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Abstract: In this paper we generalize an infeasible interior-point method for linear op-
timization to horizontal linear complementarity problem (HLCP). This algorithm starts
from strictly feasible iterates on the central path of a perturbed problem that is produced
by suitable perturbation in HLCP problem. Then, we use so-called feasibility steps that
serves to generate strictly feasible iterates for the next perturbed problem. After accom-
plishing a few centering steps for the new perturbed problem, we obtain strictly feasible
iterates close enough to the central path of the new perturbed problem. The complexity
of the algorithm coincides with the best known iteration complexity for infeasible interior-
point methods.
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1. INTRODUCTION

This paper deals with the solution of the horizontal linear complementarity
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problem (HLCP) that consists in finding a pair of vectors (x, s) ∈ R2n satisfying

Qx + Rs = b, (x, s) ≥ 0, xT s = 0, (P )

where b is in Rn, Q and R are real n×n matrices. The standard (monotone) linear
complementarity problem (LCP) is obtained by taking R = −I and Q positive
semidefinite. There are other formulations of the HLCP as well, but, as shown
in [1], all popular formulations are equivalent, and the behavior of a large class
of interior point methods is identical to those formulations, so it is sufficient to
prove results for only one of the formulations. We have chosen HLCP because of
its symmetry. The LP problem, and the QP problem can be formulated as HLCPs.
Therefore, the HLCP provides a convenient general framework for studying interior
point methods. Throughout this paper, we assume that the HLCP is P∗(κ), in the
sense that

Qu + Rv = 0 ⇒ (1 + 4κ)
∑

i∈I+

uivi +
∑

i∈I−
uivi ≥ 0 ∀u, v ∈ Rn, (1)

where κ is nonnegative constant and I+ = {i : uivi > 0} and I− = {i : uivi < 0}.
If the above condition is satisfied, then we say that the pair (Q,R) is a P∗(κ)-pair
and write (Q,R) ∈ P∗(κ). For κ = 0, P∗(0)−HLCP is called the monotone HLCP.

There is great variety of solution approaches for HLCP, which have been
studied intensively. Among them, the interior-point methods (IPMs) gained more
attention than other methods. After the seminal work of Karmarkar [2], many re-
searchers have proposed IPMs for linear programming (LP), and linear complemen-
tarity problem (LCP), and HLCP. One may distinguish between feasible IPMs and
infeasible IPMs (IIPMs). Feasible IPMs start with a strictly feasible interior-point
and maintain feasibility during the solution process. IIPMs start with an arbitrary
positive point and feasibility is reached as the optimality is approached. The choice
of the starting point in IIPMs is crucial for the performance. In [3, 4, 5, 6, 7, 8]
the authors proposed some feasible IPMs for solving HLCP. Note that there is not
always a strictly feasible point to starting an interior-point algorithm. So it is worth
while paying attention to infeasible interior-point algorithm. Zhang [9] presented a
class of infeasible IPMs for HLCP and showed that the algorithm has O(n2 log 1

ε )
under some mild assumptions. Stoer, Wechs, and Mizuno have described in [10]
simple short-step infeasible-interior-point methods of predictor-corrector type of
arbitrarily high local convergence order. In [10], only the local convergence was
studied and the complexity of these high-order methods remained open. In [11] was
showed that all these methods have the following complexity: Let γ0 = (x0)T s0 and
ε > 0 be arbitrary. If the method is started with a ”sufficiently large” infeasible
point (x0, s0) > 0, then these methods need at most

N = O
(
(1 + κ)2n

∣∣∣ log
(γ0

ε

) ∣∣∣
)

predictor-corrector steps to find a strictly feasible ε-solution. This is the best itera-
tion bound for infeasible-start methods. It should be noted that all of most known
polynomial variants of IPMs used the so-called central path as a guideline to the
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optimal set, and some variants of the Newton method to follow the central path
approximately.

In this paper we generalize an infeasible interior-point method for linear op-
timization introduced by Roos [12], extended by Mansouri and Roos [13] to SDO,
and by Mansouri et al. [14] to monotone (P∗(0)-)LCP, to P∗(κ)−HLCP. We prove
that the complexity of the algorithm coincides with the best known iteration bound
for infeasible IPMs.
The paper is organized as follows. In Section 2, we summarize a feasible interior
point method from our previous work [7]. In Section 3, we introduce the perturbed
problem and its central path. Also, we present the full-Newton step IIPM and we
explain its main iteration. In Section 4, we analyze the feasibility step. The com-
plexity of the algorithm is obtained in Section 5. Finally, some concluding remarks
are presented in Section 6.

The notations used throughout the paper are rather standard: capital let-
ters denote matrices, lower case letters denote vectors, script capital letters de-
note sets, and Greek letters denote scalars. All vectors are considered to be col-
umn vectors. The components of a vector u ∈ Rn will be denoted by ui, i =
1, · · · , n. The relation u > 0 is equivalent to ui > 0, i = 1, · · · , n, while u ≥
0 means ui ≥ 0, i = 1, · · · , n. We denote Rn

+ = {u ∈ Rn : u ≥ 0} , Rn
++ =

{u ∈ Rn : u > 0}. For any vector x ∈ Rn, xmin = min (x1; x2; · · · ; xn) and
xmax = max (x1; x2; · · · ; xn). If u ∈ Rn, then U := diag (u) denotes the diag-
onal matrix having the components of u as diagonal entries. If x, s ∈ Rn, then xs
denotes the componentwise (Hadamard) product of the vectors x and s. Further-
more, e denotes all-one vector of length n. The 2-norm and the infinity norm for
vectors are denoted by ‖·‖ and ‖·‖∞, respectively. We denote the set of feasible
points of the HLCP by

F = {(x, s) ∈ R2n
+ : Qx + Rs = b}, (2)

and the set of strictly feasible (or interior) points by

F0 = {(x, s) ∈ R2n
++ : Qx + Rs = b}, (3)

and the solution set of HLCP by

F∗ = {(x∗, s∗) ∈ F : x∗s∗ = 0}. (4)

Throughout this paper, it will be assumed that F∗ is not empty, i.e. (P ) has at
least one solution.

2. FEASIBLE FULL NEWTON STEP IPM

Note that since in (P ) x and s are nonnegative, xT s = 0 holds if and only if
xs = 0. Therefore, solving HLCP is equivalent to finding a solution of the following
system of equations:

Qx + Rs = b, x ≥ 0,
xs = 0, s ≥ 0,

(5)
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where xs = 0 is the so-called complementarity condition. IPMs replace the com-
plementarity condition by the parameterized equation xs = µe, where µ > 0 and e
denotes the all-one vector. This gives rise to the following system:

Qx + Rs = b, x ≥ 0,
xs = µe, s ≥ 0,

(6)

It has been established (e.g., see[15]) that if HLCP satisfies the interior-point
condition (IPC), i.e., F0 be nonempty, then the system (6) has a unique solution
denoted by (x(µ), (s(µ)), called the µ-center of HLCP; the limit limµ→0(x(µ), (s(µ))
exists and is a solution of the system (5). The set of all µ-centers forms a virtual
path inside the feasibility region leading to the optimal solution. This path is called
central path of HLCP.
A direct application of Newton’s method to solve the system (6) with µ fixed and
assuming (x, s) > 0, produces the following system for the displacements ∆x and
∆s.

Q (x + ∆x) + R (s + ∆s) = b,

(x + ∆x) (s + ∆s) = µe.

By omitting the quadratic term ∆x∆s in the second equation, we have the
following linear system of equations.

Q∆x + R∆s = b− (Qx + Rs),
s∆x + x∆s = µe− xs.

Note that if (x, s) is a feasible solution of HLCP, then Qx + Rs = b. Hence, the
above system is reduce to

Q∆x + R∆s = 0,
s∆x + x∆s = µe− xs.

(7)

We will refer to the assignment
(
x+, s+

)
= (x + ∆x, s + ∆s) , (8)

as a full Newton step.
Below, we discuss the feasible IPM method presented in Figure 1. First, note

that in this algorithm δ(x, s; µ) is a quantity that measures proximity of the feasible
(x, s) to the µ−center (x(µ), s(µ)). This quantity is defined as follows:

δ (x, s; µ) =
1√
2

∥∥v − v−1
∥∥ , (9)

where

v =
√

xs

µ
. (10)
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So if (x, s) lies on the central path, then v = e and hence, δ (x, s; µ) = 0.Otherwise
δ (x, s; µ) > 0. Without loss of generality, we assume that a pair (x, s) ∈ F is given,
that is close to (x(µ), s(µ)), for some µ. Then, µ is decreased to µ+ = (1− θ)µ, for
some θ ∈ (0, 1). Next, we redefine µ = µ+, and we solve the Newton system (7).
The solution (∆x, ∆s) is known as the Newton direction. By taking a step along
this search direction, we construct a new iterate (x+, s+) from (8). We repeat this
process until µ is small enough, i.e. nµ < ε, where ε is a small positive number.
The following lemmas are crucial in the analysis of the algorithm. We recall them

Feasible IPM for P∗(κ)-HLCP

Input:
Accuracy parameter ε > 0;
threshold parameter τ < 1;
barrier update parameter θ, 0 < θ < 1;
feasible pair

(
x0, s0

)
with (x0)T s0 = nµ0 and µ0 > 0 such that

δ(x0, s0; µ0) ≤ τ .
begin

x := x0; s := s0; µ := µ0;
while nµ ≥ ε do
begin

update of µ:
µ := (1− θ)µ;

(x, s) := (x, s) + (∆x, ∆s);
end

end

Figure 1: Feasible full-Newton-step algorithm for P∗(κ)-HLCP

without proof. They describe the effect of a µ-update and of a full Newton step on
δ := δ (x, s; µ).

Lemma 2.1 (Lemma 1.5 in [7]). After a full Newton-step, one has

(x+)T s+ ≤ (
n + δ2

)
µ.

Lemma 2.2 (Corollary 1.7 in [7]). If δ = δ(x, s;µ) ≤ 1√
2(1+2

√
2κ)

, then we have

δ(x+, s+;µ) ≤
(√

1 + 2
√

2κ δ

)2

,

i.e. quadratic convergence to the µ-center is obtained.
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Lemma 2.3 (Lemma 2.1 in [7]). Let (x, s) be a positive pair and µ> 0 such that
xT s≤(n + δ2)µ. Moreover, let µ+ = (1− θ)µ, then one has

δ(x, s;µ+)2 ≤ (1− θ)δ2 +
nθ2

2(1− θ)
+

δ2

2(1− θ)
.

From the above lemmas, we may derive the following result that establishes a poly-
nomial iteration bound of the above described algorithm.

Theorem 2.4 (Theorem 3.1 in [7]). If θ = 1

(1+2
√

2κ)
√

8n
, the number of itera-

tions of the feasible path following algorithm with full-Newton steps does not exceed

√
8n

(
1 + 2

√
2κ

)
log

nµ0

ε
.

3. INFEASIBLE FULL-NEWTON STEP IPM

The infeasible-start algorithm is presented in Figure 2.

3.1. The Perturbed Problem and Its Central Path
Let x0s0 = µ0e, for some arbitrarily positive pair

(
x0, s0

)
and some (positive)

number µ0, and the initial value of the residual is as r0

r0 = b−Qx0 −Rs0. (11)

We consider the perturbed problem (Pν), defined by

b−Qx−Rs = νr0, (x, s) ≥ 0, (Pν)

for any ν with 0 < ν ≤ 1. Note that if ν = 1 then, (x, s) =
(
x0, s0

)
yields a strictly

feasible solution of (Pν). We conclude that if ν = 1, then (Pν) satisfies the IPC.
The following lemma gives a sufficient condition for (Pν) that satisfies the IPC for
every 0 < ν ≤ 1.

Lemma 3.1. Let the original problem (P ) be feasible. Then, the perturbed problem
(Pν) satisfies the IPC.

Proof. The proof is similar to the proof of Lemma 4.1 in [14].

Let the original problem (P ) be feasible and 0 < ν ≤ 1. Lemma 3.1 implies that
the central path of the problem (Pν) exists. This means that the system

b−Qx−Rs = νr0, x ≥ 0, s ≥ 0,
xs = µe,

(12)

has a unique solution, for each µ > 0. This unique solution is the µ-center
of the perturbed problem (Pν), denoted by (x(µ, ν), s(µ, ν)). Note that since
x0s0 = µ0e, (x0, s0) is the µ0-center of the perturbed problem (P1). In other words,(
x

(
µ0, 1

)
, s

(
µ0, 1

))
=

(
x0, s0

)
. In the sequel the parameters µ and ν always satisfy

the relation µ = νµ0.
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3.2. An iteration of the algorithm
The algorithm starts with (x, s) =

(
x0, s0

)
that is the µ-center of the per-

turbed problem (Pν) for ν = 1. We measure proximity to the µ-center of the
perturbed problem (Pν) by the quantity δ (x, s; µ) as defined in (9). We assume
that at the start of each iteration, just before the µ-update, δ (x, s; µ) is smaller
than or equal to a (small) threshold value τ > 0. This is certainly true at the start
of the first iteration, because initially we thus have δ (x, s; µ) = 0.
One (main) iteration of the algorithm works as follows: Suppose that for some
µ ∈ (

0, µ0
)
, we have (x, s) satisfying the feasibility condition (12) for ν = µ

µ0 , and
δ (x, s; µ) ≤ τ . We reduce µ to µ+ = (1− θ)µ, with θ ∈ (0, 1), and find new
iterates (x+, s+) that satisfy (12), with µ replaced by µ+ and ν by ν+ = µ+

µ0 , such
that xT s ≤ (

n + δ2
)
µ+ and δ (x+, s+; µ+) ≤ τ . Note that ν+ = (1− θ) ν.

To be more precise, this is achieved as follows. Each main iteration con-
sists of a feasibility step and a few centering steps. The feasibility step serves to
get iterates

(
xf , sf

)
that are strictly feasible for (Pν+), and close to its µ-center

(x (µ+, ν+) , s (µ+, ν+)). According to the definition of (Pν), the feasibility equation
for (Pν) is given by

b−Qx−Rs = νr0, (x, s) ≥ 0.

and that of (Pν+) by

b−Qx−Rs = ν+r0, (x, s) ≥ 0.

To get iterates that are feasible for (Pν+), we need search directions ∆fx and ∆fs
such that

b−Q(x + ∆fx)−R(s + ∆fs) = ν+r0,
(
x + ∆fx, s + ∆fs

)
> 0.

Since (x, s) is feasible for (Pν), it follows that ∆fx and ∆fs should satisfy

Q∆fx + R∆fs = θνr0.

Therefore, the following system is used to define ∆fx and ∆fs:

Q∆fx + R∆fs = θνr0,
s∆fx + x∆fs = µe− xs,

(13)

and after the feasibility step, the iterates given by

xf = x + ∆fx, sf = s + ∆fs. (14)

We conclude that after the feasibility step, the iterates satisfy the affine equation
(12) with ν = ν+. After the feasibility step, we perform a few ordinary (centering)
full Newton steps in order to get iterates (x+, s+) which satisfy δ (x+, s+; µ+) ≤ τ .
The hard part in analysis will be to guarantee that (xf , sf ) are positive and satisfy

δ(xf , sf ; µ+) ≤ 1√
2

(
1 + 2

√
2κ

) . (15)
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If this is satisfied, then by using Lemma 2.2, the required number of centering steps
can easily be obtained. Indeed, assume that δ(xf , sf ; µ+) ≤ 1

2(1+2
√

2κ) , which is

in agreement with (15). Starting at (xf , sf ), we repeatedly apply full Newton steps
until the k−iterate, denoted as (x+, s+) := (xk, sk), satisfies δ

(
xk, sk; µ+

) ≤ τ .
To simplify notations, we define for the moment δ(vk) = δ

(
xk, sk; µ+

)
, δ(v0) =

δ
(
xf , sf ; µ+

)
and γ =

√
1 + 2

√
2κ. Note that γ ≥ 1. It follows that

δ
(
vk

) ≤ (
γδ

(
vk−1

))2 ≤
(
γ

(
γδ

(
vk−2

))2
)2

≤ . . . ≤ γ2+4+...+2k (
δ
(
v0

))2k

.

This gives

δ
(
vk

) ≤ γ2k+1−2
(
δ
(
v0

))2k

= γ−2
(
γ2δ

(
v0

))2k

≤ (
γ2δ

(
v0

))2k

.

Using the definition of γ and δ
(
v0

) ≤ 1

2(1+2
√

2κ) , we obtain

γ2δ
(
v0

) ≤
(√

1 + 2
√

2κ

)2 1
2

(
1 + 2

√
2κ

) =
1
2
.

Hence, we certainly have δ (x+, s+; µ+) ≤ τ if
(

1
2

)2k

≤ τ . From this, we easily
deduce that δ (x+, s+; µ+) ≤ τ will hold after at most

⌈
log2

(
log2

1
τ

)⌉
(16)

centering steps.
The algorithm is presented in figure 2.

4. ANALYSIS OF THE ALGORITHM

4.1. The feasibility and the effect of the feasibility step
Let (x, s) denote the iterates at the start of an iteration, and assume that

δ (x, s; µ) ≤ τ . As we established in Section 3.2, the feasibility step generates new
iterates (xf , sf ) that satisfy the feasibility condition for (Pν+). A crucial element in
the analysis is to show that these iterates are positive and lie within the region where
the Newton process targeting at µ+-center of (Pν+) is quadratically convergent, i.e.,
δ
(
xf , sf ; µ+

) ≤ 1√
2(1+2

√
2κ)

.

Define

df
x =

v∆fx

x
, df

s =
v∆fs

s
, (17)

where v is defined in (10). we have the following lemmas.

Lemma 4.1 (Lemma 5.1 in [14]). The iterates (xf , sf ) are strictly feasible if
and only if e + df

xdf
s > 0.



S. Asadi, H. Mansouri / A Full-Newton Step 65

Infeasible IPM for P∗(κ)-HLCP

Input:
Accuracy parameter ε > 0;
threshold parameter τ < 1;
barrier update parameter θ, 0 < θ < 1;
feasible pair

(
x0, s0

)
with (x0)T s0 = nµ0 and µ0 > 0 such that

δ
(
x0, s0, µ0

) ≤ τ .

begin
x := x0; s := s0; µ := µ0;
while max(nµ, ||r||) ≥ ε do
begin

feasibility step:
µ := (1− θ)µ;
(x, s) := (x, s) + (∆fx, ∆fs);

µ-update:
µ := (1− θ)µ;

centering steps:
while δ(v) ≥ τ do
begin

(x, s) := (x, s) + (∆x, ∆s) ;
end

end
end

Figure 2: Infeasible full-Newton-step algorithm for P∗(κ)-HLCP

Corollary 4.2 (Corollary 5.2 in [14]).The iterates
(
xf , sf

)
are strictly feasible

if
∥∥df

xdf
s

∥∥
∞ < 1.

Lemma 4.3 (Lemma 5.3 in [14]). If
∥∥df

x

∥∥2+
∥∥df

s

∥∥2
< 2, then the iterates

(
xf , sf

)
are strictly feasible.

The following lemma gives an upper bound for δ
(
xf , sf ; µ+

)
. Let vf =

√
xf sf

µ+ , in

the sequel, we denote δ
(
xf , sf ; µ+

)
shortly by δ

(
vf

)
.

Lemma 4.4 (Lemma 5.4 in [14]). Let
∥∥df

x

∥∥2 +
∥∥df

s

∥∥2
< 2, which guarantees

strict feasibility of the iterates
(
xf , sf

)
. Then, one has

2δ
(
vf

)2 ≤ nθ2

1− θ
+

∥∥df
x

∥∥2 +
∥∥df

s

∥∥2

2 (1− θ)
+ (1− θ)

∥∥df
x

∥∥2 +
∥∥df

s

∥∥2

2−
(∥∥∥df

x

∥∥∥
2

+
∥∥∥df

s

∥∥∥
2
) .
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Recall that for using the quadratically convergent of the Newton step, we need to
have δ(vf ) ≤ 1√

2(1+2
√

2κ)
. But from Lemma 4.4, it is sufficient to have

nθ2

1− θ
+

∥∥df
x

∥∥2 +
∥∥df

s

∥∥2

2 (1− θ)
+ (1− θ)

∥∥df
x

∥∥2 +
∥∥df

s

∥∥2

2−
(∥∥∥df

x

∥∥∥
2

+
∥∥∥df

s

∥∥∥
2
) ≤ 1

1 + 2
√

2κ
. (18)

Considering
∥∥df

x

∥∥2 +
∥∥df

s

∥∥2 as a single term,by some elementary calculation, we
obtain that if

∥∥df
x

∥∥2
+

∥∥df
s

∥∥2 ≤ 1
2

(
1 + 2

√
2κ

) , (19)

and

0 < θ ≤ 1

5
√

(n + 1)
(
1 + 2

√
2κ

) , (20)

then, the inequality (18) is satisfied. In other words, the inequalities (19) and
(20) imply that after the feasibility step,

(
xf , sf

)
is strictly feasible and lies in the

quadratic convergence neighborhood with respect to the µ+-center of (Pν+).
In the remainder of this section, we investigate some bounds for the statement∥∥df

x

∥∥2 +
∥∥df

s

∥∥2.

4.2. An upper bound for
∥∥df

x

∥∥2 +
∥∥df

s

∥∥2

We start by finding some bounds for the unique solution of the linear system
(13).

Lemma 4.5 (Lemma 3.3 in [16]). If HLCP is P∗(κ), then the linear system

su + xv = a,

Qu + Rv = b̃,
(21)

has a unique solution w = (u, v), for any z = (x, s) ∈ R2n
++ and any a, b̃ ∈ Rn, and

the following inequality is satisfied:

‖w‖z ≤
√

1 + 2κ ‖ã‖+
(
1 +

√
2 + 4κ

)
ξ(z, b̃),

where

ã = (xs)−
1
2 a, ‖w‖2z = ‖(u, v)‖2z = ‖Du‖2 +

∥∥D−1v
∥∥2

, D = X− 1
2 S

1
2 ,

and

ξ(z, b̃)2 = min{‖(ũ, ṽ)‖2z : Qũ + Rṽ = b̃}.
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Comparing system (21) with the system (13) and considering w = (u, v) = (∆fx, ∆fs),
a = µe− xs, b̃ = θνr0, z = (x, s) in the system (21), we have

∥∥D∆fx
∥∥2

+
∥∥D−1∆fs

∥∥2

≤
(√

1 + 2κ
∥∥∥(xs)−

1
2 (µe− xs)

∥∥∥+(1 +
√

2 + 4κ)ξ(z, θνr0)
)2

. (22)

Note that
∥∥∥(xs)−

1
2 (µe− xs)

∥∥∥ =
∥∥∥∥

µe− xs√
µ v

∥∥∥∥ =
√

µ
∥∥v−1 − v

∥∥ =
√

2µ δ,

and by definition of ξ(z, b̃), we have

ξ(z, θνr0) = θνξ(z, r0).

Also by definitions of df
x and df

s , we obtain D∆fx =
√

µ df
x and D−1∆fs =

√
µ df

s .
By substituting the above equations in (22), we have

∥∥dfx
∥∥2

+
∥∥dfs

∥∥2 ≤ 1
µ

(√
2µ(1 + 2κ) δ + (1 +

√
2 + 4κ)θνξ(z, r0)

)2

. (23)

To proceed, we have to specify our initial iterates. In creating the appropriate
starting point, we choose

x0 = ρp e, s0 = ρd e, µ0 = ρp ρd, (24)

where ρp and ρd are such that

‖x∗‖ ≤ ρp, ‖s∗‖ ≤ ρd, (25)

for some optimal solution (x∗, s∗) ∈ F∗ and some ρp, ρd > 0. However, we also
need to make sure that initial conditions for the application of the algorithm are
satisfied, that is, we need to check if (x0, s0) > 0 and δ

(
x0, s0; µ0

)
< τ are satisfied,

but these are obviously satisfied. Note that for such starting points, we have clearly

x∗ − x0 ≤ ρpe, (26)

s∗ − s0 ≤ ρde. (27)

Now we find an upper bound for ξ(z, r0).

Lemma 4.6. Let ξ(·, ·) be as defined in Lemma 4.5. Then, we have

ξ(z, r0) ≤
√

ρ2
p

µv2
min

‖s‖21 +
ρ2

d

µv2
min

‖x‖21 .



68 S. Asadi, H. Mansouri / A Full-Newton Step

Proof. By definition of ξ(z, b̃), we have

ξ(z, r0)2 = min{‖(ũ, ṽ)‖2z : Qũ + Rṽ = r0}
= min{‖Dũ‖2 +

∥∥(D)−1ṽ
∥∥2

: Qũ + Rṽ = r0}.
We also have

r0 = b−Qx0 −Rs0 = Qx∗ + Rs∗ −Qx0 −Rs0 = Q(x∗ − x0) + R(s∗ − s0),

thus by applying (26) and (27), the following inequalities are satisfied

ξ(z, r0)2 ≤ ∥∥D(x∗ − x0)
∥∥2

+
∥∥D−1(s∗ − s0)

∥∥2 ≤ ‖ρpDe‖2 +
∥∥ρdD

−1e
∥∥2

= ρ2
p

∥∥∥∥
√

s

x

∥∥∥∥
2

+ ρ2
d

∥∥∥∥
√

x

s

∥∥∥∥
2

≤ ρ2
p

∥∥∥∥
√

s

x

∥∥∥∥
2

1

+ ρ2
d

∥∥∥∥
√

x

s

∥∥∥∥
2

1

=
ρ2

p

µ

∥∥∥∥
√

µ

xs
s

∥∥∥∥
2

1

+
ρ2

d

µ

∥∥∥∥
√

µ

xs
x

∥∥∥∥
2

1

=
ρ2

p

µ

∥∥∥ s

v

∥∥∥
2

1
+

ρ2
d

µ

∥∥∥x

v

∥∥∥
2

1

≤ ρ2
p

µv2
min

‖s‖21 +
ρ2

d

µv2
min

‖x‖21 .

The proof is completed.

We proceed aiming to obtain some bounds for ‖x‖1 and ‖s‖1 by presenting the
following Lemmas:

Lemma 4.7. Let (x, s) be feasible for the perturbed problem (Pν) and
(
x0, s0

)
as

defined in (24). Then, for any optimal solution (x∗, s∗), we have

ν
(
xT s0 + sT x0

) ≤ (1 + 4κ)
(
ν2nµ0 + ν(1− ν)

(
(x∗)T s0 + (x0)T s∗

)
+ xT s

)
.

Proof. Since r0 = b − Qx0 − Rs0 and b − Qx − Rs = νr0, by definition of the
perturbed problem, we have

Q (νx0 + (1− ν)x∗ − x) + R(νs0 + (1− ν)s∗ − s)
= ν(Qx0 + Rs0) + (1− ν)(Qx∗ + Rs∗)− (Qx + Rs)
= ν(b− r0) + (1− ν)b− (b− νr0) = 0.

Thus if I+ = {i :
(
νx0 + (1− ν)x∗ − x

)
i

(
νs0 + (1− ν)s∗ − s

)
i
> 0} and

I− = {i :
(
νx0 + (1− ν)x∗ − x

)
i

(
νs0 + (1− ν)s∗ − s

)
i
< 0}, then the P∗(κ) prop-

erty implies that

(1 + 4κ)
∑

I+

(νx0 + (1− ν)x∗ − x)i(νs0 + (1− ν)s∗ − s)i

+
∑

I−
(νx0 + (1− ν)x∗ − x)i(νs0 + (1− ν)s∗ − s)i ≥ 0.
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So, we have
∑

I+

(νx0 + (1− ν)x∗ − x)i(νs0 + (1− ν)s∗ − s)i

+
∑

I−
(νx0 + (1− ν)x∗ − x)i(νs0 + (1− ν)s∗ − s)i

≥ −4κ
∑

I+

(νx0 + (1− ν)x∗ − x)i(νs0 + (1− ν)s∗ − s)i.

Thus, we obtain

[νx0 + (1− ν)x∗ − x]T [νs0 + (1− ν)s∗ − s]

≥ −4κ
∑

I+

(νx0 + (1− ν)x∗ − x)i(νs0 + (1− ν)s∗ − s)i

≥ −4κ
∑

I+

(
ν2x0

i s
0
i + ν(1− ν)(x∗i s

0
i + x0

i s
∗
i ) + xisi

)

≥ −4κ
(
ν2(x0)T (s0) + ν(1− ν)((x∗)T s0 + (x0)T s∗) + xT s

)
,

Since (x∗)T s∗ = 0, sT x∗ + xT s∗ ≥ 0 and sT x0 + xT s0 ≥ 0, we deduce that

−4κ
(
ν2(x0)T (s0) + ν(1− ν)((x∗)T s0 + (x0)T s∗) + xT s

)

≤ [νx0 + (1− ν)x∗ − x]T [νs0 + (1− ν)s∗ − s]
= ν2nµ0 + ν(1− ν)((x∗)T s0 + (x0)T s∗)− ν(sT x0 + xT s0)

+xT s− (1− ν)(sT x∗ + xT s∗) + (1− ν)(x∗)T s∗

≤ ν2nµ0 + ν(1− ν)((x∗)T s0 + (x0)T s∗)− ν(sT x0 + xT s0) + xT s.

Therefore, we have

ν(xT s0 + sT x0) ≤ (1 + 4κ)
(
ν2nµ0 + ν(1− ν)

(
(x∗)T s0 + (x0)T s∗

)
+ xT s

)
.

The proof is completed.

Lemma 4.8. Let δ = δ (v) be given by (9). Then

1
q (δ)

≤ vi ≤ q (δ) ,

where

q (δ) :=
√

2
2

δ +

√
1
2
δ2 + 1.

Proof. The proof of this lemma is exactly the same as for Lemma II.60 in [17].

Lemma 4.9. Let (x, s) be feasible for the perturbed problem (Pν) and
(
x0, s0

)
as

defined in (24). Then we have

‖x‖1 ≤ (1 + 4κ)
(
q2(δ) + 2

)
nρp, (28)

‖s‖1 ≤ (1 + 4κ)
(
q2(δ) + 2

)
nρd. (29)
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Proof. Using Lemma 4.7 and Lemma 4.8, this lemma may be proved in the same
way as in the proof of Lemma 16 in [14].

Substituting (28) and (29) in Lemma 4.6 and noting Lemma 4.8, it gives

ξ(z, r0) ≤
√

2
µ

q2(δ) (1 + 4κ)2 (q2(δ) + 2)2 n2ρ2
pρ

2
d

=
√

2
µ

q(δ)(1 + 4κ)
(
q2(δ) + 2

)
nρpρd. (30)

Also by substituting (30) in (23), we deduce that
∥∥dfx

∥∥2
+

∥∥dfs
∥∥2

≤ 1
µ

(√
2µ (1 + 2κ) δ +

√
2

(
1 +

√
2 + 4κ

)
θ

ν√
µ

q(δ)(1 + 4κ)
(
q2(δ) + 2

)
nρpρd

)2

= 2
(√

1 + 2κ δ +
(
1 +

√
2 + 4κ

)
(1 + 4κ)q(δ)

(
q2(δ) + 2

)
nθ

)2
. (31)

Now we are ready for fixing a value to barrier parameter θ.

5. FIXING THE PARAMETERS AND COMPLEXITY ANALYSIS

We have found that δ
(
vf

) ≤ 1√
2(1+2

√
2κ)

holds if the inequalities (19) and (20) are

satisfied. Then, by (31), inequality (19) holds if

2
(√

1 + 2κ δ +
(
1 +

√
2 + 4κ

)
(1 + 4κ)q(δ)

(
q2(δ) + 2

)
nθ

)2 ≤ 1
2

(
1 + 2

√
2κ

) .

The left-hand side of the above inequality is increasing in δ. Using this, one may
easily verify that the above inequality is satisfied if

τ =
1

8 (1 + 4κ)
, θ =

1
25n(1 + 4κ)2

(
1 +

√
2 + 4κ

) , (32)

which is in agreement with (20).
Note that in the previous section we have found that if at the start of an iteration,
the iterates satisfy δ (x, s; µ) ≤ τ , with τ as defined in (32), then after the feasibility
step, with θ as defined in (32), the iterates satisfy δ

(
xf , sf ; µ

) ≤ 1√
2(1+2

√
2κ)

.

According to (16), at most

dlog2 (log2 8 (1 + 4κ))e ,

centering steps then suffice to get iterates (x+, s+) that satisfy δ (x+, s+; µ+) ≤ τ
again. It has become a custom to measure the complexity of an IPM by the required
number of inner iterations. In each main iteration, both the value of xT s and the
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norm of the residual are reduced by the factor 1 − θ. Hence, the total number of
main iterations is bounded above by

1
θ

log
max

{(
x0

)T
s0,

∥∥r0
∥∥
}

ε
.

So, due to (32) the total number of inner iterations is bounded above by

25 n(1 + 4κ)2
(
1 +

√
2 + 4κ

)
log2 (log2 8 (1 + 4κ)) log

max
{(

x0
)T

s0,
∥∥r0

∥∥
}

ε
.

From the above statements, we have the following main result of the paper:
Theorem 5.1. If (P ) has optimal solution (x∗, s∗) ∈ F∗ such that ‖x∗‖∞ ≤ ρp

and ‖s∗‖∞ ≤ ρd, for some ρp, ρd > 0, then after at most

25 n(1 + 4κ)2
(
1 +

√
2 + 4κ

)
log2 (log2 8 (1 + 4κ)) log

max
{(

x0
)T

s0,
∥∥r0

∥∥
}

ε
.

iterations the algorithm finds an ε-solution of HLCP.

6. CONCLUDING REMARKS AND FURTHER RESEARCH

We presented an infeasible interior-point method for solving P∗(κ) horizontal
linear complementarity problem. We proved that the complexity of this algorithm
coincides with the currently best known iteration bounds of infeasible IPMs for
HLCP. Our future work will focus on analyzing the algorithm with self-regular
functions.
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