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Abstract: A new approach for optimizing risk in a portfolio of financial instruments 
involving structured products is presented. This paper deals with a portfolio selection 
model, which uses optimization methodology to minimize conditional Value-at-Risk (
CVaR ) under return constraint. It focuses on minimizing CVaR  rather than on 
minimizing value-at-Risk VaR , as portfolios with low CVaR  necessarily have low 
VaR  as well. We consider a simple investment problem where besides stocks and bonds, 
the investor can also include structured products into the investment portfolio. Due to 
possible intermediate payments from structured product, we have to deal with a re-
investment problem modeled as a linear optimization problem.  
Keywords: Linear optimization, Risk measures, Linearization. 
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1. INTRODUCTION 

Risk management is a core activity in asset allocation conducted by almost all 
financial institutions. Portfolio optimization is the process of analyzing a portfolio and 
managing the assets within it. Martinelli et al. [6] assumed the financial market with 
investment possibilities bonds, stocks and options to mature exactly at investor’s horizon. 
In the portfolio optimization strategy, the aim of an investor is to minimize CVaR  under 
expected return constraint. Korn and Serkon [10] considered an investment problem 
where the structured product was assumed to mature before horizon time, and the aim of 
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investor was to maximize return under CVaR  constraint. In the present paper, the utility 
criterion considered is the minimization of CVaR  for a given level of expected return 
with intermediate payments for structured product and further, we consider another 
investment problem in which aim of investor is to minimize CVaR  as well as negative 
return i.e. loss with intermediate payment from option (structured product). 

The use of CVaR  in portfolio optimization problems as a measure of allowed risk 
reduces the optimization problem to a linear optimization problem with linear constraints. 
This problem then can be solved by standard methods. 

 
2. SELECTION OF RISK MEASURE 

Several risk measures have been considered in the literature. It is important to 
decide which risk measure should be taken into account. 

• Markowitz [5] used mean-variance model in Portfolio Selection to measure risk. 
Since variance is a measure of volatility, the risk of an investor is to face with a 
large negative return i.e. loss, but variance only takes into account the positive 
return i.e. profit desired by the investors. 

• Value-at-risk ( VaR ) is a measure which takes only negative return into 
account. VaR  is the amount of money that expresses the maximum expected 
loss from an investment over a specific investment horizon for a given 
confidence level. It has great popularity among banks, insurance companies and 
other financial institutions. But VaR  does not give any information beyond this 
amount of money. Also, it has undesirable mathematical characteristics such as 
lack of subadditivity and convexity. For example, VaR  corresponding to a 
combination of two portfolios can be deemed greater than the sum of risks of the 
individual portfolios, and also VaR  is difficult to optimize when it is calculated 
from scenarios. 

• Conditional Value-at-risk ( CVaR ) is an extension of VaR  and expresses the 
expected loss of an investment beyond its VaR  value. CVaR , which is quite 
similar to VaR  has more attractive properties than VaR . CVaR  is a sub-
additive and convex function as proved by Rockafellar and Uryasev [7]. 
Moreover CVaR  is a coherent measure of risk, [1]. A coherent risk measure is a 
risk measure that satisfies some desired properties, namely, monotonicity, sub-
additivity, homogeneity, translational invariance. Numerical experiments 
indicate that usually minimization of CVaR  leads to near optimal solutions in 
VaR terms because VaR  never exceeds CVaR  [7]. Therefore, the portfolios 
with low CVaR  must have low VaR  as well. Moreover, when the return-loss 
distribution is normal, these two measures are equivalent, i.e. they provide the 
same optimal portfolio. 

• The aim of this paper is to minimize CVaR  under expected return constraint. 
Some definitions and results given by Rockafellar and Uryasev [1, 2, 7] are used 
to achieve the aim.  
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3. DEFINITION OF CONDITIONAL VALUE-AT-RISK 

Let ( ),L w y  be the loss associated with decision vector w  in n¡  and random 

vector y  is m¡ . The vector w  can be interpreted as a portfolio, such that nw X∈ ⊆ ¡ , 
where X  is the set of available portfolios, whereas vector y  stands for uncertainties, 

like market prices that can affect the loss. For each w , loss ( ),L w y is a random variable 

having a distribution in ¡  induced by that of y . The probability distribution of y  in 
m¡  will be assumed to have density denoted by ( )p y . The probability of ( ),L w y  not 

exceeding a threshold α  is given by  

( )
( ),

, ( )
L w y

w P y dy
α

φ α
≤

= ∫ ,  

for loss associated with w, ( , )wφ α is the cumulative distribution function (here w is 
fixed). We assume ( , )wφ α  to be continuous with respect to α  (this assumption is made 
for simplicity) and the function ( , )wφ α  is non-decreasing with respect to α . 

The VaR  and CVaRβ β− −  values for a loss random variable associated with 

w and specified probability level ( )0,1β ∈ , are denoted by ( )wβα  and ( )wβψ  defined 
as 

( ) min{ : ( , ) }w wβα α φ α β= ∈ ≥¡ , 

( ) ( ) 1

( , ) ( )
1 ( , ) ( )

L w y w
w L w y P y dy

β
β α

ψ β −

≥
= − ∫ ,   

( )wβα  is the left-end-point of the non-empty interval consisting the values of β  such 

that ( , )wφ α β=  , and the probability that ( , ) ( )L w y wβα≥  is  equal to ( )1 β− . Thus, 
( )wβψ  gives the conditional expectation of the loss associated with w  relative to that 

loss being ( )wβα  or greater. 

The characterization of ( )wβψ  and ( )wβα  in terms of function Fβ  on X × ¡  
is defined as 

1( , ) (1 ) [ ( , ) ] ( )my
F w L w y P y dyβ α α β α− +

∈
= + − −∫ 

, (1) 

where [ ] max{ , 0}δ δ+ = . 
Theorem 1. [7]  

As a function of α , ( , )F wβ α  is convex and continuously differentiable. The 
formula  

( ) min ( , )w F wβ βα
ψ α

∈
 =  

,  (2) 
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determines CVaRβ −  loss associated with w X∈ .  
The set consisting of the values of α  for which the minimum is attained, 

namely  

( ) arg min ( , )A w F wβ βα
α

∈
 =  

,  

is a non-empty, closed, bounded interval (or a single point), and -VaRα  of the loss is 
given by  

( )wβα =  Left end point of ( )A wβ ,  

i.e.  

( ) ( )w A wβ βα ∈  and ( ) ( , ( ))w F w wβ β βψ α= ,  

Now in the next theorem, Rockofellar and Urysev [7] proved the advantages of 
defining -VaRβ and -CVaRβ  through the formula in Theorem 1. 
Theorem 2. [7] 

Minimizing -CVaRβ  of the loss associated with w X∈  is equivalent to 

minimizing ( ),F wβ α  over all ( ),w Xα ∈ ×¡ , in the sense that  

( , )
min ( ) min ( , )
w X w X

w F wβ βα
ψ α

∈ ∈ ×
   =   ¡

,  

where a pair ( , )w α∗ ∗  achieves the right hand side minimum if and only if w∗  achieves 

the left hand side minimum and ( )A wβα ∗ ∗∈ . 

In particular, in circumstances where interval ( )*A wβ  reduces to a single point, 

the minimization of ( , )F wβ α over ( ),w Xα ∈ ×¡  produces a pair ( , )w α∗ ∗ , not 

necessarily unique such that w∗  minimizes the -CVaRβ and α ∗  gives corresponding 
-VaRβ .  

Note that ( ),F wβ α is convex with respect to ( ),w α and ( )wβψ  is convex with 

respect to w , when ( ),L w y  is convex with respect to w , in which case, if the 
constraints are such that X  is a convex set, the joint minimization is an instance of 
convex programming.  

According to Theorem 2, it is not necessary, for the purpose of determining 
vector w that yields the minimum -CVaRβ , to work directly with the function ( )wβψ . 

Moreover it is hard to work with ( )wβψ  because of the nature of its definition in terms 

of -VaRβ  value ( )wβα  and the often troublesome mathematical properties. Instead, 

one can operate on the far simpler expression ( ),F wβ α  with its convexity in the variable 
α . 
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4. DIFFERENT FORMULATIONS FOR OPTIMIZATION PROBLEM 

Theorem 3 shows that equivalent formulation of three optimization problems in 
the sense that they produce the same efficient frontier [4]. 
Theorem 3. [4] 

Let us consider function ( )wψ  and ( )R w  dependent on the decision vector w . 
For the following three problems: 

min[ ( ) ( )], 0,
w X

w R w w Xψ µ µ
∈

− ≥ ∈ , (3) 

[ ]min ( ) , ( ) ,
w X

w R w c w Xψ
∈

≥ ∈ ,  (4) 

[ ]min ( ) , ( ) ,
w

R w w d w Xψ− ≤ ∈ , (5) 

if ( )wψ is convex, ( )R w is concave and set X  is convex, then (3), (4), (5) generate the 
same efficient frontier.  

Here , ,c dµ  are parameters and constraints ( )R w c≥  in (4) and ( )w dψ ≤  in 
(5) have internal points. 

The equivalence of the problems (3)-(5) holds for any concave reward function 
and convex risk function with convex constraints.  

We consider that the loss function ( ),L w y is linear with respect to w , and 

Theorem 2 shows that CVaR  function ( )wψ  is convex with respect to w . Suppose that 

reward function ( )R w  and other constraints are linear. So by Theorem 3, maximization 

of ( )R w  (i.e. minimization of - ( )R w ) under CVaR  constraint (problem (5) in Theorem 
3) generates the same efficient frontier as the minimization of CVaR  under reward 
constraint (problem (4) in Theorem 3). Theorem 2 shows that the function ( ),F wβ α can 

be used instead of ( )wβψ  to solve (4). Similarly, it can be shown that ( ),F wβ α be used 

instead of ( )wβψ in problem (5) of Theorem 3 
Theorem 4. [4] 

The two minimization problems   

( )min ,
w

R w−    (6) 

subject to ( ) ,w d w Xβψ ≤ ∈  and 

( )min
w

R w−   , (7) 

subject to ( ), ,F w d w Xβ α ≤ ∈              
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are equivalent in the sense that their objective functions achieve the same values. 
Moreover, if CVaR  constraint in (6) is active, the pair ( , )w α∗ ∗  achieves minimum of 

(7) if and only if w∗  achieves the minimum of (6) and ( ).A wβα ∗ ∗≤ In particular, if the 

interval ( )A wβ
∗  reduces to a single point, then the minimization of − R(w) over 

( ),w Xα ∈ ×¡  produces the pair ( , )w α∗ ∗  such that w∗  minimizes the return and α∗  
gives corresponding -VaRβ . 

Next Theorem shows that ( , )F wβ α  can be used instead of ( )wβψ  in problem 
(3) in Theorem 3. 
Theorem 5. [4] The two minimization problems 

min[ ( ) ( )], 0,
w

w R w w Xβψ µ µ− ≥ ∈ , (8) 

( )
( , )
min[ ( , ) ( )], 0, ,
w

F w R w w Xβα
α µ µ α− ≥ ∈ × ¡ , (9) 

are equivalent in the sense that their objective functions achieve the same values. 
Moreover, the pair ( , )w α∗ ∗  achieves minimum of (9) if and only if w∗  achieves the 

minimum of (8) and ( )A wβα ∗ ∗∈ . In particular, when the interval ( )A wβ
∗  reduces to a 

single point, then the minimization of ( , ) ( )F w R wβ α µ− over ( ),w Xα ∈ ×¡  produces a 

pair ( , )w α∗ ∗  such that w∗  minimizes ( ) ( )w R wβψ µ−  and α ∗  gives corresponding
-VaRβ .  

In the next section, we explain the process of discretization and linearization 
defined in [4].  

 
5. DISCRETIZATION AND LINEARIZATION USING DUMMY 

VARIABLES 

The integral in (4) can be approximated in various ways. This can be done by 
sampling the probability distribution of y according to its density ( )P y . If the sampling 
generates a collection of vectors 1 2 3 4, , , ...... Ny y y y y  then, the corresponding 
approximation to ( , )F wβ α  is  

1

1

1

( , ) (1 ) [ ( , ) ] ( ) ,

( , ) (1 ) [ ( , ) ] ,

my

N

i
i

F w L w y P y dy

F w p L w y

β

β

α α β α

α α β α

− +

∈

− +

=

= + − −



′ = + − − 


∫

∑

¡

 (10) 

where 'ip s  are the probabilities of scenarios 'iy s . If the loss function ( ),L w y is linear 
w. r. t w , then the function ( , )F wβ α′  is convex and piecewise linear. So, the function 
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( , )F wβ α  in optimization problems of Theorems 2, 4, 5 can be approximated by function 
( , )F wβ α′  given by (10). 

By using dummy variables '  1,  2,...,iz s i N=  , function ( , )F wβ α′  can be 
further replaced by the linear function  

1

1
(1 )

N

i i
i

p zα β −

=

+ − ∑   

where ( , ) , 1, 2,...,i iz L w y i Nα≥ − = , 0, 1, 2,...,iz i N≥ = . 
In Theorem 4, ( )w dβψ ≤  can be replaced by ( , )F w dβ α ≤ . This constraint 

can be approximated by ( , )F w dβ α′ ≤  

i.e.   

1

1
(1 )

N

i i
i

p z dα β −

=

+ − ≤∑ ,  (11) 

( , ) , 1, 2,...,i iz L w y i Nα≥ − = ,   0, 1, 2,...,iz i N≥ = , α ∈ ¡ . 

Now if we assume that all scenarios 'iy s  are equally probable i.e. 
1 1, 2,....,ip i N
N

= ∀ = , then (11) becomes 
1

1
(1 )

N

i
i

z d
N

α
β =

+ ≤
− ∑ .  

We consider a simple investment problem where besides stocks and bonds, an 
investor can also include options (or structured products) into the investment portfolio. 

Let wL  be the loss of an investor where investment portfolio w  is given by  
[ , , ]S B pw w w w=  where Sw  is the weight of stock, Bw  is weight of bond, pw  is 

weight of structured product β is confidence level, α  is value at risk and d  is a 
constant. 

w wL R= − , 

where wR  is return associated with portfolio vector w. wR  is given by 

final wealth - initial wealth
initial wealth

wR = . 

Now assume that an investor invests in stock, bond and structured product with 
return , ,S B P

T T Tr r r  , respectively at time T . Return from portfolio w  is w
TR  given by:  

w S B p
T S T B T p TR w r w r w r= + +  , 

1S B pw w w+ + = , 

, , 0S B pw w w ≥ . 
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We attempt to minimize CVaR of a portfolio with constraint on expected return 
that has lower bound" "d . 
Problem 1.  

3
min ( , )w

T
w

CVaR R β
∈

−
¡

, 

subject to  
w S B p
T S T B T p TR w r w r w r= + + , 

1S B pw w w+ + = , 

, , 0S B pw w w ≥ ,  

( )w
TE R d≥ , 

Using linearization procedure [4] for CVaR , the above problem is converted 
into linear optimization problem as follows:  
Problem 2. 

3
1

1min
(1 )

N
w
i

w i
z

N
α

β∈ =

 
+ − 

∑


 

subject to  

, , , , , 1, 2,...,w S B B
T i S T i B T i p T iR w r w r w r i N= + + = ,  

1S B pw w w+ + = , 

, , 0,S B pw w w ≥  

,
1

1 , 1, 2,...,
N

w
T i

i
R d i N

N =

≥ =∑  , 

, , 1,2,...,w w
i T iz R i Nα≥ − − = ,  

0, 1, 2,...,w
iz i N≥ = . 

This problem mainly consists of two steps: 
i. Simulate N paths of the market prices of the stock, bond and the structured product. 

ii. This linear problem on those simulated paths can be solved by the well-known 
simplex method. 

The index “ i ” corresponds to the values that occur in simulation run number. 
Note that dimension of the problem is of the order of number of simulated paths N . 
However, this also shows that the number of simulation runs determines the size of the 
problem, as considering more investment opportunities would only increase the 
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dimension of the problem. In fact, one security more leads to one variable more, the 
corresponding component of the portfolio vector. 

Suppose that our desired investment horizon time is T but structured product 
matures at time 'T T< . The presence of such intermediate payments is main extension to 
problem 2. When investor receives these intermediate payments, he faces a problem of 
re-investment. We assume that an investor re-invests the intermediate payments in the 
remaining investment opportunities at the intermediate time 'T . So, a single period 
problem becomes a multi-period one. At time ( )3 4T T′ =  (say), we choose a fixed 

reinvestment portfolio [ , ]S Bx x x= , where  , 0S Bx x ≥  and 1S Bx x+ = . 
Now, our problem is to find an optimal (initial) portfolio w (given fixed choice 

of x), 
Here  Sx  =   portfolio weight of stocks at time ( )3 4 T  

 Bx  =   portfolio weight of bond at time ( )3 4 T . 

Let 0Π  denote the call option return at maturity time ( )3 4 T , 0S  denote initial 

stock price, K  denote strike price and ( )3 4 T  is maturity time, ( )( )0, , 3 4C S K T  is 
price of call option. 

If ( ) ( )3 4 3 4[ ] [0, ]T TK S Max K S+− = −  

then ( ) ( )
( )

03 40

0

[ ] ( , , 3 4 )

( , , 3 4 )
TK S C S K T

C S K T

+− −
Π = , 

i.e . ( )

( )
3 40

0

[ ]
1

( , , 3 4 )
TK S

C S K T

+−
+ Π = . 

If we use a call option with maturity at ( )3 4 T  as the structured product, then 

its return ,p x
Tr  is given by 

 , 0(1 ) [ (1 ) (1 )] 1p x S B
T S Br x R x R= + Π + + + −  

where RS, RB denote the return of the stock and the bond on the interval 3 , ,
4

T T 
  

 

respectively. 
Problem 3. 

3
1

1min
(1 )

N
w
i

w i
z

N
α

β∈ =

 
+ − 

∑
¡

, (12) 

subject to      
, ,
, , , , , 1,2,...,w x S B p x

T i S T i B T i p T iR w r w r w r i N= + + = , (13) 
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, 0
, (1 ) [ (1 ) (1 )] 1p x S B

T i i S i B ir x R x R= + Π + + + − , (14) 

1S B pw w w+ + = ,  (15) 

, , 0S B pw w w ≥ , (16) 

1S Bx x+ = , (17) 

, 0S Bx x ≥ , (18) 

,
,( ), 1, 2,...., ,w w x

i T iz R i Nα≥ − + =  (19) 

,
,

1

1 , 1, 2,...,
N

w x
T i

i
R d i N

N =

≥ =∑ , (20) 

0, 1, 2,...,w
iz i N≥ = , (21) 

α  is free. (22) 

Here again, the subscript i indicates the value of the indexed variable 
corresponding to the simulation run number i. 

Note that the choice of the optimal re-investment strategy x mostly depends on 
the option structured product that is the alternative to the standard investment 
possibilities bond and stock. 

Here eq. (12) is the objective function with the goal to minimize CVaR , eq. 
(13) represents portfolio return at time T for each scenario, eq. (14) shows total return 
from structured product at time T for each scenario. The eq. (15) and eq. (17) enable that 
the portfolio weights add upto 1, eq. (16) and eq. (18) guarantee that short selling is not 
allowed, eq. (19), eq. (21) and eq. (22) are needed to control CVaR  objective. These 
three constraints guarantee that optimal value of objective function gives CVaR  and the 
corresponding value of α (if it is unique) will be equal to VaR . If there are many 
optimal values of α , then the required VaR  is the left end-point of the optimal interval. 
Eq. (20) gives the expected return constraint with lower bound " "d . 

The optimization model (problem 3) can be reformulated by taking objective 
function as a combination of two objectives both CVaR  and expected return. It will 
produce the same efficient frontier as explained in Theorem 3 using problems (3) and (4). 

Problem 4. 

3

,
,

1 1

1 1min (1 )
(1 )

N N
w w x
i T i

w i i
z R

N N
δ α δ

β∈ = =

    
+ − −    −    

∑ ∑


,  (23) 

subject to 
, ,
, , , , , 1,..., ,w x S B p x

T i S T i B T i p T iR w r w r w r i N= + + =     (24) 

, 0
, (1 ) (1 ) (1 ) 1, 1,2,...,p x S B

T i i S i B ir x R x R i N = + Π + + + − =  ,   (25) 
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1S B pw w w+ + = ,   (26) 

1S Bx x+ = ,  (27) 

, , , , 0,S B p S Bw w w x x ≥   (28) 

,
,( ), 1, 2,..., ,w w x

i T iz R i Nα≥ − + =    (29) 

0,w
iz ≥  1, 2,..., ,i N=  (30) 

α is free.   (31) 

The objective function in eq. (23) is a convex combination of two objectives 
CVaR , expected return CVaR  is weight by δ , and expected return is weighted by (1−δ). 
If δ = 1, the investor is interested in minimizing risk with no interest in the return 
objective; if  δ = 0, the investor’s only objective is to maximize the return. The minus 
sign before the return objective is because we minimize this weighted average.  

Eq. (24) is return of the portfolio at time T for each scenario i (with portfolio 
weight-vector w and re-investment portfolio weight-vector x). Eq. (25) is return from 
structured product at time T for each scenario i (after re-investment of time ( )3 4 T ).  

Eq. (26) and Eq. (27) guarantee that portfolio weights add up to 1. Eq. (28) 
confirms that no short selling is allowed. Eq. (29) and Eq. (30) and Eq. (31) are needed to 
control the first part of the objective function i.e. CVaR part. These constraints guarantee 
that the optimal value of this term in the objective gives CVaR and that the 
corresponding optimal value of α (if unique) will be equal to VaR. If there are many 
optimal values of α then, VaR is the left end-point of the optimal interval. 

 
7. CONCLUSIONS 

In this paper, we discussed a particular investment problem, where besides 
stocks and bonds an investor can also include options (structured products) into the 
portfolio. We allow intermediate payments of the securities and are thus, faced with a re-
investment problem which turns the originally one-period problem into a special kind of 
multi-period problem. We have considered an approach for simultaneous calculation of
VaR  and optimization of CVaR . We showed that CVaR  can be efficiently minimized 
by using linear programming. Although, formally, the method minimizes only CVaR , 
but in fact, it also lowers VaR because CVaR  ≥ VaR .  

This approach can handle large number of instruments and scenarios. Structured 
products allow investors to make profit from the equity risk premium without being fully 
exposed to the downside risk associated with investing in stocks. Our investment 
problem can also be solved when we have more securities which can also have multiple 
internal payments. In particular, we can think of more than two periods in our 
optimization problem. However, then in that case the outer optimization loop for 
obtaining the optimal re-investment strategy gets more complicated. Each additional time 
period will add one more loop; and hence, finding the solution of the problem will take 
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longer. Despite computational difficulties such problems are important to explore in 
future.    
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