built into every web browser, that constructs the user interface from particular language
specification. Desktop environments mainly use imperative languages for user interface
construction. The latest trend in development of user interface description languages is a
hybrid solution where presentation elements of the interface are described by using
declarative constructions, while behavior is defined in imperative blocks. In this way, it is

 M. Jovanović, D.Starčević, Z. Jovanović / Languages For Model-Driven Development 329

possible to achieve a consistent view and behavior across various Web and desktop
platforms. Two most prominent examples of hybrid approach to user interface
description language specification are Adobe FLEX and Microsoft WPF (Windows
Presentation Foundation) technologies.

Several UIDLs have been developed in last two decades. Most of them are
XML-based. As pointed out in [5], the main reasons for emergence of these UIDLs are:

• Capturing the requirement for user interface as an abstract definition which
remains stable across variety of platforms. Stability refers to interaction
semantics.

• Design of a single user interface for multiple devices and platforms.
• Improvement of reusability of user interface.
• Support to evolution, extensibility and adaptability of user interface.
• Automated generation of a user interface code.
In the rest of the section, we give a short description of user interface

description languages used in both commercial and scientific research domains.
2.1. Declarative languages

Current subsection gives review of the existing declarative languages for user
interface description.
HYPERTEXT

The basic idea behind hypertext is to create a document read not necessarily
linearly but with special connections (i.e. hyperlinks) built in the document’s content that
enable immediate shift to various resources such as pictures and other documents.
However, from its beginning hypertext did not attain widespread use until the advent of
the World Wide Web (WWW) system by Berners-Lee and HTML (HyperText Markup
Language) in 1990s. HTML was the first commercial hypertext language specification.
Some of the elements of the success of the WWW are the simplicity and accessibility of
the HTML language used to design web pages, the ease of making pages accessible on
the Web, and the embedding of pictures with the text. Convenient tools, called Web
browsers, have built in mechanisms for Web page rendering providing access to many of
the existing network resources. Programmers use a very simple HTML textual
specification to design Web pages. Since the initial proposal up to now, various
improvements of the HTML specification have been made in order to achieve more
flexibility and capabilities in authoring of web pages.
XUL

The XML User Interface Language (XUL) is an XML-based markup language
for description of user interfaces. It is mainly used by the Mozilla Foundation in their
products like the Firefox browser or Thunderbird mail client. However, it is increasingly
popular in the area of Web applications. For desktop application Java XUL rendering
components exist, which allow the usage of XUL for Java applications. XUL is used by
several projects involved in development of context-sensitive user interfaces for mobile
[6].

 M. Jovanović, D.Starčević, Z. Jovanović / Languages For Model-Driven Development 330

XIML

XIML (eXtensible Interface Markup Language) is a language for presentation
and manipulation with data related to human-computer interaction, i.e. interaction data
[7]. These data include user tasks, domain objects, dialog elements and presentation
elements. In this way, it is possible to create user interface models on different
abstraction levels. UIFin [8] presents user interface development tool which uses XIML.
Tool employs declarative models of user interfaces. User interface development models
are separated in two layers – design layer and executable layer. Design models are
written in XIML. These models describe semantics of human-computer interaction.
Using XSL transformation tools, they are converted into executable models written in
commercial declarative languages such as MXML and XAML. So, it is possible to
integrate the tool with existing development environments like Adobe Flex Builder and
Microsoft Visual Studio.
UIML

UIML (User Interface Markup Language) is declarative user interface language
aimed to create platform-independent user interfaces [9]. Platform independence
realization is based on using CSS (Cascading Style Sheets) libraries. Language
specification assumes the existence of tags for connecting with application logic
components. Since it was initially proposed, the language has been constantly improved
in order to increase platform independence [10]. MONA project [11] presents software
platform for development of multimodal services for mobile devices. Generic user
interface descriptions are written in UIML, and then transformed in platform-specific
languages such as HTML and VoiceXML.
UsiXML

USIXML (USer Interface eXtensible Markup Language) [12] is a user interface
description language built to develop context-sensitive user interfaces. The language is
described with several metamodels where each describes particular aspect of user
interface according to CAMELEON reference framework for development of context-
sensitive user interfaces [4]. This way, it is possible to specify models of user interfaces
on different abstraction levels. In addition, transformation model is introduced to enable
establishing relations between different models of user interfaces. For the sake of clarity
and simplicity, here we describe concrete user interface model. This model presents
hierarchical decomposition of concrete interaction objects (CIOs) and relations among
them. CIO is defined as a user interface entity perceived by users. Each CIO can be
further refined into subtypes suitable for specific modalities (such as visual or auditory).
Transformations between different models of user interfaces are realized as graph
transformations [29]. In order to enable seamless tool support in development process of
context-sensitive user interfaces, a number of tools based on USIXML has been proposed
(Fig. 1)

 M. Jovanović, D.Starčević, Z. Jovanović / Languages For Model-Driven Development 331

Figure 1. UsiXML user interface development tool. Taken and adapted from [3].

COMMERCIAL DECLARATIVE LANGUAGES

MXML (Macromedia eXtensible Markup Language) [13] is a user interface
description language developed at Adobe company, and intended to be used in RIA (Rich
Internet Applications). Main features of RIA system are rich multimedia content and
intensive interaction with end users. MXML is used in combination with ActionScript
object-oriented language for definition of application logic. This technology has broad
user community, and is used in large number of research and commercial projects [14].

XAML (Microsoft eXtensible Markup Language) is a user interface description
language developed used in Microsoft’s technologies suite [15], [16].
DOMAIN SPECIFIC DECLARATIVE LANGUAGES

PUC (eng. Personal Universal Controler) presents an abstract device for remote
control of household appliances [17]. This is accomplished by appropriate user interface
that enable communication between devices. Prior to communication, description of
aplliances’ functionalities is provided using specific language. Based on given
description, compatible user interface is automatically generated and used to send control
signals to remoted device , and to get feedback information about device’s status. In
order to describe functionalities of devices, which can be found in household,
specification of declarative language is developed. This specification covers around thirty
most common household devices, including mobile and sensing devices controlled with
voice commands. Upon given abstract devices’ descriptions, graphical and speech
interfaces are generated, which can be deployed on handheld computers, smartphones
and desktop computers. The details of language specification can be found in [17].

Latest SOA (Service-Oriented Architecture) environments integrate rich set of
interactive software applications. These environments comprise large number of
interactive devices with various applications encapsulated and presented to end users as a
set of Web services. The appearance of Web services for interactive applications requires
development of suitable interfaces to access them. MARIA (Modelbased lAnguage foR
Interactive Applications) is declarative language for user interface description of Web

 M. Jovanović, D.Starčević, Z. Jovanović / Languages For Model-Driven Development 332

services [18]. The language is used for the development of multiplatform user inrerfaces
while integrating Web services' annotations. It is model-based and has modular structure.
This implies the existence of platform-independent metamodel for abstract description of
user interface and a number of derived platform-specific metamodels. Abstract
description is independent of interaction resources, while concrete description is
determined by modality type (in concrete case visual or auditory). Abstract and concrete
user interface models are described with XML schemas. Transformations are realized in
XSLT, and supported by a set of visual designers. More details about the language can be
found in [18].

2.2. Imperative languages
This section discusses imperative languages for user interface description. The

following text gives brief and comprehensive survey of these languages and the related
tools classified as:

• Window tools and event languages,
• Component systems,
• Object-oriented languages.
The proposed survey presents succinct and modified user interface tools history

appearing elsewhere [19].
WINDOWS TOOLS AND EVENT LANGUAGES

One of the main reasons why windows user interface paradigm has been
successful is because it helps to manage scarce resources. These include both resources
of the computer (e.g., limited number of pixels) and human perceptual and cognitive
resources (such as limited visual field, and attention of a user). By allowing the user to
control a set of overlapping display objects, the display can be made to suit the focus and
attention of the user’s task. By paying careful attention to the properties of humans,
overlapping windows effectively overcome the limited resources of both available screen
space, and human attention and visual field. A number of windows user interface tools
provide facilites for drawing and displaying update (an output model) and accepting user
input (an input model). Early forms of these tools evolved into interactive graphical tools
that allow interactive components to be placed by using a mouse to create windows and
dialog boxes. Examples include Microsoft Visual Studio, NetBeans, Eclipse and others.
An important reason for the success of interactive user interface tools has been their use
of visual means to express concepts of user interface. By allowing interactive
specification of user interface elements (rather than conventional programming code),
aspects of interface implementation are made available to those who are not
programmers.

Event programming models assume that the occurrence of each significant event
(such as user input action) is placed in an event record data structure (often simply called
an event). These events are then sent to individual event handlers which contain the code
necessary for a proper respond to concrete action. Event languages have been successful
because they match well to the direct-manipulation graphical user interface style. These
systems generate events for each user action with the mouse and keyboard, directed to
the appropriate application which then must respond.

 M. Jovanović, D.Starčević, Z. Jovanović / Languages For Model-Driven Development 333

COMPONENT SYSTEMS

Component systems follow the idea of creating software systems by
dynamically combining independently written and compiled components. Later on, this
idea was realized in commercial systems such as Sun JavaBeans and Microsoft OLE and
ActiveX. One of the main reasons for wide adoption of component model is its ability of
modular application development and usage of existing components, while providing
complex functionalities and integration capabilities.
OBJECT-ORIENTED LANGUAGES

From its origins, development of object-oriented programming paradigm has
been strongly related to user interface research. Interactions between these fields are
mutual. For example, Smalltalk programming language is developed with the aim to ease
the development of interactive graphical tools; C++ gain popularity with the need for
programming of graphical user interfaces for Windows operating system. Object-oriented
programming naturally fits in with development of graphical user interfaces. User
interface components, like buttons and menus, are treated as visible objects with their
own state, as well as operations enabling state change. This corresponds to object
definition in object-oriented systems.

3. MODEL-DRIVEN USER INTERFACE DEVELOPMENT

Introducing variety of new technologies leads to more and more complex
interactive systems design. In order to describe these interactive systems, HCI domain
uses specific models and tools. On the other hand, the MDE approach provides
techniques and tools for dealing with models in an automated way in order to generate
executable software. MDE approach is based on models, meta-models and model
transformations and aims to increase productivity of software development. In this
section, we contribute comparative survey of UITLs. However, prior to this, the overview
of the history of model-driven user interface tools is given.

3.1. Model driven user interface tools
In the early 1980’s, the concept of a user interface management system (UIMS)

was an important area in user interface software research community [19]. A UIMS
allows designers to specify interactive behavior in a high-level UIDL that abstracts the
details of input and output devices. This specification would be automatically translated
into an executable program or interpreted at run time to generate a standard
implementation of the user interface. The choice of a UIDL model and methods is a key
ingredient in the design and implementation of a UIMS. The goal of user interface
management systems was not only to simplify the development of user interfaces but also
to promote consistency across applications as well as the separation of user interface
code from application logic. However, with standardization of user interface elements, in
the late 1980’s, on the desktop paradigm, user interface developers were seeking
effective and ergonomic mechanisms to control the user interface look and behavior.
Thus, although a promising concept, the UIMS approach has been challenged in practice
[19].

 M. Jovanović, D.Starčević, Z. Jovanović / Languages For Model-Driven Development 334

Subsequently, in the last decade, proliferation of new devices and HCI
techniques required next generation user interfaces. UI developers were facing new
challenges similar to those GUI developers had been faced with in the early 1980’s.
Thus, as part of the user interface research community effort to address these challenges,
the concept of MDUID reemerged as a promising approach. In addition, significance of
model-driven approaches came from practical reasons. Large scale user interfaces
composed of different technologies were difficult to implement and maintain. In that
regard, detailed models of user interface can benefit implementation and maintenance of
processes. Another important incentive to use model-driven principles in user interface
software research was the need for device-independent user interfaces. In this sense,
significant efforts were made in constructing tools for automatization of user interface
development for various platforms.

When talking about MDUID, we can notice several generations of these
systems. First generation followed the principle of abstracting components in graphical
user interfaces (GUIs). At that time, UI development was based on identifying relevant
aspects of visual type of communication [20]. Next generation tried to include end user
factors in user interface development process. This was achieved by describing HCI
semantics at high abstraction level where task models were introduced as formal
descriptions of user goals when interacting with software system [21]. The emergence of
new devices and interaction techniques, especially mobile ones, brought new challenges
facing user interface research community. An important issue was to preserve usability of
user interface across various platforms and interaction styles. A number of researches
were devoted to multiplatform user interfaces by identifying relevant information
contained in the corresponding models (and languages) [10], [12], [22], [18]. Model-
based approaches have initiated official recommendations in the field1, as well as their
adoption by the industry2. Nevertheless, the existence of specific, non-standardized
languages and tools hampers their integration in standard methodologies for software
development.

Current MDE approaches mostly rely on UML (Unified Modeling Language)
notation to describe models [23]. UML is widely adopted industrial standard used in a
large number of software engineering fields and with rich tool support. On the other
hand, HCI field has brought specific notations for describing user interfaces such as task
models before UML had been proposed. With the advent and the acceptance of UML,
existing notations for user interface descriptions were shaped in UML setting. Thus far,
several UML models for user interface description were introduced [24], [25], [26].

3.2. User interface transformation languages
Model-driven engineering of user interfaces assumes that various models

describe different aspects of user interface. Relations between these models are
established through model transformations. In this way, development of user interfaces
can be seen as transformation chain that starts with models at high level of abstraction
and ends with executable versions of user interface. An extensive taxonomy of model
transformation approaches has been proposed in [27]. Variability of semantics between

1 W3C Working Group For Model-based User Interfaces, http://www.w3.org/2005/Incubator/model-based-ui/
2 Working Group NESSI NEXOF-RA IP, http://www.nexof-ra.eu/

 M. Jovanović, D.Starčević, Z. Jovanović / Languages For Model-Driven Development 335

different models, their formats and tools caused various transformational approaches in
context of model-driven development of user interfaces. Some of them operate directly
upon models, while others work with their derived formats. Some are integrated in
models, while others are applied externally. Finally, some of them are editable and
modifiable, while others are integrated in tools and cannot be modified. Therefore, in the
following sections, we discuss existing transformation tools used for model-driven
development of user interfaces. At the end of the section, we give comparison of
described transformational approaches against selected set of criteria.
GRAPH TRANSFORMATIONS

GT (Graph Transformations) presents a formal, declarative approach for
transformations of models with a structure of directed graph [28]. UsiXML is a candidate
language to use this type of transformation. The models formed with UsiXML are based
on graphs and therefore, the model mappings of UsiXML are specified with graph
transformations consisting of a set of transformation rules [12], [29]. Each rule consists
of a Left Hand Side (LHS) matching a graph G, a Negative Application Condition (NAC)
not matching G and a Right Hand Side (RHS) which is the result of the
transformation.Transformation is performed by searching LHS templates in source model
and replacing found matchings with RHS, while taking into account NAC. The main
limitation of the approach is that it requires models with underlying structure of graph.
ATL

ATL (Atlas Transformation Language) is a hybrid language for transformations
of UML models [30]. In this sense, the user can choose whether to use pure declarative
features of language, or to employ additional imperative. The declarative approach is
realized by the system of matching rules, where a source pattern is described through a
set of source types and constraints on provided types. The target pattern is specified in
similar way by specifying a set of target types together with a set of bindings used to
initialize the target types’ features. Declarative aspect offers pretty straigthforward way
to specify transformation rules. However, it may be difficult to specify more complex
rules. In this case, ATL provides imperative constructions organized in action blocks.
These blocks can be added to declarative rules, or even call external code for
transformation logic. ATL is a good candidate for model transformations according to the
following arguments: an open-source software, large user community, a solid developer
support and rich knowledge base of model transformations [31].
TXL

TXL is designed as a general purpose transformation language [32]. Among
other things, it allows transformations of programming languages since it is not confined
to any source or target format. In general, the language comprises the following
specifications:

• Specification of a structure to be transformed based on grammars.
• Specification of transformation rules based on source/target replacement

rules.
TXL is intended to transforming models which have syntax tree structure. This

is the case of most of the programming languages.

 M. Jovanović, D.Starčević, Z. Jovanović / Languages For Model-Driven Development 336

4DML

4DML (Four-Dimensional Markup Language) is a transformation language
originally proposed for Web content adaptation to users with special needs [33]. Unlike
TXL, 4DML allows transformation of a model with matrix structure. Transformation
rules are specified in declarative style by defining source/target pattern matchings. Usage
of 4DML may be complicated in case of models organized as trees or graphs, since their
conversion to matrix-like structure is not a straightforward task.

UIML Transformations
An important feature of UIML is its capability to define connections to the

backend logic, and to provide mappings to other UIML instances or target languages.
Therefore, language specification includes transformation features that define explicit
mappings of UIML primitives to target format constructs. Separate section defines
connections to the application logic. In particular, specification prescribes mappings to
VoiceXML and HTML formats. However, these mappings are not necessarily restricted
to XML formats, but may also be defined for other languages, e.g., Java. Considering
UIML’s mapping technique based on explicit matches to target format primitives, it can
be seen as declarative. The obvious advantage of the UIML approach is that user
interface definition and transformation are specified in the same language. On the other
hand, transformation rules are too simple to support more complex transformation tasks.

XSLT
XSLT (eXtensible Stylesheet Language Transformations) is a language for

transforming the XML input to textual (in most case XML) output [34]. The input of an
XSLT is a XML document. The output is XML, or other textual format. In this way,
XSLT can be used to generate documents written in languages different from XML.
Transformation is comprised of templates rules. Each rule includes matching pattern,
construction element (template) and additional optional attributes. Matching pattern
consis of expressions evaluated against currently processed node of input XML
document. Transformation executes starting from document’s rote node and continues
until each node is traversed and processed according to specified rules. When a pattern is
matched, the template is recursively executed and target element is generated.
Considering rules processing, XSLT provides constants, variables and literals together
with conditions, iterations, recursion and sorting as control structures. In addition, XSLT
offers a powerful set of built-in string functions for advanced text processing. While the
XSLT transformation mostly follows declarative style, it also allows imperative
constructs such as conditions, iterations and recursion. Therefore, the language can be
considered to be a hybrid.

GAC
GAC (General Adaptation Component) language has been proposed in order to

improve adaptation of Web components [35]. Unlike other transformation languages,
GAC works with contextual data to control the adaptation process. In this regard, GAC
underlying architecture is based on RDF (Resource Description Framework) language for
declarative description of Web resources. The language is able to process only HTML
and XML-based documents. In this sense, we can talk about adaptation rather than

 M. Jovanović, D.Starčević, Z. Jovanović / Languages For Model-Driven Development 337

transformation process. GAC configuration embraces set of adaptation rules with
associated conditions. Adaptation rules enable update, deletion, substitution and
separation of source model’s elements. GAC approach can be considered to be
imperative, since the rules provide explicit intsructions and operations to execute when
condition holds.

RDL/TT
RDL/TT (Rule Description Language for Tree Transformation) is a language for

context-sensitive transformations of XML-based user interfaces [36]. In case of RDL/TT,
term context-sensitivity primarily refers to adaptation of Web content to various devices.
The language resembles Java sintax to define transformation rules which handling XML
document’s tree. Transformation rules follow source/target pattern matching style. An
important feature is the use of variables for storing contextual information, thus allowing
different transformation directions dependant on varying preferences or target devices.
Transformation rules are specified in an imperative manner providing control structures
like loops and branches together with a set of extensible predefined functions.

TRANSFORMATION LANGUAGES REVIEW
Table 1 gives comparative survey of described languages for UI models

transformation. At first, the programming model is considered. Distinction between
declarative and imperative style is important from developer’s familiarity viewpoint.
However, it is not always possible to make a clear distinction between these approches.
In this way, many languages combine both styles in order to increase expressivenes and
gain UI developers’ acceptance. Further, we examined the UIs’ transformation
abstraction levels. In other words, we looked at capabilities of model-to-model (M2M)
and model-to-code (M2C) transformations. Another important aspect is the ability of
complex transformations with nonlinear mappings between elements of source and target
models. The capability to extend transformation language while keeping it’s underlying
syntax and semantics is of the key importance in UI development for different domains
of use. In the end, existing tool support may be practical reason to decide whether to use
a specific transformation language.

Table 1. Review of user interface transformation languages.

Language ATL GT TXL 4DML XSLT GAC UIML RDL

Property

Declarative + + + + + - + -
Imperative + - - - + + - +

Model-To-Model
Transformation

+ + + + + + - +

Model-To-Code
Transformation

+ - + + + - + +

Complex
Transformations

+ + + + + + - +

Extensibility + - - - - - - +
Tool support + + - - + + - +

 M. Jovanović, D.Starčević, Z. Jovanović / Languages For Model-Driven Development 338

Looking at M2M transformation capabilites, we can generally claim that each
language is capable of performing it. However, only ATL, GT and XSLT are really
designed for it. TXL and 4DML require transformed models conforming to specific
structure, i.e. BNF grammar and matrix structure, respectively. UIML is not designed to
be a transformation language, but explicit mappings to specific platforms are part of a
anguage specification. With respect to code generation ability, we can denote TXL,
4DML, UIML, XSLT and ATL. In general, ATL is not designed to generate code;
however, certain solutions have already been proposed [37]. With the exception of
UIML, all other languages support complex mappings. UIML provides linear one-to-one
mappings. Considering the ability to extend the language with additional functionalities,
ATL and RDL are good candidates. ATL is described with UML metamodel. In this way,
language can be easily extended by assigning additional concepts to existing metamodel.
With regard to developers’ facilities, ATL distinguishes from other approaches since its
use has been extensively supported in EMF (Eclipse Modeling Framework) suite.

In summary, the choice of the UITL largely depends on the models, their
representation and the target application‘s domain. Sometimes, a combination of
transformation approaches is preferable, where several transformation systems are used
at different abstraction levels. Many of the UML tools have the ability to export models
in XMI (eXtensible Metadata Interchange) format used for information exchange [38].
This can improve integration at tool level during model-driven user interface
development process.

4. CONCLUSION

The goal of this paper is to give a survey of user interface languages in order to
help the HCI community chose some of UI technology. Considering existing results in
the UI domain, there is a growing need for the MDE approach and languages. With
respect to modeling, UI designers use a lot of domain specific models such as task
models. However, these models are more descriptive and less productive (concentrated
on generative power). Transformations allow to produce new models from existing ones,
but also to generate code from models. We can consider two types of transformations,
those that generate different models (more general, a file conforming to specific structure
that can be manipulated by design tool) and those that produce code (a text file that can
be compiled or interpreted by running platform).

Based on these needs, we gave a comparative survey of several UITLs with
regard to selected set of criteria. The survey was organized according to the criteria we
identified as important for MDUID with the purpose of providing a comprehensive
overview of UITLs. These criteria include programming style (declarative vs.
imperative), M2M transformation capability, M2C transformation capability, ability to
design complex transformations, language extensibility, and tool support.

With respect to the variety of the development tasks, it is difficult to definitely
recommend or dismiss one of the compared languages, which provide different strengths
and weaknesses for different applications. Nevertheless, some conclusions can be drawn
from this comparison.

In terms of UIDLs, there are a number of languages which allow describing
domain-specific user interfaces. In terms of UITLs, there is no standard language to be
used, but it is important to know the type of transformations language supports, and to

 M. Jovanović, D.Starčević, Z. Jovanović / Languages For Model-Driven Development 339

specify if language can be extended in order to meet the requirements of application’s
domain. Moreover, it is important to know the format of the generated models in order to
identify the kind of tools to manipulate them. In this sense, the user interface research
community has to incorporate the proposed standards that MDE is using nowadays. We
hope this survey will be useful to any HCI designer who wants to select the most suitable
UI technology according to the specific requirements.

REFERENCES

[1] Bezivin, J. “From object composition to model transformation with the MDA,” Proceedings
of the TOOLS Conference, Santa Barbara, CA, USA, 2001, 350–354.

[2] Nunes, N.J., and Cuhna, J.F., “Wisdom: a software engineering method for small companies”,
IEEE Software, 17 (5) (2000) 113-119.

[3] Heinrich, M., Winkler, M., Steidelmuller, H., Zabelt, M., Behring, A., Neumerkel, R., and
Strunk, A., “MDA Applied: A Task-Model Driven Tool Chain for Multimodal Applications”,
Proceedings of the 6th international workshop on Task models and diagrams TAMODIA '07,
Toulouse, France, November 7-9, LNCS, 4849 (2007) 15-27.

[4] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., and Vanderdonckt, J., “A
Unifying Reference Framework for Multi-Target User Interfaces”, Interacting with
Computers, 15 (3) (2003) 289–308.

[5] Paternò, F., and Santoro, C., “UIDLs for Ubiquitous Environments”, ACM CHI 2008
Workshop Proceedings on User Interface Description Languages for Next Generation User
Interfaces, April 6th, Florence, Italy, 2008.

[6] Butter, T., Aleksy, M., Bostan, P., and Schader, M., “Context-aware User Interface
Framework for Mobile Applications”, Proceedings of the 27th IEEE International Conference
on Distributed Computing Systems Workshops ICDCSW, June 25-29, Toronto, Canada, 2007.

[7] Puerta, A., and Eisenstein, J., “XIML: A Common Representation for Interaction Data”,
Proceedings of the ACM 6th International Conference on Intelligent User Interfaces IUI’02,
January 13-16, San Francisco, California, USA, 2002, 214-215.

[8] Puerta, A., and Hu, M., “UI Fin: A Process-Oriented Interface Design Tool”, Proceedings of
the 13th ACM international conference on Intelligent user interfaces IUI’09, Sanibel Island,
Florida, USA February 08 - 11, 2009, 345-354.

[9] Abrams, M., Phanouriou, C., Batongbacal, A. L., Williams, S. M., and Shuster, J. E., “UIML:
An appliance-independent XML user interface language”, Proceedings of the 8th
International World Wide Web Conference, Toronto, Canada, May 11-14, 1999, 617-630.

[10] Helms, J., and Abrams, M., “Retrospective on UI description languages based on eight years’
experience with the user interface markup language (UIML)”, International Journal on Web
Enginering Technology, 4 (2) (2008) 138–162.

[11] Simon, R., Jank, M., and Wegscheider, F., “A generic UIML vocabulary for device- and
modality independent user interfaces”, Proceedings of the World Wide Web Conference WWW
2004, May 17–22, New York, USA, 2004, 434–435.

[12] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., and Lopez-Jaquero, V.,
“UsiXML: A language supporting multi-path development of user interfaces”, Proceedings of
the 9th IFIP Working Conference on Engineering for Human-Computer Interaction jointly
with 11th International Workshop on Design, Specification, and Verification of Interactive
Systems (EHCIDSVIS’ 04), Hamburg, Germany, July 11-13, 2004, 200–220.

[13] Coenraets, C., 2004, An overview of MXML: The Flex markup language.
http://www.adobe.com/devnet/flex/articles/paradigm.html

[14] TourDeFlex, 2010, http://www.adobe.com/devnet-apps/flex/tourdeflex/web/
[15] Microsoft 2006, XAML http://windowssdk.msdn.microsoft.com/en-us/library/ms747122.aspx

 M. Jovanović, D.Starčević, Z. Jovanović / Languages For Model-Driven Development 340

[16] Bishop, J., “Multi-platform user interface construction: a challenge for software engineering-
in-the-small”, Proceedings of the 28th international conference on Software engineering,
ICSE '06, May 20–28, Shanghai, China, 2006, 751-760.

[17] Nichols, J., and Myers, B., “Creating a Lightweight User Interface Description Language: An
Overview and Analysis of the Personal Universal Controller Project”, ACM Transactions on
Computer-Human Interaction, 16 (4) (17) (2009) 37 .

[18] Paterno, F., Santoro, C., and Spano, L. D., “MARIA: A universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous environments”,
ACM Transactions on Computer-Human Interaction (TOCHI), (16) (4) (19) (2009) 30.

[19] Myers, B., Hudson, S., and Pausch, R., “Past, present, and future of user interface software
tools”, ACM Transactions on Computer-Human Interaction, (7) (1) (2000) 3–28.

[20] Foley, D., and Noi Sukaviriya, P., “History, results, and bibliography of the user interface
design environment (UIDE), an early model-based system for user interface design and
implementation”, Proceedings of Design, Verification and Specification of Interactive Systems
(DSVIS’94), Bocca di Magra, Italy, June 1994, 3–14.

[21] Paterno, F., and Mancini, C., “Model-Based Design of Interactive Applications”, ACM
Intelligence, Winter 2000, 27-37.

[22] Mori, G., Paterno, F., and Santoro, C., “Design and Development of Multidevice User
Interfaces through Multiple Logical Descriptions”, IEEE Transactions on Software
Engineering, (30) (8) (2004) 507-520.

[23] OMG Unified Modeling LanguageTM (OMG UML), Infrastructure Version 2.3, May 2010
http://www.omg.org/spec/UML/2.3/Infrastructure

[24] Nunes, N.J., and Cuhna, J.F., “Wisdom: a software engineering method for small companies”,
IEEE Software, 17 (5) (2000) 113-119.

[25] Da Silva, P.P., and Paton, N., “User Interface Modeling in UMLi”, IEEE Software, 20 (4)
(2003) 62-69.

[26] Sottet, J-S., Calvary, G., Favre, J-M., Coutaz, J., Demeure, A., and Balme, L., “Towards
Model Driven Engineering of Plastic User Interfaces”, Satellite Proceedings of the ACM/IEEE
8th International Conference on Models Driven Engineering Languages and Systems,
MoDELS 2005, Montego Bay, Jamaica, LNCS, 2005, 191–200.

[27] Czarnecki, K., and Helsen, S., “Feature-Based Survey of Model Transformation Approaches”,
IBM Systems Journal, 45 (3) 2006, 621-645.

[28] Czarnecki, K., and Helsen, S., “Classification of Model Transformation Approaches”, ACM
OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven
Architecture, Anaheim, CA, USA, 2003, 1-17.

[29] Stanciulescu, A., Vanderdonckt, J., and Mens, T., “Colored graph transformation rules for
model-driven engineering of multi-target systems”, Proceedings of the third ACM
international workshop on Graph and model transformations GRaMoT '08, Leipzig, German,
2008, 37-44.

[30] Jouault, F., and Kurtev, I., “Transforming Models with ATL”, Proceedings of the ACM/IEEE
8th International Conference on Models Driven Engineering Languages and Systems,
MoDELS 2005, Montego Bay, Jamaica, LNCS, 2005, 128–138.

[31] Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I., “ATL: A model transformation tool”,
Science of Computer Programming, Elsevier Publishing, 72 (1) (2008) 31–39.

[32] Cordy, J.R., “The TXL Source Transformation Language”, Science of Computer
Programming, 61 (2006) 190–210.

[33] Brown, S.S., “Conversion of notations”, Technical report, University of Cambridge, 2004.
[34] Kay, M.: XSL Transformations (XSLT) Version 2.0, W3C Working Draft. World Wide Web

Constortion, 2002.

 M. Jovanović, D.Starčević, Z. Jovanović / Languages For Model-Driven Development 341

[35] Fiala, Z., and Houben, G.-J., “A Generic Transcoding Tool for Making Web Applications
Adaptive”, Short Paper Proceedings of the 17th Conference on Advanced Information
Systems Engineering CAiSE'05, Porto, Portugal, LNCS,161, 2005

[36] Schaefer, R., Mueller, W., and Dangberg, A., “RDL/TT-A Description Language for the
Profile-Dependent Transcoding of XML Documents”, Proceedings of the First International
ITEA Workshop on Virtual Home Environments, Paderborn, Germany, 2002.

[37] MDE Case Studies http://soft.vub.ac.be/soft/research/mdd/casestudies
[38] OMG Meta Object Facility (MOF) 2.0 XMI Mapping Specification v2.4, August 2011

http://www.omg.org/spec/XMI/2.4.1/

