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1. INTRODUCTION 

In recent past, optimality conditions and duality results have been of much 
interest for a class of multiobjective fractional programming problems, where the 
involved functions are locally Lipschitz and have Clarke differentiability. Many 
researchers have studied this matter in the presence of various assumptions. See, for 
example, [4, 5, 10, 11, 13-16] and the references cited therein. 

Jeyakumar [9] gave the optimality and duality for nondifferentiable nonconvex 
program under the ρ -invexity assumptions. Chen [4] studied the optimality and duality 
aspects of a class of nonsmooth multiobjective fractional programming problems 
expressed in terms of the Clarke generalized gradient under certain generalized ( ),F ρ -
convexity assumptions. 

In particular, using parametric approach, Bector et al. [2] derived Fritz John and 
Karush-Kuhn-Tucker necessary and sufficient optimality conditions for a class of 
nonsmooth (nondifferentiable) convex multiobjective fractional optimization problems, 
and established some duality theorems. Following the approaches of Bector et al. [2], Liu 
[11] obtained necessary and sufficient optimality conditions and derived duality theorems 
for a class of nonsmooth multiobjective fractional programming problems involving 
nonsmooth ( ),F ρ -convex functions. 

Recently, Mandal and Nahak [12] introduced a new class of ( ) ( ), ,p r ρ η θ− − -

invex functions by combining the concepts of ( ),p r -invexity [1] and the notions of 

( ),ρ η θ− -invex functions [17] and they established symmetric duality results. Jayswal et 

al. [8] considered a class of functions called ( ) ( ), ,p r ρ η θ− − -invex functions for a 
multiobjective fractional programming problem with inequality constraints in the 
differentiable case and derived sufficient conditions and duality theorems. However, the 
corresponding conclusions cannot be obtained for nondifferentiable programming with 
the help of generalized ( ) ( ), ,p r ρ η θ− − -invex functions because the derivative is 
required in the definitions of such functions. There exists a generalization of convexity to 
locally Lipschitz functions, with derivative replaced by the Clarke generalized gradient.  

Consequently, in the present paper, we are concerned with the following 
nondifferentiable multiobjective fractional programming problem: 

(MFP)              Minimize 
( )
( )

( )
( )

1

1

,..., k

k

f x f x
g x g x

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

subject to 

                      ( ) ( )( ){ }1 2: , ,..., ,m
mx X h x h h h x R+Ω = ∈ = ∈−  (1) 

,nx X R∈ ⊂  
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where X is a separable reflexive Banach space in the n-dimensional Euclidean space nR . 
, : , 1,2,...,i if g X R i k→ =  and : mh X R→  are locally Lipschitz functions on X. 

Without loss of generality, we can assume that ( ) ( )0, 0i if x g x> > , for all 1, 2,...,i k=  
and .x X∈  
Definition 1.1 A feasible solution *x of (MFP) is said to be an efficient solution of (MFP) 
if and only if there exist no other feasible solution x∈Ω  such that 

( )
( )

( )
( )

*

*

ii

i i

f xf x
g x g x

<  for all 1, 2,..., ,i k=  

and 

( )
( )

( )
( )

*

*

tt

t t

f xf x
g x g x

<  for some { }1,2,..., .t k∈  

We extend the ( ) ( ), ,p r ρ η θ− − -invex functions to the case of nondifferentiable 

functions. In other words, we define a kind of ( ) ( ), ,p r ρ η θ− − -invexity about the Clarke 
generalized gradient. Based upon these generalized invex functions, we derive sufficient 
optimality conditions for multiobjective fractional programming problems, formulate 
three different types of dual models, and establish weak, strong and strict converse 
duality theorems. 

 
2. NOTATIONS AND PRELIMINARIES 

Throughout the paper, let nR  be n-dimensional Euclidean space and nR+  denote 

the order cone. For cone partial order, if ( )1 2, ,..., nx x x x= and ( )1 2, ,..., ,n
ny y y y R= ∈  

we define 

if and only if for all 1, 2,..., ;i ix y x y i n< ≤ =  

if and only if for all 1, 2,..., and ;i ix y x y i n x y≤ < = ≠  

if and only if for all 1,2,..., ;i ix y x y i n< < =  

x y</  is the negation of yx < . 

Definition 2.1 [6] Let X be an open subset of nR+ . The function :f X R→  is said to be 
locally Lipschitz (of rank K) at ,x X∈  if there exist a positive constant K  and a 
neighbourhood N of x such that, for any , ,y z N∈  

( ) ( ) ,f y f z K y z− < −  

where denote any norm of X.  



 А. Јаyswal, A.K.Prasad, I.M. Stancu-Minasian / On Nonsmooth  370

Definition 2.2 [6] If :f X R→  is locally Lipschitz at ,x X∈  the generalized derivative 

(in the sense of Clarke) of f at x X∈ in the direction d , denoted by ( )0 ;f x d , is given 
by  

( ) ( ) ( )

0

0 ; lim sup .
t

y x

f y td f y
f x d

t
↓
→

+ −
=  

Definition 2.3 [6] The generalized gradient of f at ,x X∈  denoted by ( ) ,f x∂  is defined 
as follows: 

( ) ( ){ }* 0: ; ,f x X f x d d d Xξ ξ∂ = ∈ ≥ ∀ ∈ , 

where *X is the dual space of X and .,. stands for the dual pair of X  and *X . 

Let : mh X R→  be a locally Lipschitz function. For 0 ,x X∈  we define 

                     ( ) ( ){ } { }0 0: 0 , 1, 2,..., ,jJ x j J h x J m= ∈ = =  

                        ( ) ( ){ }0
0 0: , 0,jv X h x v j J xΛ = ∈ < ∈ . 

If ,φΛ ≠  we say that the problem (MFP) has constraint qualification at 0x  (cf. [7]). 
In the following, we introduce a definition which generalizes to 

nondifferentiable case the concepts of ( ) ( ), ,p r ρ η θ− − -invex functions. 
Definition 2.4 Let :f X R→ be a locally Lipschitz function and let rp, be arbitrary 
real numbers. If there exist , : X X Xη θ × →  and Rρ ∈ such that the relations hold: 

( ) ( )( ) ( ) ( )

( )

2,1 1( 1) ( ) ,

for 0, 0,

r f x f u p x uTe e x u
r p

with x u p r

ηξ ρ θ− − > − +

> ≠ ≠ ≠

1

( ) ( )( ) ( )

( )

21 ( 1) ( , ) ,

for 0, 0,

r f x f u Te x u x u
r

w ith x u p r

ξ η ρ θ− − > +

> ≠ = ≠

( ) ( )

( )

2,1( ) ( ) ( ) ,

for 0, 0,

p x uTf x f u e x u
p

w ith x u p r

ηξ ρ θ− > − +

> ≠ ≠ =

1

( ) ( ) ( ) ( )
( )

2
, ,

fo r 0 , 0 ,

Tf x f u x u x u

w ith x u p r

ξ η ρ θ− > +

> ≠ = =

 



 А. Јаyswal, A.K.Prasad, I.M. Stancu-Minasian / On Nonsmooth  371

( )f uξ∀ ∈∂ , then f  is said to be (strictly) ( ) ( ), ,p r ρ η θ− − -invex at the point u X∈  
with respect to η and θ . 

Remark 2.1 If the above inequalities are satisfied at any point ,u X∈ then f  is said to 
be (strictly) ( ) ( ), ,p r ρ η θ− − -invex on X with respect to η  and θ . 
Remark 2.2 It should be noted that the exponentials appearing on the right-hand sides of 
inequalities above are understood to be taken componentwise and ( )1,1,...,1 nR= ∈1 . 
In the sequel, we need the following results. 

Lemma 2.1 [3] The point x  is an optimal solution to problem (MFP) if and only if 
x solves (SFPi), where (SFPi) is given as the following problems: 

(SFPi)             Minimize     
( )
( )

i

i

f x
g x

 

subject to 

     
( )
( )

( )
( ) ( ) ( ): notation , , 1,2,..., ,p p m

i p
p p

f x f x
x M x X x p i p k h x R

g x g x
ϕ +≡≡≡

⎧ ⎫⎪ ⎪∈ = ∈ < ≠ = ∈−⎨ ⎬
⎪ ⎪⎩ ⎭

 

                 ( ) ( ) ( ) ( ){ }: 0, , 1,2,..., , .m
p p px X f x x g x p i p k h x Rϕ += ∈ − < ≠ = ∈−                              

Theorem 2.1 (Necessary optimality conditions) [11]. If *x is an optimal solution of 
(MFP) and satisfies a constraint qualification [7, Theorem 12] for (SFPi), 1, 2,...,i k= , 
then there exist * *, ,k my R z R+∈ ∈  such that 

( ) ( ) ( )( ) ( )* * * * * *

1 1
0 ,

k m

i i i i j j
i j

y f x x g x z h xϕ
= =

⎡ ⎤∈ ∂ + ∂ − + ∂⎣ ⎦∑ ∑  (2) 

( ) ( ) ( )* * * 0,i i if x x g xϕ− =  for all 1,2,..., ,i k=  (3) 

( )* * 0,j jz h x =  for all 1,2,..., ,j m=  (4) 

( )* 0,jh x <  for all 1,2,..., ,j m=  (5) 

* *, ,my I z R+∈ ∈  (6) 

where ( ){ * * * * *
1 2: , ,..., 0k

kI y R y y y y= ∈ = > and }k *
i 1

1iy
=

=∑ . 

Remark 2.3 All the theorems in the subsequent parts of this paper will be proved only in 
the case when 0, 0p r≠ ≠ . The proofs in other cases are easier than in this one, since the 
differences arise only from the form of inequality. Moreover, without loss of generality, 



 А. Јаyswal, A.K.Prasad, I.M. Stancu-Minasian / On Nonsmooth  372

we assume that 0p >  and 0r > . Furthermore, we assume that 1,ρ ρ  and 2ρ  are all 
elements of R . 

 
3. SUFFICIENT OPTIMALITY CONDITIONS 

Now we establish sufficient optimality conditions under introduced classes of 
functions defined in the previous section. 

 

Theorem 3.1 (Sufficiency). Let *x ∈Ω  be a feasible solution for (MFP) to which 
conditions (2) to (6) are satisfied. Moreover, we assume that any one of the following 
conditions holds: 

a) 0ρ >  and ( ) ( ) ( ) ( ) ( )* * *
1 1

. . . .k m
i i i i j ji j

A y f x g z hϕ
= =

⎡ ⎤= − +⎣ ⎦∑ ∑  is 

( ) ( ), ,p r ρ η θ− − - invex at *x  with respect to η and θ ; 

b) 1 2 0ρ ρ+ >  and ( ) ( ) ( ) ( )* *
1

. . .k
i i i ii

B y f x gϕ
=

⎡ ⎤= −⎣ ⎦∑  is ( ) ( )1, ,p r ρ η θ− − -

invex at *x  with respect to η  and θ  and ( ) ( )*
1

. .m
j jj

C z h
=

= ∑  is 

( ) ( )2, ,p r ρ η θ− − -invex at *x  with respect to same η  and θ . 

Then *x is an efficient solution to (MFP). 
 

Proof. Let *x ∈Ω  be a feasible solution to (MFP). By the relation (2), there exist 

( ) ( )( )* *, , 1,2,...,i i i if x g x i kξ ζ∈∂ ∈∂ − =  and ( )* , 1,2,...,j jh x j mψ ∈∂ = , such that 

( )* * *

1 1
0

k m

i i i i j j
i j

y x zξ ϕ ζ ψ
= =

⎡ ⎤+ + =⎣ ⎦∑ ∑ . (7) 

If condition (a) holds, then 

( ) ( )( ) ( ) ( ) ( )
* * 2,* * * *

1 1

1 11 ,
k mr A x A x p x x

i i i i j j
i j

e y x z e x x
r p

η
ξ ϕ ζ ψ ρ θ

−

= =

⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤− > + + − +⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎣ ⎦
∑ ∑ 1  

The above inequality together with (7) and the assumption that 0ρ > , imply 

( ) ( )( )*1 1 0.
r A x A x

e
r

−⎛ ⎞
− >⎜ ⎟

⎝ ⎠  
Using fundamental property of the exponential function, we get 

( ) ( )* .A x A x>  (8) 

On the other hand, suppose contrary to the result that *x is not an efficient solution of 
(MFP). Then, there exists a feasible solution x of (MFP) such that 
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( )
( )

( )
( )

*

*

ii

i i

f xf x
g x g x

<  for all 1, 2,..., ,i k=  

( )
( )

( )
( )

*

*

tt

t t

f xf x
g x g x

<  for some { }1,2,..., ,t k∈  

that is, 

( ) ( )* * * *( ) 0 ( ) ( ) ( )i i i i i if x x g x f x x g xϕ ϕ− < = −  for all 1, 2,..., ,i k=  

( ) ( )* * * *( ) 0 ( ) ( ) ( )t t t t t tf x x g x f x x g xϕ ϕ− < = −  for some { }1,2,..., .t k∈  

By (6) and the above inequalities, we have 

( ) ( )* * * * * *

1 1
( ) ( ) ( ) ( ) .

k k

i i i i i i i i
i i

y f x x g x y f x x g xϕ ϕ
= =

⎡ ⎤ ⎡ ⎤− < −⎣ ⎦ ⎣ ⎦∑ ∑  (9) 

From the relation ( ) mh x R+∈− , (4) and (6), we get 

* * *

1 1
( ) ( )

m m

j j j j
j j

z h x z h x
= =

<∑ ∑ . (10) 

On adding (9) and (10), we obtain 

( ) ( ) ( )* * * * * * * * *

1 1 1 1
( ) ( ) ( ) ( ) ( ) ,

k m k m

i i i i j j i i i i j j
i j i j

y f x x g x z h x y f x x g x z h xϕ ϕ
= = = =

⎡ ⎤ ⎡ ⎤− + < − +⎣ ⎦ ⎣ ⎦∑ ∑ ∑ ∑
 

i.e., 

( ) *( ) ,A x A x<  

which contradicts (8). 
If condition (b) holds, from the ( ) ( )2, ,p r ρ η θ− − -invexity of (.)C  we get 

( ) ( )( ) ( ) ( )
* * 2,* 2 * *

1

1 11 , , ( ).
mr C x C x p x x

j j j j
j

e z e x x h x
r p

η
ψ ρ θ ψ

−

=

⎡ ⎤⎛ ⎞ ⎛ ⎞− > − + ∀ ∈∂⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎣ ⎦
∑ 1  (11) 

From (10) and (11) and the fundamental property of the exponential function, we obtain 

( ) ( )
* 2,* 2 * *

1

1 , 0, ( ).
m p x x

j j j j
j

z e x x h x
p

η
ψ ρ θ ψ

=

⎡ ⎤ ⎛ ⎞− + < ∀ ∈∂⎢ ⎥ ⎜ ⎟
⎝ ⎠⎣ ⎦

∑ 1  (12) 

By (2), (12) and the assumption that 1 2 0ρ ρ+ > , we obtain 
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( ) ( )
* 2,* * 1 *

1

1 ( ) , 0 .
k p x x

i i i i
i

y x e x x
p

η
ξ ϕ ζ ρ θ

=

⎡ ⎤ ⎛ ⎞⎡ ⎤+ − + >⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
∑ 1  (13) 

From the ( ) ( )1, ,p r ρ η θ− − -invexity of ( ).B , we have 

( ) ( )( ) ( ) ( )
* * 2,* * 1 *

1

1 11 ( ) , .
kr B x B x p x x

i i i i
i

e y x e x x
r p

η
ξ ϕ ζ ρ θ

−

=

⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤− > + − +⎜ ⎟⎜ ⎟ ⎢ ⎥⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎣ ⎦
∑ 1 (14) 

From (13) and (14), we obtain 

( ) *( ) ,B x B x>  

i.e., 

( ) ( )* * * * * *

1 1
( ) ( ) ( ) ( ) .

k k

i i i i i i i i
i i

y f x x g x y f x x g xϕ ϕ
= =

⎡ ⎤ ⎡ ⎤− > −⎣ ⎦ ⎣ ⎦∑ ∑  (15) 

If *x  is not an efficient solution of (MFP) then, we get (9) in the same way. But (9) 
contradicts (15). Therefore, *x is an efficient solution of (MFP). This completes the 
proof.                                               □ 

 
4. PARAMETRIC DUALITY 

 
We consider the following form of parametric dual as follows: 

                          (PD)            Maximize ( )1 2, ,..., kv v v v=  
subject to 

( ) ( )( ) ( )
1 1

0
k m

i i i i j j
i j

y f u v g u z h u
= =

⎡ ⎤∈ ∂ + ∂ − + ∂⎣ ⎦∑ ∑ , (16) 

( ) ( ) 0, for all 1,2,..., ,i i if u v g u i k− = =  (17) 

( )
1

0,
m

j j
j

z h u
=

=∑  (18) 

, , , 0.mu X y I z R v+∈ ∈ ∈ >  (19) 

Let ( ) ( ) ( )( ) ( )
1 1

, , , : 0 ,
k m

m k
i i i i j j

i j
u y z v X I R R y f u v g u z h u+

= =

⎧⎪ ⎡ ⎤Γ = ∈ × × × ∈ ∂ + ∂ − + ∂⎨ ⎣ ⎦⎪⎩
∑ ∑  

( ) ( ) ( )
1

0, for all 1,2,..., , 0
m

i i i j j
j

f u v g u i k z h u
=

⎫⎪− = = = ⎬
⎪⎭

∑  
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denote the set of all feasible solutions of (PD). Moreover, we denote by Xpr Γ the 

projection of the set Γ on X ,  i.e. ( ){ }: , , ,Xpr u X u y z vΓ = ∈ ∈Γ . 

Theorem 4.1 (Weak duality). Let x  be a feasible solution for (MFP), and let ( ), , ,u y z v  
be a feasible solution for (PD). Moreover, we assume that any of the following condition 
holds: 

a) 0ρ >  and ( ) ( ) ( ) ( )1 1
. . . .k m

i i i i j ji j
O y f v g z h

= =
⎡ ⎤= − +⎣ ⎦∑ ∑  is ( ) ( ), ,p r ρ η θ− − -

invex at Xu pr∈Ω∪ Γwith respect to η and θ ; 

b) 1 2 0ρ ρ+ >   and  ( ) ( ) ( )1
. . .k

i i i ii
P y f v g

=
⎡ ⎤= −⎣ ⎦∑   is  ( ) ( )1, ,p r ρ η θ− − ‐invex 

and  ( ) ( )1
. .m

j jj
Q z h

=
= ∑   is  ( ) ( )2, ,p r ρ η θ− − ‐invex at  Xu pr∈Ω∪ Γ   with 

respect to same η  and θ . 

Then ( )x yϕ ≤/ . 
 

Proof. Let x  and ( ), , ,u y z v  be feasible solution to (MFP) and (PD), respectively. Then 

there exist ( ) ( )( ), , 1, 2,...,i i i if u g u i kξ ζ∈∂ ∈∂ − =  and ( ) , 1, 2,...,j jh u j mψ ∈∂ = , 
such that 

1 1
0

k m

i i i i j j
i j

y v zξ ζ ψ
= =

+ + =⎡ ⎤⎣ ⎦∑ ∑ . (20) 

If condition (a) holds, then 

( ) ( )( )( ) ( )( ) ( ) 2,

1 1

1 11 , .
k m

r O x O u p x u
i i i i j j

i j
e y v z e x u

r p
ηξ ζ ψ ρ θ−

= =

⎡ ⎤
− > + + − +⎡ ⎤⎢ ⎥⎣ ⎦

⎣ ⎦
∑ ∑ 1  

The above inequality together with (20) and the assumption that 0ρ > , imply 

( ) ( )( )( )1 1 0.r O x O ue
r

− − >
 

Using fundamental property of the exponential function, we get 

( ) ( ).O x O u>  (21) 

On the other hand, suppose contrary to the result that ( )x vϕ ≤ . Then  

( )
( )

i
i

i

f x
v

g x
<  for all 1, 2,..., ,i k=  

( )
( )

t
t

t

f x
v

g x
<  for some { }1,2,..., ,t k∈  
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that is, 

( ) ( ) ( ) ( )0i i i i i if x v g x f u v g u− < = −  for all 1, 2,..., ,i k=  

( ) ( ) ( ) ( )0t t t t t tf x v g x f u v g u− < = −  for some { }1,2,..., .t k∈  

By (19) and the above inequalities, we have 

( ) ( ) ( ) ( )
1 1

.
k k

i i i i i i i i
i i

y f x v g x y f u v g u
= =

⎡ ⎤ ⎡ ⎤− < −⎣ ⎦ ⎣ ⎦∑ ∑  (22) 

From the relation ( ) mh x R+∈− , (18) and (19), yield 

( ) ( )
1 1

m m

j j j j
j j

z h x z h u
= =

<∑ ∑ . (23) 

Adding (22) and (23), we obtain 

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1

,
k m k m

i i i i j j i i i i j j
i j i j

y f x v g x z h x y f u v g u z h u
= = = =

⎡ ⎤ ⎡ ⎤− + < − +⎣ ⎦ ⎣ ⎦∑ ∑ ∑ ∑  

i.e., 

( ) ( ) ,O x O u<  
which contradicts (21). 
If condition (b) holds, from the ( ) ( )2, ,p r ρ η θ− − -invexity of ( ).Q  we get 

( ) ( )( )( ) ( )( ) ( ) ( )2, 2

1

1 11 , , .
m

r Q x Q u p x u
j j j j

j
e z e x u h u

r p
ηψ ρ θ ψ−

=

⎡ ⎤
− > − + ∀ ∈∂⎢ ⎥

⎣ ⎦
∑ 1      (24) 

From (23) and (24) and the fundamental property of the exponential function, we obtain 

( )( ) ( ) ( )2, 2

1

1 , 0 , .
m

p x u
j j j j

j
z e x u h u

p
ηψ ρ θ ψ

=

⎡ ⎤
− + < ∀ ∈∂⎢ ⎥

⎣ ⎦
∑ 1       (25) 

By (20), (25) and the assumption that 1 2 0ρ ρ+ > , we obtain 

( )( ) ( ) 2, 1

1

1 , 0 .
k

p x u
i i i i

i
y v e x u

p
ηξ ζ ρ θ

=

⎡ ⎤
+ − + >⎡ ⎤⎢ ⎥⎣ ⎦

⎣ ⎦
∑ 1  (26) 

From the ( ) ( )1, ,p r ρ η θ− − -invexity of ( ).P , we have 

( ) ( )( )( ) ( )( ) ( ) 2, 1

1

1 11 , .
k

r P x P u p x u
i i i i

i
e y v e x u

r p
ηξ ζ ρ θ−

=

⎡ ⎤
− > + − +⎡ ⎤⎢ ⎥⎣ ⎦

⎣ ⎦
∑ 1  (27) 

From (26) and (27), we obtain 
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( ) ( ) ,P x P u>
 

i.e., 

( ) ( ) ( ) ( )
1 1

.
k k

i i i i i i i i
i i

y f x v g x y f u v g u
= =

⎡ ⎤ ⎡ ⎤− > −⎣ ⎦ ⎣ ⎦∑ ∑  (28) 

Again if ( )x vϕ ≤ , then we get (22) in the same way. But (22) contradicts (28). 

Therefore, ( )x vϕ ≤/ . This completes the proof.             □ 

Theorem 4.2 (Strong duality). Let *x be an efficient solution for (MFP) and let h  satisfy 
the constraints qualification at *x . Then there exist * *, my I z R∈ ∈  and * kv R∈ such 

that ( )* * * *, , ,x y z v  is feasible for (PD). Also, if the weak duality theorem 4.1 holds for 

all feasible solutions of the problems (MFP) and (PD), then ( )* * * *, , ,x y z v  is an efficient 

solution for (PD). 
 
Proof. Since *x  is an efficient solution for (MFP) and h  satisfy the constraints 
qualification at * ,x  by Theorem 2.1, there exist * *, my I z R∈ ∈  and * kv R∈ such that 

( )* * * *, , ,x y z v  satisfies (2) - (6). This, in turn, implies that ( )* * * *, , ,x y z v  is feasible for 

(PD). From the weak duality theorem, for any feasible points ( ), , ,x y z v  to (PD), the 

inequality ( )*x vϕ ≥  holds. Hence we conclude that ( )* * * *, , ,x y z v  is an efficient 

solution to (PD). This completes the proof.                                                            □ 
Theorem 4.3 (Strict converse duality). Let *x  and ( )* * * *, , ,u y z v be efficient solutions 

for (MFP) and (PD), respectively with 
( )
( )

*
*

*

i
i

i

f x
v

g x
=   for all 1, 2,...,i k= . Assume that 

0ρ >  and ( ) ( ) ( ) ( )* * *
1 1

. . . .k m
i i i i j ji j

A y f v g z h
= =

⎡ ⎤= − +⎣ ⎦∑ ∑   

is strictly ( ) ( ), ,p r ρ η θ− − -invex at *
Xu pr∈Ω∪ Γwith respect to η and θ . Then 

* *x u= ; that is, *u  is an efficient solution for (MFP). 

Proof. Suppose on contrary that * *x u≠ . By relation (16), there exist ( )* ,i if xξ ∈∂  

( )( )* , 1,2,...,i ig x i kζ ∈∂ − =  and ( )* , 1,2,...,j jh x j mψ ∈∂ = , such that 

* * *

1 1
0

k m

i i i i j j
i j

y v zξ ζ ψ
= =

⎡ ⎤+ + =⎣ ⎦∑ ∑ . (29) 
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From (17), (18) and (19), we get 

( ) ( ) ( ) ( )* * * * * * *

1 1
0

k m

i i i i j j
i j

A u y f u v g u z h u
= =

⎡ ⎤= − + =⎣ ⎦∑ ∑ . (30) 

From the strict ( ) ( ), ,p r ρ η θ− − -invexity of ( ).A  at *u , we have 

( ) ( )( ) ( ) ( )
* * * * 2,* * * * *

1 1

1 11 , .
k mr A x A u p x u

i i i i j j
i j

e y v z e x u
r p

η
ξ ζ ψ ρ θ

−

= =

⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤− > + + − +⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎣ ⎦
∑ ∑ 1  (31) 

The above inequality together with (29) and the assumption that 0ρ >  imply 

( ) ( )( )* *1 1 0.
r A x A u

e
r

−⎛ ⎞
− >⎜ ⎟

⎝ ⎠  
Using fundamental property of the exponential function, we get 

( ) ( )* * .A x A u>  (32) 

Since 
( )
( )

*
*

*

i
i

i

f x
v

g x
=   for all 1, 2,..., ,i k=  we have 

( ) ( )* * * 0i i if x v g x− =  for all 1,2,..., .i k=  (33) 

From the relation ( ) mh x R+∈−  and (19), we have 

( )* *

1
0

m

j j
j

z h x
=

<∑ . (34) 

Therefore, from (33) and (34), we conclude that 

( ) ( ) ( ) ( )* * * * * * *

1 1
0

k m

i i i i j j
i j

A x y f x v g x z h x
= =

⎡ ⎤= − + <⎣ ⎦∑ ∑ . (35) 

Hence from (32) and (35), we have ( )* 0A u < which contradicts (30). Hence * *x u= . 

This completes the proof.                                                                                                  □ 
Remark 4.1 The function ( ).A  in Theorem 4.3 is expressed by the sum of the modified 

objective part ( ).B  of (MFP) and its constraint part ( ).C . If ( ).B  is strictly 

( ) ( ), ,p r ρ η θ− − -invex and ( ).C  is ( ) ( ), ,p r ρ η θ− − -invex then the Theorem 4.3 
still holds. 
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5. WOLFE DUALITY 

In what follows, we take the following form of theorem 2.1: 
Theorem 5.1 Let *x be an efficient solution to (MFP). Assume that h satisfies the 
constraint qualification at *x . Then there exist * ky R+∈  and * mz R∈ , such that 

( ) ( ) ( )* * * * *

1 1
0

k m

i i i j j
i j

y g x f x z h x
= =

⎡ ⎤
∈ ∂ + ∂⎢ ⎥

⎣ ⎦
∑ ∑  

( ) ( ) ( )( )* * * * *

1 1
,

k m

i i j j i
i j

y f x z h x g x
= =

⎡ ⎤
+ + −∂⎢ ⎥

⎣ ⎦
∑ ∑   (36) 

( )* * 0,j jz h x = for all 1,2,..., ,j m=  (37) 

( )* 0,jh x <  for all 1,2,..., ,j m=  (38) 

* *, my I z R+∈ ∈ . (39) 

Now we consider the following Wolfe type dual problem to (FP):  

(WD) Maximize  
( ) ( )

( )

( ) ( )

( )

1
1 1

1

,...,

m m

j j k j j
j j

k

f u z h u f u z h u

g u g u
= =

⎛ ⎞
+ +⎜ ⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑
 

subject to 

( ) ( ) ( )
1 1

0
k m

i i i j j
i j

y g u f u z h u
= =

⎡ ⎤
∈ ∂ + ∂⎢ ⎥

⎣ ⎦
∑ ∑  

( ) ( ) ( )( )
1 1

k m

i i j j i
i j

y f u z h u g u
= =

⎡ ⎤
+ + −∂⎢ ⎥

⎣ ⎦
∑ ∑ , (40) 

, , .mu X y I z R+∈ ∈ ∈  (41) 

Let ( ) ( ) ( ) ( )
1 1

, , : 0
k m

m
i i i j j

i j
u y z X I R y g u f u z h u+

= =

⎧ ⎡ ⎤⎪Γ = ∈ × × ∈ ∂ + ∂⎨ ⎢ ⎥
⎪ ⎣ ⎦⎩

∑ ∑%  

                                  ( ) ( ) ( )( )
1 1

k m

i i j j i
i j

y f u z h u g u
= =

⎫⎡ ⎤ ⎪+ + −∂⎢ ⎥ ⎬
⎪⎣ ⎦ ⎭

∑ ∑  

denote the set of all feasible solutions of (WD). Moreover, we denote by Xpr Γ% the 
projection of the set Γ% on X . 
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Denote ( )
( ) ( )

( )
1,

m

i j j
j

i
i

f u z h u
u z

g u
ψ =

+
=

∑
and ( ) ( ) ( ) ( )( )1 2, , , , ,..., ,ku z u z u z u zψ ψ ψ ψ= . 

Throughout this section, we assume that ( ) ( )
1

0
m

i j j
j

f u z h u
=

+ >∑
 
and ( ) 0,ig u > for all 

1, 2,...,i k= . 
Theorem 5.2 (Weak duality). Let x  be a feasible solution for (MFP), and let ( ), ,u y z  be  
a  feasible solution for (WD). Assume that 0ρ >  and 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1

. . . .
k m k m

i i i j j i i i j j
i j i j

S y g u f z h y g f u z h u
= = = =

⎡ ⎤ ⎡ ⎤
= + − +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑ ∑ ∑  

is ( ) ( ), ,p r ρ η θ− − -invex at Xu pr∈Ω∪ Γ% with respect to η and θ . Then 

( ) ( ),x u zϕ ψ≤/ . 
 
Proof. Let x  and ( ), ,u y z  be feasible solution to (MFP) and (WD), respectively. By the 

relation (40) there exist ( ) ( )( ), , 1, 2,...,i i i if u g u i kξ ζ∈∂ ∈∂ − =  and ( ) ,j jh uψ ∈∂  
1, 2,...,j m=  such that 

( ) ( ) ( )
1 1 1 1

0
k m k m

i i i j j i i j j i
i j i j

y g u z y f u z h uξ ψ ζ
= = = =

⎡ ⎤ ⎡ ⎤
+ + + =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑ ∑ ∑ . (42) 

From ( ) ( ), ,p r ρ η θ− − -invexity of ( ).S  at u with respect to η and θ , we have 

( ) ( )( )( ) ( ) ( ) ( )
1 1 1 1

1 11
k m k m

r S x S u
i i i j j i i j j i

i j i j
e y g u z y f u z h u

r p
ξ ψ ζ−

= = = =

⎡ ⎤⎡ ⎤ ⎡ ⎤
− > + + +⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
∑ ∑ ∑ ∑

( )( ) ( ) 2, , .p x ue x uη ρ θ− +1  (43) 

The above inequality together with (42) and the assumption that 0ρ >  imply 

( ) ( )( )( )1 1 0.r S x S ue
r

− − >
 

Using fundamental property of the exponential function, we get 

( ) ( ) 0,S x S u> =
 

i.e., 

( ) 0.S x >  (44) 

On the other hand, suppose contrary to the result that ( ) ( ),x u zϕ ψ≤ . Then  
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( )
( )

( ) ( )

( )
1

m

i j j
ji

i i

f u z h u
f x
g x g u

=

+
<

∑
 for all 1, 2,..., ,i k=  

( )
( )

( ) ( )

( )
1

m

t j j
jt

t t

f u z h u
f x
g x g u

=

+
<

∑
 for some { }1,2,..., ,t k∈  

Since * ,y I∈ it follows that 

( ) ( ) ( ) ( ) ( )
1 1 1

,
k k m

i i i i i i j j
i i j

y f x g u y g x f u z h u
= = =

⎡ ⎤
⎡ ⎤ < +⎢ ⎥⎣ ⎦

⎣ ⎦
∑ ∑ ∑   

equivalently, 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 1 1

1 1
.

k m k m

i i j j i i i i j j
i j i j

k m

i i j j
i j

y f x z h x g u y g x f u z h u

y g u z h x

= = = =

= =

⎡ ⎤ ⎡ ⎤
+ − +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

<

∑ ∑ ∑ ∑

∑ ∑
 (45) 

From the relation ( ) ( ), 0m
ih x R g u+∈− > and (41), we have 

( ) ( )
1 1

0
k m

i i j j
i j

y g u z h x
= =

<∑ ∑
. 

Therefore (45), implies 

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1

0.
k m k m

i i i j j i i i j j
i j i j

y g u f x z h x y g x f u z h u
= = = =

⎡ ⎤ ⎡ ⎤
+ − + <⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑ ∑ ∑  

i.e., 

( ) 0,S x <  

which contradicts (44). Therefore, ( ) ( ),x u zϕ ψ≤/ . This completes the proof.                 □ 

Theorem 5.3 (Strong duality). Let *x be an efficient solution for (MFP) and let h  satisfy 
the constraints qualification at *x . Then there exist *y I∈  and * mz R∈ such that 

( )* * *, ,x y z  is feasible to (WD). Also, if the weak duality theorem 5.2 holds for all 

feasible solutions of the problems (MFP) and (WD), then ( )* * *, ,x y z  is an efficient 
solution for (WD). 
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Proof. Since *x  is an efficient solution for (MFP) and h  satisfy the constraints 
qualification at * ,x  by Theorem 5.1, there exist *y I∈  and * mz R∈ such that * * *( , , )x y z  

satisfies (36)-(39). This, in turn, implies that * * *( , , )x y z  is feasible for (WD). From the 
weak duality theorem, for any feasible points ( ), ,x y z  to (WD), the 

inequality *( ) ( , )x x zϕ ψ≤  holds. Hence, we conclude that * * *( , , )x y z  is an efficient 
solution to (WD). This completes the proof.                                                            □ 
Theorem 5.4 (Strict converse duality). Let *x  and * * *( , , )u y z  be efficient solutions for 
(MFP) and (WD), respectively. Assume that 

( ) 2
* *, 0x uρ θ >

 
and 

( ) ( ) ( ) ( ) ( ) ( ) ( )* * * * * * *

1 1 1 1
. . . .

k m k m

i i i j j i i i j j
i j i j

T y g u f z h y g f u z h u
= = = =

⎡ ⎤ ⎡ ⎤
= + − +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑ ∑ ∑   

is strictly ( ) ( ), ,p r ρ η θ− − -invex at *
Xu pr∈Ω∪ Γ% with respect to η  and θ . Then 

* *x u= ; that is, *u  is an efficient solution for (MFP). 
 
Proof. Suppose on contrary that * *x u≠ . Let *x  and * * *( , , )u y z  be feasible solution to 
(MFP) and (WD), respectively. By the relation (36) there exist 

( ) ( )( )* *, , 1,2,...,i i i if u g u i kξ ζ∈∂ ∈∂ − =  and ( )* , 1, 2,..., ,j jh u j mψ ∈∂ =   such that 

( ) ( ) ( )* * * * * * *

1 1 1 1
0

k m k m

i i i j j i i j j i
i j i j

y g u z y f u z h uξ ψ ζ
= = = =

⎡ ⎤ ⎡ ⎤
+ + + =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑ ∑ ∑ . (46) 

From Theorem 5.3, we know that there exist y  and z  such that ( )* , ,x y z  is an efficient 

solution for (WD) and 

( ) ( )
( )

( ) ( )
( )

* * * * *

1 1

* *

m m

i j j i j j
j j

i i

f x z h x f u z h u

g x g u
= =

+ +
=

∑ ∑
. (47) 

By (37), (39) and (47), we obtain 

( )
( )

( ) ( )
( )

* * *
*

1

* *

m

i j j
i j

i i

f u z h uf x

g x g u
=

+
=

∑
. (48) 

Hence 
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( ) ( ) ( ) ( ) ( )* * * * * *

1

m

i i i j j i
j

f x g u f u z h u g x
=

⎡ ⎤
= +⎢ ⎥
⎣ ⎦

∑ , (49) 

From (41) and (49), we obtain 

( ) ( ) ( )* * * * *

1 1

k m

i i j j
i j

T x y g u z h x
= =

= ∑ ∑
. 

From the relation ( ) ( )* *, 0m
ih x R g u+∈− > , from (41) and the above inequality, we have 

( )* 0.T x <  

Therefore,  

( ) ( )* *0 ,T x T u< =  

i.e., 

( ) ( )* * .T x T u<  (50) 

From the strict ( ) ( ), ,p r ρ η θ− − -invexity of ( ).T  at *u in XprΩ∪ Γ% with respect to η  
and θ , we have 

( ) ( )( ) ( ) ( ) ( )
( ) ( )

* *

* *

* * * * * * *

1 1 1 1

2, * *

1 11

, .

k m k mr T x T u
i i i j j i i j j i

i j i j

p x u

e y g u z y f u z h u
r p

e x u
η

ξ ψ ζ

ρ θ

−

= = = =

⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞
− > + + +⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟

⎝ ⎠ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎛ ⎞− +⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑

1

 

The above inequality together with (50) imply 

( ) ( ) ( ) ( ) ( )
* * 2,* * * * * * * * *

1 1 1 1

1 , ,
k m k m p x u

i i i j j i i j j i
i j i j

y g u z y f u z h u e x u
p

η
ξ ψ ζ ρ θ

= = = =

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎛ ⎞+ + + − +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

∑ ∑ ∑ ∑ 1

 

which by virtue of (46) imply 

( ) 2
* *, 0x uρ θ <

, 

which contradicts the assumptions that ( ) 2
* *, 0x uρ θ > . Hence * *x u= ; that is, *u is 

an efficient solution for (FP). This completes the proof.                                                    □ 
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6. MOND-WEIR DUALITY 

In this section, we consider the following Mond-Weir dual to (MFP): 

(MWD)  Maximize 
( )
( )

( )
( )

1

1

,..., k

k

f u f u
g u g u

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

subject to 

( ) ( ) ( ) ( )( ) ( ) ( )
1 1 1 1

0
k m k m

i i i j j i i i j j
i j i j

y g u f u z h u y g u f u z h u
= = = =

⎡ ⎤ ⎡ ⎤
∈ ∂ + ∂ + −∂ +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑ ∑ ∑ ,(51) 

( )
1

0,
m

j j
j

z h u
=

>∑  (52) 

, , .mu X y I z R+∈ ∈ ∈  (53) 

Let  

 ( ) ( ) ( ) ( )
1 1

, , : 0
k m

m
i i i j j

i j
u y z X I R y g u f u z h u+

= =

⎧ ⎡ ⎤⎪Γ = ∈ × × ∈ ∂ + ∂⎨ ⎢ ⎥
⎪ ⎣ ⎦⎩

∑ ∑  

( )( ) ( ) ( ) ( )
1 1 1

, 0 ,
k m m

i i i j j j j
i j j

y g u f u z h u z h u
= = =

⎫⎡ ⎤ ⎪+ −∂ + >⎢ ⎥ ⎬
⎪⎣ ⎦ ⎭

∑ ∑ ∑
 

denote the set of all feasible solutions to (MWD). Moreover, we denote by Xpr Γ the 
projection of the set Γ on X . 

Denote ( ) ( )
( )

i
i

i

f u
u

g u
Φ =  and ( ) ( ) ( ) ( )( )1 2, ,..., ku u u uΦ = Φ Φ Φ . 

Now we shall state weak, strong and strict converse duality theorems without 
proof as they can be proved in light of Theorem 5.2, Theorem 5.3 and Theorem 5.4, 
proved in previous section. 
Theorem 6.1 (Weak duality). Let x  be a feasible solution for (MFP), and let ( ), ,u y z  be 
a feasible solution for (MWD). Assume that 

0ρ >  and ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1

. . . .
k m k m

i i i j j i i i j j
i j i j

S y g u f z h y g f u z h u
= = = =

⎡ ⎤ ⎡ ⎤
= + − +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑ ∑ ∑  

is ( ) ( ), ,p r ρ η θ− − -invex at Xu pr∈Ω∪ Γ  with respect to η and θ .  

Then, ( ) ( )x uϕ ≤ Φ/ . 

Theorem 6.2 (Strong duality). Let *x be an efficient solution for (MFP) and let h  satisfy 
the constraints qualification at *x . Then there exist *y I∈  and * mz R∈ such that 
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( )* * *, ,x y z  is feasible to (MWD). Also, if the weak duality theorem 6.1 holds for all 

feasible solutions to the problems (MFP) and (MWD), then ( )* * *, ,x y z  is an efficient 

solution for (MWD). 
Theorem 6.3 (Strict converse duality). Let *x  and ( )* * *, ,u y z be efficient solutions for 

(MFP) and (MWD), respectively. Assume that ( ) 2
* *, 0x uρ θ >  and  

( ) ( ) ( ) ( ) ( ) ( ) ( )* * * * * * *

1 1 1 1
. . . .

k m k m

i i i j j i i i j j
i j i j

T y g u f z h y g f u z h u
= = = =

⎡ ⎤ ⎡ ⎤
= + − +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑ ∑ ∑  

 is strictly ( ) ( ), ,p r ρ η θ− − -invex at *
Xu pr∈Ω∪ Γwith respect to η  and θ . Then 

* *x u= ; that is, *u  is an efficient solution for (MFP). 
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