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Abstract: Research in the field of vehicle routing is often focused on finding new ideas
and concepts in the development of fast and efficient algorithms for an improved solu-
tion process. Early studies introduce static tailor-made strategies, but trends show that
algorithms with generic adaptive policies - which emerged in the past years - are more
efficient to solve complex vehicle routing problems. In this first part of the survey, we
present an overview of recent literature dealing with adaptive or guided search techniques
for problems in vehicle routing.
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1. INTRODUCTION

Metaheuristics and vehicle routing problems (VRPs) are on the one hand,
solution procedures and on the other hand, problem types which are strongly
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connected. Most of the VRPs areNP-hard and so efficient solution techniques do
not exist, but as shown by Garey and Johnson [23], there are no adequate solution
techniques for solving them. Therefore, these problem types are perfect applica-
tions where metaheuristic search techniques can provide substantial support in
tackling them. In fact, with the invention of metaheuristic search a vast range of
different VRPs could be solved in a reasonable manner. In the past years, many
variations of the classical VRP were introduced and studied. The classical VRP
has a central depot and a set of customers which have to be visited by a set of
vehicles. Each vehicle has a certain capacity and it can also have a maximum tour
length. Several variants of the classical VRP exist, e.g., VRPs with time windows
(VRPTW) or open VRPs with (OVRPTW) and without time windows (OVRP).
Also, different objective functions, different side constraints, and also different
problem structures are considered. Due to the availability of data for the current
traffic situation, the problems become even richer.

The application area of VRP has many different problem settings, and therefore
a large number of scientists are working on the development of different solution
procedures. Some workshops or conferences dedicated to special topics of VRPs
have almost 500 participants (e.g. the TRISTAN workshop series), most of the
participating researchers are working on solution techniques for variants of the
VRP. Although a number of different problem settings exist, some aspects of
the problem characteristics are the same in many VRPs. This feature makes the
applicability of generic search concepts possible. Nevertheless, it is not easy to
find the appropriate search technique or the appropriate operator of a specific
problem type. In the past years, adaptive search techniques where introduced to
overcome the problem of selecting the most appropriate design decisions a priori.

The first paper introducing a heuristic approach for solving a previous VRP
variant is presented by Dantzig and Ramser [18]. They present a procedure
based on a linear programming formulation for obtaining near optimal solutions.
Shortly after, one of the most popular construction heuristics for routing problems
is introduced by Clarke and Wright [14]: the savings algorithm. Starting with
single customer routes, routes are merged in a feasible way subject to maximize
the cost savings. Few years later, the sweep algorithm is developed by Gillett
and Miller [27]. With this approach, routes are generated according to the polar-
coordinate angle of each node. At the time of the first calculating machines,
the sweep algorithm was already seen as an efficient construction algorithm that
competes with similar approaches.

As computers influence the progress in approaches for VRP positively, learning
mechanisms are included in search strategies as Ghaziri shows in [26]. Artificial
intelligence is used to learn from the previous performance of the algorithm by
incrementally adjust their weights in an iterative fashion with mediocre success.

The fundamental ideas of tabu search (TS) are described by Glover [28] in the
late eighties for solving various combinatorial problems. Through introducing
a tabu list, containing moves are forbidden for a certain number of iterations in
order to prevent these moves from being reversed. In doing so, cycling behavior
around local optima should be avoided. Unlike most other metaheuristics, TS
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is a deterministic (non-randomized) algorithm in its basic form. Fundamental
ideas, principles, and applications of the TS are summarized by Glover in [29, 30].
Research in TS application to problems in vehicle routing is done through several
independent research groups, e.g. Taillard [78], Osman [57], or Gendreau et
al. [24]. The novelty of the contemporaneous developed contributions is in the
neighborhood type. Gendreau et al. [24] move one customer to another tour.
Osman [57] either moves one customer from one tour to another or swaps two
customers of two diverse tours. Taillard [78] suggests an exchange of at least two
consecutive cities of each tour. In addition, the so-called taburoute of Gendreau
et al. [24] differs from the TS in the tabu list: each move individually receives a
random number of iterations being forbidden.

In order to implement an efficient candidate-list strategy, Toth and Vigo [85]
introduced the granular TS. Restricted neighborhood are called granular if they
involve only elements that are seen as inefficient in finding promising solutions.

In the beginning of the twentieth century, memory- and evolutionary-based
approaches are applied to routing problems. The so-called BoneRoute, an adaptive
memory-based method, is presented by Tarantilis and Kiranoudis [82]. This
method produces new solutions out of sequences of nodes (bones) to receive a
population of solutions. In order to guarantee that the pool of solutions does
not explode, worse solutions are removed and new solutions are obtained from
the remaining. In this period, nature inspired techniques were also applied to
VRPs. One nature inspired approach is the ant system. The concept of artificial
trail laying, and artificial trail following behavior with pheromone used by ant
colonies have been studied in computer science for several years. Reimann et
al. [67, 68] present a savings based ant algorithm for solving the capacitated VRP
(CVRP).

An efficient evolutionary algorithm for solving VRPs is the genetic algorithm
(GA) introduced by Prins [66]. The GA generates solutions using techniques
which are inspired by natural evolution, such as inheritance, mutation, selection,
and crossover. The GA in Prins [66] outperforms all known metaheuristics that
solves large-scale instances with high solution quality. A recent contribution with
adaptive strategies by Vidal et al. [87] shows similar achievements. The proposed
metaheuristic merges three different search strategies: (i) a complex exploration
of population-based evolutionary search, (ii) a neighborhood-based metaheuris-
tic with strong improvement strategies, and (iii) advanced population diversity
management schemes. Using this combination, the authors generate new best
solutions for all available benchmark instances for the proposed problems. An
extension of the resulting multi-attribute VRPs is recently given in Vidal et al. [88].

A metaheuristic, the so-called variable neighborhood search (VNS) proposed
by Mladenović and Hansen [53], has gained popularity because of its ability to
solve combinatorial problems across a wide range of applications [31, 32, 33, 53].
In particular, the VNS is used to solve various variants of vehicle routing, e.g.
the multi-depot VRPTW (MDVRP) [64], the periodic VRP (PVRP) [35], or the
dial-a-ride problem [58].

Finally, recent trends show that algorithms with generic adaptive mechanisms
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are widely-used. The most popular and very successful adaptive approach is the
adaptive large neighborhood search (ALNS) developed by Ropke and Pisinger
in [70] and [71]. A clever selection mechanism is used to favor the most successful
operators. This strategy is adapted to various metaheuristics, e.g., the VNS.
Recently, Stenger et al. [74] implement an adaptive VNS (AVNS) using a similar
selection method inspired by ALNS. A very simple way to add an adaptive
manner to a metaheuristic is done with TS: a parameter, which guides the solution
process, is updated in every iteration.

The focus of Part I of this survey is on recent contributions of algorithms
with generic adaptive mechanisms. We consider as adaptive if it modifies the
parameters of an optimization algorithm during the search, based on information
that was not available before the beginning of the search. To begin in Section 2,
basic local search-based concepts are presented. In Section 3, hybrid local search-
based methods, e.g. iterated local search (ILS) and AVNS, are discussed. We
describe the large neighborhood search (LNS) and proceed with the ALNS in
Section 4. Section 5 presents adaptive mechanisms in population-based methods.
A list of abbreviations of all used routing variants is provided in the appendix in
Table 11.

2. BASIC LOCAL SEARCH CONCEPTS

Since TS is a very popular algorithm based on local search, an important por-
tion of the mechanisms described in this section are either based on TS or applied
to TS. Before discussing adaptive strategies in TS, two general mechanisms of
basic local search concepts, the reactive search (RS) and the guided local search
(GLS), are described.

RS is a general mechanism to adapt and tune the parameters of local search
methods based on search history. General descriptions can be found in Battiti [7]
and Battiti and Brunato [8]. An important idea of RS is to dynamically modify the
behavior of a basic algorithm according to contextual needs in diversification or in-
tensification. In the case of TS, both diversification and intensification are decided
by the tabu tenure, also called tabu list size; therefore applying RS to TS requires to
dynamically modify the tenure. This is done, e.g., in Battiti and Tecchiolli [9]: the
tabu tenure is increased when previously visited configurations are repeated, thus
providing extra diversification. If no previously visited configuration is repeated
for some time, the tenure is decreased in order to rebalance the search towards
more intensification. Additionally, when it occurs too often that previous states
are revisited, an escape mechanism is triggered, which consists in performing
random moves. Overall, this method could also be seen as ILS, which includes
random moves fulfilling the role of perturbation (see Section 3).

Another adaptive generalization of local search, the GLS, as described in
Voudouris et al. [89], aims at guiding the local search towards promising re-
gions of the search space. This is implemented by analyzing so-called features, e.g.
the use of arcs in routing optimization, and penalizing some of these features in
order to drive the search toward more promising regions of the search space. An
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important step in GLS is to define these features. Penalized features are those that
have a bad contribution to the objective function and have not been penalized too
much yet, i.e., those features i of solution x that maximize the following utility
function (assuming a minimization problem):

Ui(x) = Ii(x)
ci

1 + pi
(1)

where ci is the cost of feature i, pi is the current penalty of feature i, and Ii(x) is 1
if x exhibits feature i, and 0 otherwise. An extension to GLS, the extended GLS
(EGLS), adds aspiration criteria and random moves to GLS as in Mills et al. [52].

The definition of the use of arcs as features is done, for instance, in Leung et
al. [46], in Tarantilis et al. [83], in Zachariadis et al. [91, 92]. In [91, 92], GLS is
embedded in a TS: the evaluation function of TS is modified following the GLS
paradigm. In [83], GLS is used in a steepest descent fashion and called multiple
times with different neighborhoods after subsequent changes to the solution.
In [46], EGLS is applied to TS.

There are also other kinds of adaptive TS (ATS) approaches in the literature. A
common concept in local search is to accept infeasible solutions during the search
process, while incurring a penalty in the objective value, typically by multiply-
ing a measure of constraint violation by a certain factor. Several contributions
adapt such factors dynamically during the search. In Potvin [65], the capacity
constraint is relaxed and excess load is multiplied by a factor, and added up in
the evaluation function. At each iteration, this factor is either increased (if the
incumbent solution is infeasible) or decreased (if it is feasible). In Di Gaspero and
and Schaerf [20], two constraints are relaxed and the weights for penalizing them
are increased or decreased depending on (in)feasibility of the solution. However,
such modifications only happen after (in)feasibility is consistent over several it-
erations. This is a similar mechanism to that introduced by Anagnostopoulos et
al. [1].

Interestingly, all these ATS methods consist in modifying some parameters
after solution evaluation, such as penalty factors for infeasibility, penalty for
attributes, or tabu list size. Therefore, a very simple way to express ATS in a
general manner is to add a parameter update step after the solution evaluation step
in each iteration. For the sake of completeness, we provide an abstract algorithm
fitting all previously mentioned adaptive tabu search methods in Algorithm 1. It
is freely inspired from the generic TS algorithm from Stützle and Hoos [75].

After initializing the starting solution and the best solution found (lines 1
and 2), the main loop consists in iteratively constructing the set of admissible
neighbors (line 4), selecting one best admissible neighbor as a new incumbent
(line 5), updating the best solution found (lines 6-8) and updating the adaptive
mechanisms (line 9). It is noteworthy that the construction of the admissible
neighbors of x takes both the search history and x∗ as parameters. The history
allows prohibiting tabu neighbors, while x∗ allows overriding tabu status for
aspiration criteria.
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Algorithm 1 (Adaptive tabu search).
1: x← constructionHeuristic()
2: x∗ ← x
3: while stopping criterion not met do
4: X′ ← admissibleNei1hbors(x, history, x∗)
5: x← selectBest(X′)
6: if z(x) < z(x∗) then
7: x∗ ← x
8: end if
9: updateAdaptiveMechanisms(history)

10: end while
11: return x∗

Recent trends show that the GLS approach is the most popular adaptive gen-
eralization of TS. In Table 1, we present a selection of the last years contribution
on GLS-based approaches, and in Table 2, the used acronyms are described. The
values titled {nmin; nmax} in Tables 1, 3, 6, 7, and 10 indicate the minimum and
maximum number of nodes considered in the particular contribution.

The hybrid framework in Tarantilis et al. [83] combines three different meta-
heuristic strategies: VNS introduced by Mladenović and Hansen [53], TS by
Glover [28], and GLS by Voudouris et al. [89]. After defining the neighborhood
structures and generating an initial solution, the TS, which acts as local descent
within the VNS block, achieves an efficient interplay between diversification and
intensification. The VNS systematically changes the neighborhood operators
while the local search is applied by TS. The GLS method removes low-quality
features from the solution and reinserts the removed nodes. The source of inspi-
ration comes from Mester and Bräysy [50]: (i) low quality features of the solution
are selected, (ii) modified penalization terms are used for augmentation of the ob-
jective function, and (iii) a different customer removal and reinsertion procedure
is used to rearrange the routing schedule. Arc (i j) with cost ci j is penalized with
the utility function

U(i j) =
ci j/av1i j

1 + pi j
, (2)

where pi j is the number of times that arc (i j) has been penalized and av1i j is a cost
measure of the relative distance of nodes i and j. Compared to a methodology
based on adaptive memory and TS Crevier et al. [16], some best known solutions
can be improved up to 0.41% by the proposed metaheuristic.
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In Zachariadis et al. [91], an interaction between TS and GLS is proposed to
solve a capacitated VRP with two-dimensional loading constraints. The guiding
mechanism within the TS controls the objective function by penalizing low-quality
featured arcs resulted through the utility function (see Equation (2)). Due to the
guiding mechanism, the solution cost can be reduced about 4% compared to the
same TS without any guiding strategy. Compared to a competitive TS of Gendreau
et al. [25], the GLS-based TS is able to improve some of the best known solutions,
but it is not successful for every instance.

A similar approach as in Tarantilis et al. [83] and in Zachariadis et al. [91] is
used by Zachariadis et al. [92]. The TS- and GLS-based hybrid metaheuristic was
successfully applied to various benchmark instances and, e.g., compared to the TS
algorithm of Tang and Galvão [81], the average solution value can be improved
by 0.6%.

Leung et al. [46] present a metaheuristic methodology that incorporates theo-
ries of TS and EGLS. The authors follow Zachariadis et al. [91] to implement the
guiding strategy within the TS algorithm. Results show that optimizing by using
the aspiration criterion leads to significant improvements.

It has to be mentioned, that the work of Cordeau and Maischberger [15] is
classified here as well (see Section 3).

3. HYBRID LOCAL SEARCH CONCEPTS

As the name indicates, ILS consists of iterative calls to a local search method.
In each iteration, the incumbent solution is perturbed and the local search is
performed on the perturbed solution. Then a decision is made as to whether
the newly found local optimum should become the incumbent solution or not.
This whole process is iterated a number of times, and then the best solution
found during the whole process is returned. Readers interested in details and
discussions about ILS should consult Lourenço et al. [48].

Algorithm 2 (Iterated local search).
1: x← constructionHeuristic()
2: x← localSearch(x)
3: x∗ ← x
4: while stopping criterion not met do
5: x′ ← perturbation(x, history)
6: x′′ ← localSearch(x′)
7: if acceptanceDecision(x, x′′, history) then
8: x← x′′

9: if z(x) < z(x∗) then
10: x∗ ← x
11: end if
12: end if
13: end while
14: return x∗
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We outline the basic steps of ILS in Algorithm 2, which is inspired by the
algorithm provided in [48]. It is assumed that the optimization problem at hand
is a minimization problem. First of all, an initial solution x has to be constructed
(line 1) before a local search mechanism improves it (line 2). The incumbent
solution is denoted as x, while the best found solution is x∗; z(x) denotes the
objective value of solution x. As long as the stopping criterion is not met, a
perturbation is performed to get x′ (line 5), and a local search heuristic improves
the solution to x′′ (line 6). If x′′ passes the acceptance decision, it becomes the new
incumbent (line 7–8). If the new incumbent improves the best found solution x∗,
then x∗ is updated accordingly (line 9–10).

We can already note that the search history is incorporated in the perturbation
as well as in the acceptance decision, which allows for adaptive versions of ILS.
The stopping criterion can be for instance a predetermined number of iterations,
a predetermined CPU budget, or a given number of iterations without improve-
ment.

In Table 3, recent literature dealing with efficient ILS-based algorithms are
listed. The operators of Table 3 are explained in Table 4.

An ILS algorithm combined with a variable neighborhood descent and ran-
dom neighborhood ordering (ILS-RVND) is discussed by Penna et al. [59], and
shortly after by Subramanian and Battarra in [76]. As long as the neighborhood
list is not empty, a neighborhood is randomly selected and the best admissible
move is determined. The neighborhood list varies in the following way: if a
neighborhood does not improve the solution, the neighborhood is removed from
the list; otherwise, all removed neighborhoods are returned to the list for being
again randomly selected. The ILS-RVND in [59] is compared with various algo-
rithms, e.g., two instances, of which the solution was not proven to optimality of
the unified exact method of Baldacci and Mingozzi [5], could be improved.

Compared to a heuristic approach based on a branch-and-cut procedure of
Hernandez-Perez and Salazar-González [36], the ILS-RVND of Subramanian et
al. [76] finds new best solutions, but the execution time is higher. An extension of
the ILS-RVND algorithm [76] with an exact procedure based on a set partitioning
formulation (ILS-RVND-SP) is developed by Subramanian et al. [77]. The inter-
action between a mixed integer programming solver and an ILS-based approach
allows that different benchmark instances of VRP variants. As a unified frame-
work, the performance of ILS-RVND-SP is compared with several metaheuristics
and hybrid approaches, for example the ALNS in Pisinger and Ropke [62] and
Ropke and Pisinger [70] or a hybrid genetic algorithm of Vidal et al. [87].
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Table 4: List of operators used in ILS

2-opt The 2-opt heuristic in Croes [17] iteratively inverts sequences of nodes.
2-opt∗ The 2-opt∗ removes two arcs in the same rout or in two different routes with two

other arcs.
cross The cross operator in Penna et al. [59] is a 2-opt∗ operator and exchanges the last

parts of two routes.
double bridge The double bridge operator in Martin et al. [49] removes four randomly chosen

edges and reconnects with four alternative edges.
exchange The exchange move swaps two nodes within a tour.
k-shift A subset of consecutive nodes k is transferred from a route to another one in Penna

et al. [59].
Or-opt The Or-opt of Or [56] heuristic iteratively moves subsequences up to a sequence

length of three nodes.
reinsertion The reinsertion operator moves a node from a position to another position within

its route.
relocate The relocate operator moves one node to another place in the tour.
shift(λ,0) λ consecutive nodes are moved from one route to another one in Penna et al. [59].
shiftDepot The ShiftDepot operator of Subramanian et al. [77] moves a depot node from one

route to another one.
split A route is divided into smaller routes in Penna et al. [59].
swap(λ1,λ2) The swap(λ1,λ2) operator in Penna et al. [59] is a cross exchange heuristic (see

Table 5).
swapDepot The swapDepot operator in Subramanian et al. [77] swaps two depots of two routes.

In their recent article, Cordeau and Maischberger [15] describe a parallel iter-
ated TS (ITS) heuristic for solving four different routing problems. As this is a
hybrid search technique of ILS and TS, we decided to mention it in this section.
The method combines TS with a simple perturbation mechanism. It competes
with recent heuristics designed for each particular problem. The objective func-
tion is the sum of total routing costs plus the total weighted violation of capacity,
duration, and time window constraints. The corresponding weights of the viola-
tion terms are self-adapting: if violation occurs, the value is increased; otherwise,
the value is decreased. Furthermore, non-improving moves are penalized de-
pending on the current iteration number. Compared to the best known methods
for the classical VRPTW benchmark instances, it performs fast and competitive
results.

Michallet et al. [51] solve the PVRP with time spread constraints on services
(PVRPTS) with a hybrid combination of a mixed integer linear model and a multi-
start ILS.

The VNS relies on a systematic change of neighborhoods to escape local optima
and provide a broad exploration of the search space. After designing a set of
shaking neighborhoods and constructing an initial solution, it consists in iteratively
(i) shaking an incumbent solution, (ii) performing local search on it, and (iii)
deciding whether to accept it as a new incumbent or not. The name of the method
comes from the fact that the neighborhood used for the shaking phase changes
systematically during the search process.
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Assuming κ neighborhoods named N1, . . . ,Nκ are designed, then the search
starts by using N1. If no improvement is found when using Nk (k ∈ 1, . . . , κ),
then the next neighborhood used for shaking will be Nk+1; on the other hand,
whenever an improvement is found, the shaking neighborhood is reset to N1.
VNS is outlined in Algorithm 3.

Algorithm 3 (Variable neighborhood search).
1: x← constructionHeuristic()
2: x∗ ← x
3: k← 1
4: while stopping criterion not met do
5: x′ ← Nr

k(x)
6: x′′ ← localSearch(x′)
7: if acceptanceDecision(x, x′′) then
8: x← x′′

9: k← 1
10: if z(x) < z(x∗) then
11: x∗ ← x
12: end if
13: else
14: k← 1 + (k mod κ)
15: end if
16: end while
17: return x∗

After the initial solution x is constructed and the parameters are initialized
(line 1–3), a random neighbor of x using neighborhood Nk is generated (line
5). We use the additional notation Nr

k(x). Local search is performed to improve
the solution to x′′ (line 6). If x′′ passes the acceptance decision, it becomes the
new incumbent (line 7–8) and the shaking neighborhood is reset to N1 (line 9).
If the new incumbent improves the best found solution x∗, then x∗ is updated
accordingly (line 10–11). Otherwise, if x′′ fails the acceptance decision, the search
continues with the next neighborhood Nk+1 (line 12).

For a good introduction to VNS, see Hansen and Mladenović [31]. A common
practice is to use so-called nested neighborhoods N1 ⊆ N2 ⊆, . . . ,⊆ Nk. This way,
research is biased towards smaller neighborhoods, and large neighborhoods are
only used when the small ones fail to provide a new acceptable solution.

Over the last years, a number of VNS methods integrating adaptive aspects
have been developed. In most cases, the adaptive aspect concerns the shaking
phase: shaking is performed differently depending on the context. For instance,
in Pillac et al. [60] and in Stenger et al. [74], the shaking method is selected using
a roulette wheel where the weight for each neighborhood is based on its success
rate in previous iterations. In Polacek et al. [63], the size of the neighborhood as
well as the acceptance rate of ascending moves are automatically adapted through
the search. However, other possibilities exist. In Hsiao et al. [38], for instance, the
CPU budget allocated to local search is adapted dynamically. There is no unified
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approach for AVNS so, we suggest a generic outline in Algorithm 4, which covers
all of the contributions we are aware of. It involves potential adaptive mechanisms
at all three steps of any iteration, namely shaking (line 4), local search (line 6) and
acceptance decision (line 7).

Algorithm 4 (Adaptive variable neighborhood search).
1: x← constructionHeuristic()
2: x∗ ← x
3: while stopping criterion not met do
4: N← selectShakin1(history)
5: x′ ← Nr(x)
6: x′′ ← localSearch(x′, history)
7: if acceptanceDecision(x, x′′, history) then
8: x← x′′

9: if z(x) < z(x∗) then
10: x∗ ← x
11: end if
12: end if
13: end while
14: return x∗

The operators of Table 6 are explained in Tables 4 and 5.

Table 5: List of operators used in VNS

3-opt The 3-opt operator of Lin [47] removes three edges and reconnects with
three alternative edges.

cross exchange The cross exchange operator of Taillard et al. [79] takes two segments of
different routes and exchanges the sequences.

cyclic-exchange The cyclic-exchange operator in Thompson and Psaraftis [84] simultane-
ously moves nodes among routes in a cyclic way.

icross exchange The icross exchange operator in Bräysy and Gendreau [11] takes two seg-
ments of different routes, exchanges and inverts the sequences.

λ-interchange The λ-interchange operator of Osman [57] moves a sequence of λ nodes
from one route to another.

relocate op. The relocate operator is a special case of the λ-interchange operator of Os-
man [57] and moves one node from one route to another.

sequence displacing The sequence displacing displaces a sequence of nodes with or without
inversion.

string exchange The string exchange operator in Irnich et al. [39] takes two segment of nodes
within one route and exchanges them.

swap The swap operator in Irnich et al. [39] exchanges two nodes.
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The AVNS presented by Polacek et al. [63] has the ability to self-adapt the
most influential parameters of a VNS algorithm: the selection of neighborhood
structures and the threshold parameter used in the acceptance decision. For both
self-adapting parameters, a counter xi is used to score the success of the parameter
i. If an improvement can be achieved, the particular counter is increased by 1.
The roulette wheel method selects the parameter values for each defined part of
the solution process. The probability P(i) for every parameter value i is calculated
by the following function:

P(i) =
ln(xi)∑

j∈Ω ln(x j)
∀ j ∈ Ω (3)

where Ω describes the set of all possible parameter values of each self-adapting
parameters. In order to avoid the dominance of a specific parameter setting, the
natural logarithm is applied. Compared to the previous VNS version, Polacek et
al. [64] without self-adapting parameters, an average improvement of 0.28% can
be obtained.

Hosny et al. [37] also use a simple adaptive strategy for the neighborhood size.
The authors perform VNS runs repeatedly, while the initial solution is the final
solution of the previous VNS run. They find out that in the beginning of the whole
solution process, comprising multiple runs, larger neighborhood sizes quickly
provide improvements, whereas later on smaller neighborhoods seem to be more
beneficial. After each VNS run, the neighborhood size is reduced by a quarter
of the initial maximum neighborhood size, until the predefined lower bound of
a quarter of the initial neighborhood size is met. The initial neighborhood size is
set to 2 × √n, where n is the total number of nodes. An AVNS run stops after a
fixed number of iterations or a given number of non-improving iterations. To put
it simply, the multiple VNS runs can be interpreted as one VNS run with reducing
maximum neighborhood size after a given number of iterations or a fixed number
of non-improving iterations. Improvements up to 3% are obtained compared to
the genetic algorithm in Zhao et al. [94].

Recently, Stenger et al. [74] present an AVNS algorithm obtained by incorpo-
rating an adaptive mechanism inspired by the roulette wheel method in the ALNS
of Pisinger and Ropke [62] which is described in Section 3. Due to the roulette
wheel selection method, the AVNS guides the shaking step to areas where high
quality solutions are expected by biasing the random shaking step of VNS. In
particular, the authors define two selection decisions that are independently per-
formed: (i) a route selection chooses the routes to be involved, and (ii) a customer
selection chooses the customers to be exchanged. In total, 51 different neigh-
borhood structures are used. After applying a method in the shaking phase, a
scoring system evaluates the success of each neighborhood i in a segment of 30
iterations and adds scores to the counter xi: (i) a score of nine is added whenever
a new overall best solution is found, (ii) a score of three is added, if the current
solution is improved, and (iii) a score of one is added if the solution is worse
than the current, but is accepted by the simulated annealing criterion. A reaction
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factor ρ = 0.3 allows for controlling the adaptive behavior of the algorithm to the
recent trend with exponential smoothing. Before the roulette wheel mechanism
is performed, the weights πi, which are initialized equally, need to be adapted:

πi = ρ
xi

χi
+ (1 − ρ)πi, (4)

where χi is the number of times the neighborhood has been called in the current
segment. The probability P(i) for every neighborhood structure in the set Ω of all
possible parameters Ω is calculated by the following function:

P(i) =
πi∑

j∈Ω π j
. (5)

The adaptive mechanism considerably improves performances with respect to
both solution quality of real-world instances and convergence speed compared to
a commercial solver.

An AVNS is used within an event-driven optimization framework by Pillac
et al. [60]. In this algorithm, neighborhoods are not explored in sequential order,
as it is defined in the original VNS algorithm, Mladenović and Hansen [53], but
are rather selected randomly with a bias depending on their previous success.
Neighborhoods with higher success are chosen frequently, while neighborhoods
which lead to less improvements are chosen to a lesser extent. As in Polacek
et al. [63] and Stenger et al. [74], the parameters are adapted with a roulette
wheel method. The stopping criterion is the same as in Penna et al. [59] and
in Subramanian et al. [76]: the process iterates until all neighborhoods have
been explored with no improvement. Computational experiments show that
this approach is competitive with state-of-the-art algorithms, e.g., a dynamic
programming approach in Novoa et al. [55].

4. LARGE NEIGHBORHOOD SEARCH

The LNS is a specialization of the concept of local search to so-called large
neighborhoods. In LNS, the neighborhood considered is the set of solutions that
can be obtained by destroying large portions of an incumbent solution x, and
then repairing this partial solution to make it a feasible solution to the whole
optimization problem at hand. The terms destroy and repair can be substituted
with ruin and recreate, as similar concepts were published under different names
in Schrimpf et al. [72] and in Shaw [73]. Since there are many ways of destroying
and repairing a solution, the neighborhood is very large. Hence, it is explored
heuristically and destroy and repair heuristics are designed for that purpose. Then
LNS consists in iteratively (i) selecting a pair of destroy and repair operators, (ii)
applying them to the incumbent solution, and (iii) deciding to accept or not the
new solution.

ALNS, introduced in Ropke and Pisinger [71], adds an adaptive mechanism
to the step where the operators are selected, by using search history to favor the
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most successful operators. Using the previously introduced notation and style,
we outline ALNS in Algorithm 5. The algorithm has to be initialized with the
construction of a starting solution x (line 1). At every iteration, a destroy operator
d and a repair operator r need to be selected (line 4). The adaptive aspect of ALNS
lies in the history parameter on line 4: without this parameter, the algorithm
describes LNS. Then d destroys x and r repairs d(x) (line 5). A new solution x′

is obtained. If x′ passes the acceptance decision, it becomes the new incumbent
(line 6–7). If the new incumbent improves the best found solution x∗ then x∗ is
updated accordingly (line 8–9).

Algorithm 5 (Adaptive large neighborhood search).
1: x← constructionHeuristic()
2: x∗ ← x
3: while stopping criterion not met do
4: (d, r)← selectOperators(history)
5: x′ ← r(d(x))
6: if acceptanceDecision(x, x′, history) then
7: x← x′

8: if z(x) < z(x∗) then
9: x∗ ← x

10: end if
11: end if
12: end while
13: return x∗

A collection of recent and important ALNS contribution is summarized in
Table 7, and a description of the destroy and the repair operators can be found in
Table 8.

Although the ALNS is introduced in Ropke and Pisinger [70, 71], the mostly
cited paper discussing ALNS is presented by Pisinger and Ropke [62]. The algo-
rithm is able to solve several variants of VRPs. The key to success of this unified
framework is the strategy of choosing the destroy and the repair neighborhoods
due to their success in the past. The adaptiveness lies in a simple roulette wheel
mechanism to update the probability for each operator to be chosen: the more
successful an operator Ni is, the more its score xi is increased; the less contribution
an operator Ni has, the less its score xi is increased. Scores are updated every time
a time segment of 100 iterations is started. Information from past time segments
is kept by updating the score parameters using the reaction factor ρ = 0.1 (see
Equation (4)). The probability P(i) for choosing operator Ni ∈ ω is calculated as
in Equation (5). The ALNS algorithm has also been applied to different research
areas only with slight parameter changes. Furthermore, destroy and repair op-
erators are previously treated independently, but recent trends, e.g. Kovacs et
al. [42], have shown that dependent considerations of neighborhoods pairs are
efficient as well. The discussed ALNS is a competitive approach solving different
variants of VRPs and obtaining new best solutions, e.g., for the VRP with time
windows.
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Lei et al. [45] use four different removal and four different insertion heuris-
tics, which are treated independently. Contrary to Pisinger and Ropke [62], each
segment is 50 iterations. As there is no competing heuristic for the considered
capacitated VRP with stochastic demands and time windows (CVRPSDTW), the
authors compare the solutions with the deterministic case to prove that the in-
vented ALNS performs efficiently.

In Azi et al. [3], different removal operators, which are treated independently
of insertion operators, are defined to cover three different operation levels: the
customers, the routes, and the workdays. Each segment of collecting scores is
200 iterations. The exact scoring system is not specified. A comparison of the
previous version of the algorithm in Azi et al. [2] to the optimal solution results a
gap less than 1%. Recently, Azi et al. [4] show that the classical approach with the
use of customer-based operators is not as beneficial as the use of operators based
on the three defined levels.

A sophisticated ALNS approach is presented by Hemmelmayr et al. [34] to
solve the two-echelon VRP that considers two levels: Level 1 is the delivery from
the central depot to the satellite facilities, and Level 2 is the delivery from the
satellites to the customers. Besides the well known destroy and repair operators,
mechanisms to open and close satellites are necessary to guarantee high quality
solutions. As the authors deal with destroy and repair operators of two different
levels, a hierarchical structure needs to be defined: an operator to open and close
satellites following a local search phase is executed whenever a given number of
iterations have been performed without improvement. The destroy and repair
operators are updated independently every 100 iterations. If a new best solution
is obtained, a score of 1 is added to the score parameter. Several new best solutions
can be found, e.g., compared to a hybrid metaheuristic based on VNS combined
with integer linear programming Pirkwieser and Raidl [61]. Several new best
solutions for standard benchmark instances can be found compared to Duhamel
et al. [22], e.g..

A service technician routing and scheduling problem (STRSP) is solved by
Kovacs et al. [42] using ALNS. Appropriate destroy and repair algorithms with
and without team building inspired by Ropke and Pisinger [71] are designed for
solving real-world problem instances, including lunch break requirements and
shift length related labor costs. Contrary to the popular ALNS approach, the
scores and weights for each destroy and each repair operator are not considered
independently, but destroy-repair heuristic pairs are used. In total, ten pairs are
used for the STRSP without team building and eleven pairs are used for the STRSP
with team building. Every 100 iterations, the probabilities of the destroy-repair
heuristic pairs are updated as in Equation (5). The new adaptive mechanism is
as good as or even slightly better than the one proposed in [71]. Compared to the
real-world solutions of the manual planning, an improvement of about 10% can
be obtained.
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Table 8: List of acronyms for destroy and repair heuristics

CR Cluster removal is a RelR that removes requests that are, e.g., geographically clustered.
DFSI Demand and failure sorting insertion inserts requests in order of the largest expected

demand to the route with the smallest probability of failure
DGI Deep greedy insertion inserts requests which cause the minimal objective costs
DR Demand-based removal based on demands is a RelR
EWR Expected worst removal removes requests that have a critical effect on the costs
FLLS First level local search improves the transportation from the depot to the satellites
FOI Feasibility-oriented insertion moves toward feasibility of infeasible solutions by inserting

requests into the routes
FOR Feasibility-oriented removal moves toward feasibility of infeasible solutions by removing

vertices from the routes
GI Greedy insertion inserts a requests in the cheapest position
GIF Greedy insertion forbidden works like GI but is not allowed to serve a customer from the

same satellite from which it was removed
GIN Greedy insertion with noise function is an extension of GI but uses a degree of freedom

in selecting the insertion place
GIP Greedy insertion perturbation works like GI but penalizes the insertion cost by a factor
HNPR Historical node-pair removal uses historical information when removing requests
HRPR Historical request-pair removal uses historical success of paired requests
HR Historical knowledge node removal is similar the HNPR
LCH Least-cost heuristic inserts requests at a feasible position with minimum detour
NGR Neighbor graph removal is similar to the HNPR
NNR Node neighborhood removal removes randomly a request as well as requests in its neigh-

borhood
NR Neighborhood removal removes requests which are remarkably different compared to

the average distance of a route
PR Proximity-based removal removes a set of requests that are similar in terms of distance
RaR Random removal removes requests, e.g. customers, randomly
RelR Related removal removes requests, e.g. customers, with common characteristics; a relat-

edness measure has to be defined before
RelRou Related route removal removes routes with common characteristics
ReqGR Request graph removal is similar to HPRP
RI Regret insertion uses a look-ahead information when selecting the request to insert
RIN Regret insertion with noise function works as RI but uses the same noise function as GIN
RouR Route removal removes a random route
RouRe Route redistribution removes routes from each open satellite and reassigns the requests

due to penalized distances
SatO Satellite opening opens a random satellite that is closed
SatR Satellite removal closes a random satellite
SatS Satellite swap replaces a satellite with a new one which is close to the old one
SIH Sequential insertion heuristic considers one route at a time; two criteria define which

request at which position should be inserted
SimR Similarity removal is based on a cost measure is a RelR
SRHBAT Shaw removal heuristic based on arrival times is a RelR
SRHBD Shaw removal heuristic based on distances is a RelR
TFSI Time and failure sorting insertion inserts requests in order of the width of their time

window to the route with the smallest probability of failure
TOR Time-oriented removal is a RelR that removes requests which are served at roughly the

same time.
TR Time-based removal is based on SRHBAT
WDR Worst-distance removal removes requests with high distance costs
WoR Workday removal removes randomly workdays
WR Worst removal removes requests with high costs
ZI Zone insertion inserts requests at the best insertion due to time windows rather than

distance
ZR Zone removal removes requests of a predefined area in the Cartesian coordinate system
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An ALNS algorithm is recently discussed by Demir et al. [19] to deal with
the important topics of fuel, emission, and driver costs. The authors present
twelve removal operators, where nine are adapted or inspired by Pisinger and
Ropke [62] and Shaw [73], and three are newly invented, as well as five insertion
neighborhoods, where four are adapted and one is new. Destroy and repair
neighborhoods are treated independently. Each segment is 450 iterations. In
order to evaluate the effectiveness of the heuristic algorithm, different sets of
real geographic instances are tested and the results show a highly productive
approach.

Following Ropke and Pisinger [71] and Shaw [73], Ribeiro et al. [69] use ten
destroy and repair operators to solve different instance classes of the cumulative
capacitated VRP. The operators are selected independently according to the adap-
tive mechanism as described in Pisinger and Ropke [62]. A score of 50 is added to
the score parameter if a new best solution is obtained; a score of 20 is added to the
score parameter if the current solution can be improved; and a score of 5 is added
to the score parameter if a non-improving solution is accepted. After 50 iterations
the weights and probabilities are updated with a reaction factor ρ = 0.01. The
algorithm stops either after 50000 iterations, or if the temperature of the simulated
annealing acceptance criterion reaches 0.01. Compared to a memetic algorithm of
Ngueveu et al. [54], the proposed ALNS improves the best known solutions up
to 22 %.

5. POPULATION-BASED METHODS

Adaptiveness can be also found in some population-based approaches. Inter-
estingly, some population-based methods are adaptive by nature. This is the case
with ant colony optimization (ACO) [21] and the methods based on the concept of
adaptive memory programming [80]. ACO relies on repetitively calling a probabilis-
tic construction heuristic. At a given stage of this construction heuristic, solution
components have a certain probability of being selected, this probability being
influenced by a so-called pheromone value. This pheromone value is regularly
updated based on search history and on the quality of solutions previously using
the same solution component. When solving routing problems, such components
are typically arcs. Arcs which have been present in good solutions have higher
probabilities of being selected. ACO is a constructive metaheuristic, therefore
efficient solutions, e.g. generated with the savings-based concepts in Reimann et
al. [67], have to be obtained. There is a significant literature on ACO methods for
routing problem, see e.g. [6, 12, 67].

The general idea behind adaptive memory programming is to keep a number
of good solutions encountered during the search, and use this memory to build
new solutions. Every time a new solution is built, the memory is adapted in order
to integrate the new solution if necessary (that is, if it is interesting to add this
solution to the adaptive memory). This memory can be seen as a pool or popula-
tion of solutions, which is why we mention it here. Adaptive memory has been
used to solve routing problems. For instance, [93] develop an adaptive memory
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methodology for the vehicle routing problem with simultaneous pickups and de-
liveries (VRPSPD). Adaptive memory has been hybridized with particle swarm
optimization (another population-based method) to solve a dynamic vehicle rout-
ing problem [41]. Recently, Khebbache-Hadji et al. [40] have improved heuristics
with a memetic algorithm to solve the capacitated vehicle routing problem with
two-dimensional loading constraints and time windows (2L-CVRPTW).

Evolutionary algorithms integrate adaptive mechanisms in a number of ways,
e.g. in [10], Berger uses a sparsification parameter β in order to restrict the
search by considering only insertions of neighboring nodes. This parameter is
dynamically modified based on the search history, in order to favor intensification
or diversification. In [44], a genetic algorithm is guided by using fuzzy logic.
More precisely, the crossover and mutation rate are dynamically adapted based
on the recent search history. For instance, when the average solution quality in the
population increases, crossover increases and mutation decreases in order to favor
intensification. In recent contributions [86, 87, 88], a genetic algorithm which also
uses infeasible solutions during the search is presented. A certain proportion of
infeasible solutions in the population is targeted, in order to explore interesting
and potentially improvement-bringing solutions. The evaluation function uses
penalty coefficients to deal with infeasibility, where coefficients are dynamically
adapted in order to steer the search towards the desired proportion of infeasible
solutions. In [13], a very similar framework is developed but without the adaptive
mechanism. However, a local search phase is introduced. Several neighborhoods
are used, and at each iteration of the local search, one of them is probabilistically
selected. The probabilities associated with each neighborhood are adapted at
every 100 iterations based on search history, in a fashion similar to ALNS albeit
simpler.

In Table 10, we present a selection of the last years contributions on adaptive
population-based approaches, and in Table 9, the used operators are described.

Table 9: List of operators used in population-based methods

1-0 exchange A node is moved from its position in one route to another position in either the
same or a different route [90].

1-1 exchange Two nodes are swapped from either the same or different routes [90].
2-opt The 2-opt heuristic in Croes [17] iteratively inverts sequences of nodes.
2-opt∗ The 2-opt∗ heuristic exchanges the last parts of two routes.
move Nodes are moved to another position in either the same or different route.
swap Nodes are swapped from either the same or different routes.
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6. CONCLUSION

This research paper presents an overview of recent adaptive mechanisms when
solving vehicle routing problems (VRPs) with metaheuristics. Starting with basic
local search-based methods, e.g. adaptive tabu search (ATS) or guided local search
(GLS), we progress to hybrid local search methods, e.g. iterated local search (ILS),
adaptive variable neighborhood search (AVNS) and adaptive large neighborhood
search (ALNS). For the sake of completeness, we concluded the survey with
population-based methods, e.g. ant colony optimization (ACO), memetic and
genetic algorithms (GAs).

The most popular and very successful adaptive approach is the ALNS using a
clever selection mechanism favor the most successful operators. Also, recent work
in population-based methods, e.g. Vidal et al. [88] achieve, by using, adaptive
crossover and mutation rate competitive results.

In order to further investigate which of the possible adaptive strategies are
particularly useful, Part II of this survey [43] will consider several ways of making
a VNS algorithm adaptive and will investigate numerically, which ones are useful
and promising for solving the open VRP instances.
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[60] Pillac, V., Guéret, C., Medaglia, A. L., “An event-driven optimization framework for dynamic
vehicle routing”, Decision Support Systems, 54(1) (2012) 414-423.

[61] Pirkwieser, S., Raidl, G. R., “Variable neighborhood search coupled with ILP-based very large
neighborhood searches for the (periodic) location-routing problem”, in: M. Blesa, C. Blum, G.R.
Raidl, A. Roli, M. Sampels (eds.) Hybrid metaheuristics, Lecture Notes in Computer Science,
Springer Berlin Heidelberg, vol.6373 (2010) 174-189.

[62] Pisinger, D., Ropke, S., “A general heuristic for vehicle routing problems”, Computers & Opera-
tions Research, 34(8) (2007) 2403-2435.

[63] Polacek, M., Benkner, S., Doerner, K. F., Hartl, R. F., “A Cooperative and Adaptive Variable Neigh-
borhood Search for the Multi Depot Vehicle Routing Problem with Time Windows”, Business
Research Journal, 1(2) (2008) 207-218.

[64] Polacek, M., Hartl, R. F., Doerner, K. F., Reimann, M., “A Variable Neighborhood Search for the
Multi Depot Vehicle Routing Problem with Time Windows”, Journal of Heuristics, 10(6) (2004)
613-627.

[65] Potvin, J.-Y., Naud, M. A., “Tabu search with ejection chains for the vehicle routing problem
with private fleet and common carrier”, Journal of the Operational Research Society, 62 (2011)
326-336.

[66] Prins, C., “A simple and effective evolutionary algorithm for the vehicle routing problem”,
Computers & Operations Research, 31(12) (2004) 1984-2002.

[67] Reimann, M., Doerner, K. F., Hartl, R. F., “D-Ants: Savings Based Ants divide and conquer the
vehicle routing problem”, Computers & Operations Research, 31(4) (2004) 563-591.

[68] Reimann, M., Stummer, M., Doerner, K. F., “A savings based ant system for the vehicle rout-
ing problem”, in: W. B. Langdon, et al. (eds.) Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2002). San Francisco: Morgan Kaufmann (2002).

[69] Ribeiro, G. M., Laporte, G., “An adaptive large neighborhood search heuristic for the cumulative
capacitated vehicle routring problem”, Computers & Operations Research, 39(3) (2012) 728-735.

[70] Ropke, S., Pisinger, D., “A unified heuristic for a large class of Vehicle Routing Problems with
Backhauls”, European Journal of Operational Research, 171(3) (2006) 750-775.

[71] Ropke, S., Pisinger, D., “An Adaptive Large Neighborhood Search Heuristic for the Pickup and
Delivery Problem with Time Windows”, Transportation Science, 40(4) (2006) 455-472.

[72] Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., Dueck, G., “Record breaking optimization
results using the ruin and recreate principle”, Journal of Computational Physics, 159 (2000)
139-171.

[73] Shaw, P., “Using Constraint Programming and Local Search Methods to Solve Vehicle Routing
Problems”, in: M. Maher, J. F. Puget (eds.) Principles and Practice of Constraint Programming –
CP98, Lecture Notes in Computer Science, Springer Berlin Heidelberg, vol. 1520 (1998) 417-431.

[74] Stenger, A., Vigo, D., Enz, S., Schwind, M., “An Adaptive Variable Neighborhood Search Algo-
rithm for a Vehicle Routing Problem Arising in Small Package Shipping”, Transportation Science,
47(1) (2013) 64-80.
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APPENDIX

Table 11: List of acronyms for problem variants

1-PDP One-commodity pickup and delivery problem
2E-VRP Two-echelon vehicle routing problem
2L-CVRP Capacitated vehicle routing problem with two-dimensional loading constraints
ACVRP Asymmetric capacitated vehicle routing problem
CCVRP Cumulative capacitated vehicle routing problem
CVRP Capacitated vehicle routing problem
CVRPSDTW Capacitated vehicle routing problem with stochastic demands and time windows
DVRPM Dynamic vehicle routing problem with multiple delivery routes
DVRSD Dynamic vehicle routing problem with stochastic demands
FSM Fleet size and mix is a HFVRP with unlimited fleet
FSMD Fleet size and mix with dependent costs is a HFVRPD with unlimited fleet
FSMF Fleet size and mix with fixed costs is a HFVRPF with unlimited fleet
FSMFD Fleet size and mix with fixed and dependent costs is a HFVRPFD with unlimited fleet
GVRP Generalized vehicle routing problem
HFVRP Heterogeneous fleet vehicle routing problem
HFVRPD Heterogeneous fleet vehicle routing problem with dependent costs
HFVRPF Heterogeneous fleet vehicle routing problem with fixed costs
HFVRPFD Heterogeneous fleet vehicle routing problem with fixed and dependent costs
LDVRP Load-dependent costs vehicle routing problem
LRP Location routing problem
MDVRP Multi depot vehicle routing problem
MDVRPMPD Multi depot vehicle routing problem with mixed pickup and delivery
MDVRPPC Multi depot vehicle routing problem with private fleet and common carriers
MDVRPTW Multi depot vehicle routing problem with time windows
MRP Multicast routing problem
OVRP Open vehicle routing problem
OVRPTW Open vehicle routing problem with time windows
PRP Pollution-routing problem
PVRP Periodic vehicle routing problem
PVRPTW Periodic vehicle routing problem with time windows
RPDPTW Rich pickup and delivery problem with time windows
SDVRP Site-dependent vehicle routing problem
SDVRPTW Site-dependent vehicle routing problem with time windows
STRSP Service technician routing and scheduling problem with and without team building
TDVRPTW Time-dependent vehicle routing problem with time windows
TSP Traveling salesperson problem
TSPPD Traveling salesperson problem with pickups and deliveries
VFMP-F Vehicle fleet mix problem with fixed vehicle costs
VFMP-FV Vehicle fleet mix problem with fixed and variable vehicle costs
VFMP-V Vehicle fleet mix problem with variable vehicle costs
VFMPTW Vehicle fleet mix problem with time windows
VRP Vehicle routing problem
VRPB Vehicle routing problem with backhauls
VRPBTW Vehicle routing problem with backhauls and time windows
VRPIRF Vehicle routing problem with intermediate replenishment facilities
VRPMPD Vehicle routing problem with mixed pickup and delivery
VRPPC Vehicle routing problem with private fleet and common carriers
VRPSPD Vehicle routing problem with simultaneous pickups and deliveries
VRPSTW Vehicle routing problem with soft time windows
VRPTW Vehicle routing problem with time windows
VRPTWMD Vehicle routing problem with time windows and multiple deliverymen
VRTDSP Vehicle routing and truck-driver scheduling problems


