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Abstract: In this paper we discuss the possibility of computing unknotting number from 
minimal knot diagrams, Bernhard-Jablan Conjecture, unknown knot distances between 
non-rational knots and of searching minimal distances by using a graph with weighted 
edges representing knot distances. Since topoizomerazes are enzymes involved in 
changing crossing of DNA, knot distances can be used to study topoizomerazes actions. 
We compute some undecided knot distances 1 known from the literature, and extend the 
computations by computing knots with smoothing number one with at most n = 11 
crossings and smoothing knot distances of knots with at most n = 9 crossings. All 
computations are done in the program LinKnot, based on Conway notation and non-
minimal representations of knots. 
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1. INTRODUCTION 

The question of unknotting numbers, or Gordian numbers is one of the most difficult 
in knot theory [1, 2]. In order to compute unknotting numbers, we need a link surgery. In 
every crossing of a knot, it is possible to make a crossing change (Fig. 1a): to transform 
an overcrossing to undercrossing or vice versa. Crossing change is unknotting operation. 

 
Definition 1. The unknotting number u(D) of a knot diagram D is the minimal number of 
crossing changes on the diagram required to obtain a diagram representing an unknot; 
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The uM(K) of a knot K in R3 is the minimum of u(D) over all minimal crossing number 
diagrams D representing knot K; 
The unknotting number u(K) of a knot K in R3 is the minimum of u(D) over all diagrams 
D representing K.  

 
Since every knot K has an infinite number of diagrams and a finite number of 

minimal diagrams, the main question is: Is the unknotting number computable from 
minimal diagrams of K? There are two different approaches for obtaining the unknotting 
number of K: 

 

 
Figure 1: A crossing change (a) and the Nakanishi-Bleiler example: (b) the minimal 

projection of the knot 5 1 4 that requires at least three crossing changes to be unknotted; 
(c) the minimal projection of the knot 3 1 2 with the unknotting number 1; 

(d) non-minimal projection of the knot 5 1 4 from which we obtain the correct unknotting 
number u(5 1 4) = 2 

      - according to the classical definition, one is allowed to make an ambient isotopy 
after each crossing change and then continue the unknotting process with the newly 
obtained projection; 

             - the standard definition requires all crossing changes to be done simultaneously 
in a fixed projection.  
   
 Those two definitions are equivalent (see, e.g.,[3]). 
 

If in the standard definition we take only minimal projections instead of working 
with all projections, we cannot always obtain the correct unknotting number. This is 
illustrated by the well known example of the knot 108 given by Nakanishi [4] and Bleiler 
[5]. The rational knot 108 (or 5 1 4 in Conway notation) has only one minimal projection 
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(Fig. 1b). According to the standard definition, unknotting takes at least three crossing 
changes (in the crossings denoted by circles). If we apply the classical definition: make a 
crossing change in the middle point of the diagram (Fig. 1b) followed by the reduction 
5 −1 4 = 3 1 2, we obtain the minimal projection of the knot 62 = 3 1 2 (Fig. 1c) that can 
be unknotted by only one crossing change. As the result we obtain the correct unknotting 
number 2. The same unknotting number will be obtained if we take the non-minimal 
projection of the knot 5 1 4 (Fig. 1d) and use the standard definition. Hence, by using the 
classical definition, we can obtain the correct unknotting number u(108) = 2 from the 
minimal projection of the knot 108 = 5 1 4. Therefore, Bernard [6] and Jablan [8] 
independently proposed the following conjecture: 

 
Conjecture 1. Bernhard-Jablan Conjecture: 
 
u(K) = 0 for any unknot K; 
u(K) = min(u(K−)) + 1, where the minimum is taken over all minimal projections of knots 
K−, obtained from all minimal projections of K by one crossing change [8]. 

 
This means that we take all minimal projections of a knot K, make a crossing change 

in every crossing, and then minimize all the projections obtained. The same algorithm is 
applied to the first, second, . . . kth generation of the knots obtained. The unknotting 
number is the minimal number of steps k in this recursive unknotting process. Many 
unknotting numbers computed according to Bernhard-Jablan Conjecture are confirmed 
by computing their signature (or Rasmussen signature), where for the both signatures 

holds the inequality   
( ) ( )
2
K u Kσ

≤  .                
  
Definition 2. Knot distance between knots K1 and K2 is minimum number of crossing 
changes required to convert K1 into K2. 
  

One of the applications of knot distances is the transformation of knots in DNA. 
Since topoisimerazes are enzymes involved in crossing changes in DNA, knot distances 
can be used to study topoisomerazes action. In this way, a knot distance is the minimum 
number of times needed for topoisomeraze to mediate strand passage (crossing change) 
on DNA in order to convert K1 to K2. Note that minimum is taken over all diagrams of 
K1. In particular, the unknotting number of a knot K is its distance from the unknot 01. 
For unknotting number, according to Bernhard-Jablan Conjecture, there is a chance that it 
can be computed by a recursive algorithm from minimal knot diagrams, but knot 
distances are mostly realized only on non-minimal diagrams. For example, the distance 
of the knot 61 = 4 2 and its mirror-image !61 = −4 −2 is one. It cannot be obtained from 
minimal diagrams of 61 and !61, but can be obtained from non-minimal diagrams 3 −1 −3 
and 3 1 −3 of the knot 61 and its mirror-image !61, which are related by a single crossing 
change (Fig. 2). 

Knot distances have the properties of metric: 
1. d(K1,K2) = 0 iff K1 = K2; 
2. d(K1,K2) = d(K2,K1); 
3. d(K1,K2) ≤ d(K1,K) + d(K,K2), where K is an arbitrary knot [7]. 
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Figure 2: Knot 61 and its mirror-image !61 with distance 1 

In particular, for unknotting numbers u(K1) and u(K2) the triangle inequality 3) 
reduces to d(K1,K2) ≤ u(K1) + u(K2). 

Except crossing changes, another way to unknot some knot is to use smoothing. 
Even more difficult for computation, and hence less elaborated are smoothing unknotting 
numbers and smoothing distances of knots. In the second part of this paper we present 
computations of smoothing numbers and smoothing distances. As well as Gordian 
distances, H2-Gordian distances (or smoothing distances) mostly cannot be computed 
from minimal knot diagrams, so this represents the main obstacle for their computation. 

The paper is organized in the following way: after the Introduction (Section 1) and a 
brief explanation of Conway notation (Section 2), in Section 3, we considered unknot 
recognition. Section 4 presents the overview of the algorithmic methods, and our recent 
computation results of knot distances for knots with at most 9 crossings and a 
generalization of these results to families of knots with distance 1, given in Conway 
notation. In Section 4, we present new results about Gordian distances and strand passage 
metrics. In Section 5, we analyze smoothing as unknotting operation, and equivalence 
between band unknotting number and smoothing number. In Section 6, we present 
computations of knots with smoothing number 1, based on knots with unknotting number 
1, and Section 7, is dedicated to the computation of smoothing distances for knots up to 
n = 9 crossings. All computations are done in Mathematica based program LinKnot [8] 
by using Conway notation. 

 
2. BASICS OF CONWAY NOTATION 

Knots and links can be given in Conway notation [8–10]. For the readers non 
familiar with it, we explain Conway notation, introduced in Conway’s seminal paper [10] 
published in 1967, and effectively used since (e.g., [8–10]). Conway symbols of knots 
with up to 10 crossings and links with at most 9 crossings are given in the Appendix of 
the book [9]. The explanation of the Conway notation is based on the book [8]. 
 

 
Figure 3: The elementary tangles 
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The main building blocks in the Conway notation are elementary tangles. We 
distinguish three elementary tangles, shown in Fig. 3 and denoted by 0, 1 and −1. All 
other tangles can be obtained by combining elementary tangles, while 0 and 1 are 
sufficient for generating alternating knots and links (abbr. KLs). Elementary tangles can 
be combined by following operations: sum, product, and ramification (Figs. 4-5). For 
some given tangles a and b, image of a under reflection with mirror line NW-SE is 
denoted by a0, and sum is denoted by a + b. Product ab is defined as ab = a0 + b, and 
ramification by (a, b) = a0 + b0. 

 
Figure 4: A sum and product of tangles 

 
Figure 5: Ramification of tangles 

Tangle can be closed in two ways (without introducing additional crossings): by 
joining in pairs NE and NW, and SE and SW ends of a tangle to obtain a numerator 
closure; or by joining in pairs NE and SE, and NW and SW ends we obtain a 
denominator closure (Fig. 6a,b). 
 
Definition 3. A rational tangle is any finite product of elementary tangles. A rational KL 
is a numerator closure of a rational tangle. 
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Figure 6: (a) Numerator closure; (b) denominator closure; (c) basic polyhedron 1* 

Definition 4. A tangle is algebraic if it can be obtained from elementary tangles using 
the operations of sum and product. KL is algebraic if it is a numerator closure of an 
algebraic tangle. 
 

A Montesinos tangle and the corresponding Montesinos link, consisting of n 
alternating rational tangles ti, with at least three non-elementary tangles tk for 
k∈ {1, 2, . . . , n}, is denoted by t1, t2, . . . , tn, n ≥ 3, i = 1, ..., n (Fig. 7). The number of 
tangles n is called the length of the Montesinos tangle. In particular, if all tangles 
ti, n ≥ 3, i = 1, ..., n are integer tangles, we obtain pretzel knots and links. 
 

 
Figure 7: Montesions link  t1, t2, . . . , tn 

Definition 5. Basic polyhedron is a 4-regular, 4-edge-connected, at least 2-vertex 
connected plane graph. 
 

Basic polyhedron [8–10] of a given KL can be identified by recursively collapsing all 
bigons in a KL diagram, until none of them remains. The basic polyhedron 6* is 
illustrated in Fig. 8. 
 
Definition 6. A link L is algebraic or 1*-link if there exists at least one diagram of L 
which can be reduced to the basic polyhedron 1* by a finite sequence of bigon collapses. 
Otherwise, it is a non-algebraic or polyhedral link. 
 

Conway notation for polyhedral KLs contains additionally a symbol of a basic 
polyhedron that we are working with. The symbol n*m =n*m1.1. . . . .1, where *m is a 
sequence of m stars, denotes the m-th basic polyhedron in the list of basic polyhedra with 
n vertices. A KL obtained from a basic polyhedron n*m by substituting tangles 
t1, . . ., tk, k ≤ n  instead of vertices, is denoted by n*mt1 . . . tk, where the number of dots 
between two successive tangles shows the number of omitted substituents of value 1. For 
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example, 6*2 : 2 : 2 0 means 6*2.1.2.1.2 0.1, and 6*2 1.2.3 2 : −2 2 0 means 6*2 1.2.3 
2.1.− 2 2 0.1 (Fig. 8). 
 

 
Figure 8: Basic polyhedron 6* and knots 6*2.1.2.1.2 0.1, and 6*2 1.2.3 2 : −2 2 0 

 
Definition 7. For a link, or a knot L given in an unreduced1 Conway notation, C(L), 
denote by S a set of numbers in the Conway symbol excluding numbers denoting basic 
polyhedron and zeros (determining the position of tangles in the vertices of polyhedron), 

and let S = {a1, a2, . . . , ak} be a non-empty subset of S. Family SF (L) of knots or links 
derived from L consists of all knots or links L′ whose Conway symbol is obtained by 

substituting all ai ≠ ±1, by sgn(ai)|ai + iak
 
|, |ai + iak

 
| > 1, iak

 

∈  Z. 
 

An infinite subset of a family is called subfamily. If all iak
 
are even integers, the 

number of components is preserved within the corresponding subfamilies, i.e., adding 
full-twists preserves the number of components inside the subfamilies. 
 
Definition 8. A link given by Conway symbol containing only tangles ±1 and ±2 is called 
a source link. A link given by Conway symbol containing only tangles ±1, ±2, or ±3 is 
called a generating link. 
 

For example, Hopf link 2 (link 2
12 in Rolfsen’s notation) is the source link of the 

simplest link family p (p = 2, 3, . . .) (Fig. 9), and Hopf link and trefoil 3 (knot 31 in the 
classical notation) are generating links of this family. A family of KLs is usually derived 
from its source link by substituting ia S∈ , ia

 = ±2, by sgn( ia )(2 + k), k = 1, 2, 3, . . . (see 
Def. 7 and Def. 8). 
 
Definition 9. Smoothing distance between knots K and K1 is the minimal number of 
smoothings necessary to transform knot K to K1 
 

                                                 
1The Conway notation is called unreduced if in symbols of polyhedral links elementary tangles 1 in 
single vertices are not omitted. 
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For making computations of knot distances and smoothing distances the main 
advantage of the Conway notation is the use of twists (or chains of bigons): since 
crossings in a twist commute, every crossing change in a positive twist k (k ≥ 0) gives the 
twist k − 2, and every crossing change in a negative twist −k (k ≥ 0) gives the twist 
−k + 2. Hence, crossing changes (or smoothings) in particular crossings of a twist are not 
necessary: it is sufficient to make a single crossing change (or smoothing) in the twist. 
Moreover, results obtained for particular pairs of knots can be extended to knot families. 
 

 
Figure 9: Hopf link 2

12  =2 and its family p (p = 2, 3, ...) 
 

As the only symbolic notation of knots, Conway notation is extremely powerful in 
all computations with rational knots (2-bridge knots or 4-plats), based on the connection 
of rational tangles and rational knots and links with continued fractions [10–12]. To a 
rational tangle n1 n2 . . . nk corresponds to the continued fraction  
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where the rational number 
pr
q

=    (GCD(p, q) = 1) is the slope of the rational tangle. A 

rational knot or link L(
p
q  ) is a knot if p is odd, and link if p is even. 

 
 

Theorem 1. The Unoriented rational links L(
p
q  ) and L(

p
q
′
′ ) are ambient isotopic iff: 

1. p = p′ and 
2. either q ≡ q′ (mod p) or qq′ ≡ 1 (mod p) [13]. 
 

For rational tangles and rational knots and links the following theorem holds: 
 
Theorem 2. Two rational tangles are equivalent iff their continued fractions yield the 
same rational number [10–12]. 
 

Following theorems above, we can conclude that some knot distance computations 
with rational knots and links in Mathematica can be reduced to the application of very 
fast Mathematica functions ContinuedFraction and FromContinuedFraction. On the 
basis of continued fractions, I. Darcy and her colaborators wrote computer programs for 
knot distances of rational knots and computed distances of rational knots with n ≤ 14 
crossings [14–17]. 
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Since the basis of all computations of Gordian and smoothing distances of knots are 
non-minimal representations, in order to derive (as many as possible) non-minimal 
representations of knots up to n = 9 crossings, we used various methods. In the case of 
rational knots, to work with their non-minimal diagrams, it is possible to use the methods 
based on continued fractions, developed by Darcy and collaborators. In the case of non-
rational knots, the simplest method for obtaining non-minimal knot diagrams is the 
replacement of complete twists (including twists of the length 1) in alternating knots by 
negative twists of the same or larger length, resulting in non-alternating minimal or 
nonminimal diagrams. The other method is the replacement of the complete positive 
rational tangles in certain knot by their equivalent non-alternating tangles. For example, 
by replacing in the 11-crossing Montesinos knot 3 1, 2 2, 2 1 positive tangles 3 1, 2 2, 
and 2 1 by their equivalent non-alternating tangles −2 −1 2, −3 1 1, and −2 2, 
respectively, we obtain non-minimal 14-crossing representation −2 − 1 2,−3 1 1,−2 2 of 
the same knot. Hence, for this purpose we wrote special modules in the program LinKnot 
for the derivation of non-minimal knot representations. 
 

3. UNKNOT RECOGNITION 

The main problem in knot theory is the knot recognition: for every two knots we 
need to decide if they are ambient isotopic (i.e., equal) or not. Two knots, K and K1, are 
ambient isotopic iff  there exists a continuous movement (or deformation) of space S3 that 
transforms K into K1. More precisely, K and K1 are ambient isotopic if one of them can 
be transformed to the other by a diffeomorphism of the ambient space onto itself, where a 
diffeomorphism is a map between manifolds which is differentiable and has a 
differentiable inverse. 

In other words, transformation of K to K1 has to be smooth with smooth inverse, i.e., 
tearing a thread and regluing, or shrinking one part of a knot to a point is not allowed. If 
we imagine that the curve defining a knot is made of flexible and elastic thread, then the 
ambient isotopy is equivalent to allowing the threads to be twisted and moved 
continuously in space (cutting and gluing back together is not allowed). Instead of 
working with 3D knots and ambient isotopies, the problem of knot recognition can be 
reduced to the transformations of their projections (diagrams) by Reidemeister moves. 
Reidemeister moves Ω0, Ω1, Ω2 and Ω3 are illustrated in Fig. 10. Reidemeister proved that 
they are sufficient to diagramatically represent every ambient isotopy by a finite 
sequence of the moves. We represent Reidemeister moves as polygonal moves in order to 
avoid wild knots (the piecewise-linear and the tame knot theory give the same 
classification of knots). 

Our next goal is the minimization of knot diagrams, i.e., their reduction to diagrams 
with the minimal number of crossings. As the final result, we obtain all knots, each 
represented by a minimal diagram. In particular, for unknot this means that we will 
obtain a single diagram: a circle. 

From Fig. 10, it is clear that Ω1 and Ω2 decrease the number of crossings, the first by 
1, and the second by 2. So, at the first glance it looks that reduction process fulfils by 
consecutive application of Ω1 and Ω2 . Unfortunately, things are not so straightforward: 
sometimes it is necessary to increase the number of crossings (by reverse move Ω1 or Ω2) 
in order to continue with reduction. Some (un)knots with this property, recognized for the 
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first time by Goeritz, are illustrated in Fig. 11. Hence, for the complete knot reduction we 
use – Reidemeister moves, but not their optimal finite reducing sequence. 
 

 
Figure 10: Reidemeister moves for polygonal KLs 

 
There is a finite algorithm, based on Haken-Hemion method [19, 20], that guarantees 

a minimization and solves knot recognition problem. However, it is impossible to 
implement it because of its complexity. Even its special case, the unknot 

 
Figure 11: (a), (b) Nasty unknot; (c) Goeritz’s unknot; (d) Monster unknot 

 
 

recognition by Haken algorithm is NP-hard (where NP means ”nondeterministic 
polynomial time”), and the upper bound for the number of Reidemeister moves needed to 

unknot an n-crossing unknot diagram is 2
cn

, where c = 211. 



A. Zeković / Computation Of Gordian Distances  143 

The best program for knot recognition is KnotFind, the part of the program 
Knotscape written by M. Thistlethwaite et all [21]. Instead of using only three 
Reidemeister moves, this heuristic program uses 13 different moves, and successfully 
reduces knots up to n = 49 crossings. 

New progress in the field of unknot recognition present the works by C. Musick 
[22], based on 3D representation of knots by trails and risers. This algorithm, tested in his 
Ph.D. dissertation on hard examples of unknots created by Ochiai (with 45 crossings) and 
Haken, recognizes unknot in polynomial time. 

An infinite number of unknots with an arbitrary number of crossings is easy to 
create: knowing the general form of rational knots with unknotting number 1, the 
program LinKnot produces the complete list of rational unknots with n crossings (Fig. 
12). Moreover, replacing in any knot with unknotting number 1 realized in a minimal 
diagram the unknotting crossing by a rational equivalent of −1 tangle of arbitrary size, we 
obtain the unknot. 

 
Figure 12: Rational unknot 3 2 1 1 2 3 3 −1 1 2 3 2 1 1 2 

 
The standard method for knot recognition is a polynomial recognition. After 

Alexander polynomial, introduced in 1923, many different polynomial knot invariants 
appeared: Conway polynomial, Jones polynomial, HOMFLYPT, Kauffman two-variable 
polynomial, colored Jones polynomial, etc. All of them have the same property: two 
knots K and K1 are different if their corresponding polynomials are different. However, if 
two polynomials P(K) and P(K1) are equal, we cannot make conclusion about K and K1. 
So, for every knot polynomial P, we have an infinite collection of knots that P cannot 
distinguish. Typical examples are mutant knots, which cannot be distinguished by any of 
the mentioned polynomials. 

Even with regard to recognition of unknot, polynomial invariants sometimes fail. 
E.g., Kinoshita-Terasaka knot, 11n42 = .−(3, 2).2, and Conway knot, 
11n34 =. − (2, 3).2, have trivial Alexander polynomial. Both of them have non-minimal 
12-crossing algebraic representations: (3,−2), (2,−3), 2 and (3,−2), (−3, 2), 2. They are 
members of the families of knots with n = 4k + 2l + 1 crossings, given by their non-
minimal representations ((2k + 1),−2k), (2k,−(2k + 1)), 2 l and ((2k + 1),−2k), (−(2k + 1), 
2k), 2 l, that have trivial Alexander and Conway polynomial. 

For Jones polynomial, it is still unknown if ”Jones unknot”, meaning a knot with the 
trivial Jones polynomial, exists or not. However, for the categorization of Jones 
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polynomial–Khovanov polynomial, Kronheimer and Mrowka [23] proved that it 
recognizes unknot. 
 

4. GORDIAN DISTANCES AND STRAND PASSAGE METRIC 

A knot distance between knots K1 and K2 is defined as the minimum number of 
crossing changes required to convert K1 into K2. Since topoisimerazes are enzymes 
involved in crossing changes in DNA, knot distances can be used to study 
topoisomerazes action. In this way, a knot distance is the minimum number of times 
needed for topoisomeraze to mediate strand passage (crossing change) on DNA in order 
to convert K1 to K2. Note that minimum is taken over all diagrams of K1. In particular, the 
unknotting number of a knot K is its distance from the unknot 01. For unknotting number, 
according to Bernhard-Jablan Conjecture [8], there is a chance that it can be computed by 
an recursive algorithm from minimal knot diagrams althought knot distances are usually 
realized on non-minimal diagrams. For example, the distance of the knot 61 = 4 2 and its 
mirror-image is one, and it can be obtained from non-minimal diagrams 3 −1 −3 and 
3 1 −3 of the knot 61 and its mirror-image !61, which are related by a single crossing 
change (Fig. 13). 
 

 
 

Figure 13: Knot 61 and its mirror-image !61 with distance 1 
 

After the first strand passage metric table [14], containing only rational knots and 
composites of rational knots up to the knot 88, Darcy computed knot distances and 
composites of rational knots up to n = 14 crossings by using computer programming 
based on algebra of rational tangles and continued fraction representations of rational 
knots. However, some undetermined values remained even in the knot distance tables of 
”small” rational knots. These results are extended to knots up to n = 10 crossings [24], 
and improved in the Ph.D. dissertation by H. Moon [24] (containing knots up to n = 9 
crossings), where both works include non-rational knots. However, for many non-rational 
knots, results (e.g., the knots 931 − 949 and 1046 − 10165) are completely missing, and 
many values of knot distances are still undetermined. 

The main goal of our computations is to determine some new distances one and to 
resolve cases of knot pairs with undetermined distances, for which, it is only known that 
1 ≤ d(K1,K2). Such improvements can be made even in cases where the known upper and 
lower bounds are 1 − 8 [24]; e.g., for the knot 922 and its distances from knots 62, 63, 77, 
919, 944, which are, in fact, equal to one. For all computations we used different methods 
based on non-minimal representations of knots, including the property that every pair of 
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knots such that K1 = N(T+) and K2 = N(T−) has distance one, where T+ and T− are tangles 
that differ by one crossing change, and N(T ) is its numerator closure of a tangle T [24]. 
Thanks to the Conway notation, that kind of results can be extended to knot families. 

The basis for computation of all knot distances is distance 1 knots. In the case of 
alternating knots, since all minimal diagrams of an alternating knot are flype-equivalent, 
as the input is used only one diagram of the input knot, for non-alternating knots, all 
minimal non-alternating diagrams are used. By additional very large computations, based 
on non-minimal knot representations, as the result we obtained 429 pairs of knots with n 
≤ 9 crossings and with knot distance 1. 

The complete results are organized in knot distance table of knots with at most 9 
crossings, which consists from pairs of knots. Among them, except for the mentioned 429 
pairs of knots with distance 1, for 5015 pairs, we obtained exact knot distances. For the 
remaining pairs of knots, as the basic lower bounds are used, we obtain the results from 
polynomial criteria for lower bounds, based on HOMFLYPT, Jones, and Q-polynomials, 
signature and Arf invariant (Miyazawa, 2011 [29]). The upper bounds are given by 
triangle inequality based on unknotting numbers, or on the minimal distances obtained as 
shortest paths in knot distance table, treated as the graph with the knots as vertices, and 
with weighted edges representing knot distances (Fig. 14). A star algorithm is used for 
finding the shortest path, where heuristic function is defined as minimum of distance 2 
and the lower bound [18]. 
 

 
Figure 14: Graph G1 

 
After computing knot distances from knots given by any coding (Gauss codes, DT-

codes, PD, etc.), from particular pairs of knots with distance 1, we cannot make any 
further conclusion about some other pairs of knots. However, for pairs of knots with 
distance 1 given in Conway notation, we can extend the particular results from knot pairs 
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to their corresponding families. E.g., knowing that knots 61 and its mirror-image !61, 
given by their non-minimal representations 3 −1 −3 and 3 1 −3 have distance 1, we can 
generalize this result to the families of knots given by their non-minimal representations 
(2p+1) −1 −(2q+1) and ((2p + 1) 1 −(2q + 1). By minimization, after (61, !61), as the 
result we obtain pairs of knots (81, 83) = (6 2, 4 4), (101, 103) = (8 2, 6 4), 
(12a803, 12a1166) = (10 2, 8 4), . . ., i.e., the pairs of knots with distance 1 that are the 
members of families (2p)(2q) and (2p − 2) (2q + 2) (p ≥ 2), respectively (Fig. 15). 
 
 

5. SMOOTHING AS UNKNOTTING OPERATION 

In knot theory, smoothing plays a special role since all skein relations for computing 
polynomial knot invariants (Conway, Alexander, Jones, HOMFLYPT, or Kauffman 
polynomial) use smoothing. 
 

 
 

Figure 15: Knots (81, 83) with distance 1 realized on non-minimal diagrams 
 

J. Hoste, Y. Nakanishi, and K. Taniyama [25] introduced an H(n) move, a 
deformation of a link diagram. In particular, they distinguished H(2) move, a band 
surgery which requires to preserve the number of components, and proved that an H(2) 
move is unknotting operation, i.e. that any knot can be deformed into the unknot by a 
sequence of H(2) moves ([25], Theorem 1). The authors defined H(2)-unknotting number 
u2(K) of a knot K as the minimal number of H(2) moves necessary to unknot K. T. Abe 
and T. Kanenobu [26] generalized this concept by considering a band surgery of 
unoriented knots and permitting the change of the number of components in the 
unknotting process. They defined band unknotting number, ub(K), as the minimal number 
of band surgeries necessary to unknot K. The unknotting sequence that realizes u2(K) 
consists only of knots, whereas the unknotting sequence that realizes ub(K) may contain 
links as well. So, u2(K) ≥ ub(K) by definition. This inequality can be strong: ub(818) = 2 
and u2(818) = 3. In fact, there exist infinitely many knots K with ub(K) = 2 and u2(K) = 3 
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([26], Theorem 7.1). Moreover, Abe and Kanenobu ([26], Corollary 3.2) proved the 
following (in)equalities: 
 
Corollary 1. For a knot K, 

ub(K) = u2(K) − 1 or u2(K). 
 

Furthermore, if ub(K) is odd, then ub(K) = u2(K); equivalently, if u2(K) is either one or 
even, then ub(K) = u2(K). 
 

Using simple topological arguments we can prove that H(2) operation is equivalent 
with the oriented smoothing in some crossing c. Namely, if in the crossing c (of an 
arbitrary sign) we perform an H(2)-move (Fig. 16) followed by a Reidemeister move I, 
the result is an oriented (vertical) smoothing in c. In the same way, the unoriented band 
surgery in c is equivalent to a horizontal smoothing in c. Hence, the H(2)-unknotting 
number u2(K) of a knot K and band unknotting number ub(K) of K can be simply called 
component-preserving smoothing number u2(L) (or u∞-unknotting number [8]), and 
smoothing number ub(L), where L is a link. In this case, the result of the both unlinking 
procedures can be not only a knot but a link, as well. In the first case, the number of 
components of links in every step of unlinking process remains unchanged; in the second 
case it can be changed in any step. In every step, both procedures produce a link with one 
fewer crossings, so both unlinking numbers are finite. 
 
 

 
 
 

Figure 16: Equivalence of H(2)-move and oriented smoothing 
 

Abe and Kanenobu [26] defined another important concept: band-Gordian distance 
and H(2)-Gordian distance of knots. For two knots, K1 and K2, both smoothing distances 
are defined as the minimal number of smoothing necessary to obtain knot K2 from K1. 
Gordian distances play an important role in DNA-knotting, where Topoisomerase I and 
Topoisomerase II can make crossing changes and smoothing in DNA. In the language of 
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Gordian numbers, smoothing numbers u2(L) and ub(L) are smoothing distances of a link L 
from an unlink. 

 
6. KNOTS WITH SMOOTHING NUMBER ONE 

Many efforts are made in order to make tables of smoothing numbers ub and u2 for 
knots with n ≤ 9 crossings. Certain smoothing numbers are still undecided. Y. Bao [28] 
established the criterion for rational knots with smoothing number one. Remember that 
for a knot with u2(K) = 1, the smoothing number ub(K) is one, as well. In the case of 
unknotting number of a knot u(K), a simple tool facilitating the confirmation of certain 
unknotting numbers is the existence of the lower bound of unknotting number given by a 
half of signature. For smoothing numbers we have no simply computable lower bound, 
so every smoothing number different from one needs independent confirmation. We will 
consider the simplest case, knots with smoothing number one. 

In our work, all knots with smoothing number one are obtained by the following 
algorithm: 
 
Algorithm 1. 1. Take a diagram of a knot K′ with unknotting number one, given by its 
Conway symbol; 
2. find the crossing in K′ which need to be changed from +1 to −1 in order to obtain the 
unknot; 
3. substitute this crossing by (un)tangle (1,−1) and (1,−1) (1,−1). By these substitutions, 
we obtain a knot diagram K0 and link diagram L0. Choose the substitution which gives a 
knot; 
4. minimize diagram K0 of and recognize the obtained knot K. Knot K has the smoothing 
number one realized on the non-minimal diagram K0. 
 
Example 1. Rational knot K′ = 4 1 1 1 2 has unknotting number one. By changing third 
crossing +1 to −1, we obtain unknot 4 1 1 (−1) 2. The replacement (−1) → (1,−1) gives 
knot diagram K0 = 4 1 1 (1,−1) 2 which reduces to K = 4 1 3. Hence, the knot K = 4 1 3 
has the smoothing number one realized on the non-minimal diagram K0 = 4 1 1 (1,−1) 2. 
Unknot will be obtained by smoothing crossing 1 in (1,−1). 
 

Because all minimal diagrams of an alternating knot are flype-equivalent, in the case 
of alternating knots, it is sufficient to take arbitrary minimal diagram of a knot K′ with 
unknotting number one. In the case of non-alternating knots, we need to take all minimal 
diagrams of K′. In all cases, we implicitly suppose that unknotting number one is always 
realized on minimal diagrams, but we can start from an arbitrary diagram of K′ which can 
be unknotted by a single crossing change. 
 

Open question: Can we prove that the proposed algorithm is exhaustive, 
i.e., that all knots with smoothing number one can be obtained in this way? For knots 
with n ≤ 9 crossings this seems to be true. 
 

The results we obtained for smoothing number one knots with n ≤ 9 crossings almost 
coincide with the results from tables of smoothing numbers given in Table 2 of the paper 
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[26]. The only disagreements are the following: in smoothing number one knots 52 2 (Fig. 
17a), 923 (shown in Fig. 15 in [26] as one of the smoothing number one knots), and 925 
(Fig. 17b) are omitted, and knot 924 is included in two lists of knots, those with 
ub = u2 = 1, and those with ub = u2 = 2. We believe that its smoothing number is not one. 
Also, to the list of composite knots with smoothing number one, we would like to add the 
knots !31#41, 31#52, 41#!52, 41#52, and 31#!62 (Fig. 18), where ! is used to denote the 
mirror-image of a knot. 
 

 
 
 

Figure 17: (a) Knot 52 and its non-minimal diagram 2 (1,−1) 1 2 with smoothing number 
one; (b) knot 925 and its non-minimal diagram 6*2 1 0.(1,−1) 0.2. : 2 0 with smoothing 

number one 
 

In the paper [26], Figure 15, are represented rational H(2)-unknotting number one 
knots with n ≤ 9 crossings, and we add the non-minimal diagrams of the rational knots 
921, 923, 926, and 931 (Fig. 19) with smoothing number one following from the results of 
Bao [28]. 

 
 

 
 
 

Figure 18: Composite knots (a) !31#41; (b) 31#52; (c) 41#!52; (d) 41#52; (e) 31#!62 and their 
non-minimal diagrams with smoothing number one 

 
By using Algorithm 1, we derived non-minimal diagrams of smoothing number one 

knots with n ≤ 11 crossings. Their list can be downloaded from the address: 
 http://www.mi.sanu.ac.rs/vismath/SmoothingNumber1Zekovic.pdf. 

                                                 
2 The correct result u2(52) = 1 is given in [27], Table 2. 
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Figure 19: Knots (a) 921; (b) 923; (c) 926; (d) 931 and their non-minimal diagrams with 

smoothing number one 
 

In this list, every knot is given in Alexander-Briggs notation (used for knots with n ≤ 
10 crossings) [9], or Knotscape notation (used for knots with n = 11 crossings) [21], its 
Conway symbol [9, 10], and the Conway symbol of its nonminimal diagram with 
smoothing number one. 
 

7. SMOOTHING DISTANCES OF KNOTS 

In this section, we consider H2-smoothing, i.e., smoothing of a knot that preserves 
the number of components and induced metrics of knot d2-distances (or 
H2-Gordian distances [27]) where d2(K,K1) is the minimal number of H2-smoothings 
necessary to transform knot K to K1. In the paper [27], H2-Gordian distances for knots 
with at most n = 7 crossings are computed. The final results of computations are given in 
Tables 3,4,5,6 (pages 826-827, [27]). As the partial result of our computations, we 
confirmed undecided (1 or 2) distances 1 for the pairs of knots (51, !51), (51, 72), (52, !71), 
(62, 72), (63, 71), (71, !75), and (71, 77) (Fig. 20). Moreover, we computed knot d2-distances 
for knots with at most n = 9 crossings and obtained 702 knot pairs with d2-distance 
equal 1. These pairs served as the basis for the complete tables of d2-distances for all 
knots with at most n = 9 crossings. Among other results, together with 702 knot pairs 
with d2-distance equal 1, we confirmed distance 2 for 3192 pairs, and distance 3 for 88 
pairs. In order to confirm these distances, we used the criteria I-VII from [2] (page 828), 
which we implemented in the Mathematica program with different obstructions proving 
that some knots K and K1 with undecided d2-distance 1 or 2 cannot have distance 1, and 
that certain knots have distance 3 (the complete results will be presented in the Ph.D. 
dissertation of the author). 
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Figure 20: Knots with confirmed smoothing distance one: (a) (51, !51); (b) (51, 72);  
(c) (52, !71); (d) (62, 72); (e) (63, 71); (f) (71, !75), (g) (71, 77) 
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