Yugoslav Journal of Operations Research 25 (2015), Number 3, 387–395 DOI: 10.2298/YJOR131115007S

STRICT BENSON PROPER-ε-EFFICIENCY IN VECTOR OPTIMIZATION WITH SET-VALUED MAPS

Surjeet Kaur SUNEJA Department of Mathematics, University of Delhi, Delhi-110007, India surjeetsuneja@gmail.com

Megha SHARMA* Department of Mathematics, University of Delhi, Delhi-110007, India mathmeghasharma@gmail.com

Received: November 2013 / Accepted: March 2015

Abstract: In this paper the notion of Strict Benson proper- ε -efficient solution for a vector optimization problem with set-valued maps is introduced. The scalarization theorems and ε -Lagrangian multiplier theorems are established under the assumption of ic-cone-convexlikeness of set-valued maps.

Keywords: Ic-cone-convexlikeness, Set-valued Maps, strict Benson proper- ε -efficiency, scalarization, ε -Lagrangian Multipliers.

MSC: 90C26, 90C29, 90C30, 90C46.

1. INTRODUCTION

In the study of vector optimization, the theory of efficiency plays an important role. Kuhn and Tucker [8] and later Geoffrion [6] observed that certain efficient points exhibit some abnormal properties and to eliminate such anomalous solutions in large set of efficient solutions, they introduced the concept of proper efficiency. Borwein [2] and Benson [1] proposed proper efficiency for vector

^{*}Corresponding author

maximization problem over cones. Chen and Rong [4] and Li [9] gave characterization of Benson proper efficiency for vector optimization problems. Cheng and Fu [5] introduced the concept of strong efficiency in locally convex spaces. Various authors have studied approximate efficient solutions for vector optimization problems. Some of them are Liu [11], Chen and Huang [3] and Rong and Wu [12]. Li, Xu and Zhu [10] introduced ε -strictly efficient solutions for set-valued optimization problem.

The purpose of this paper is to introduce the notion of Strict Benson proper- ε -efficient solution for vector optimization problems with setvalued maps as a generalization of Benson proper efficient solution [1]. We study the relationship of Strict Benson proper- ε -efficient solution with ε -strict efficient solution given by Li et al. [10]. An alternative theorem is presented in section 3 for ic-cone-convexlikeness set-valued maps, which were introduced by Sach [13], and scalarization theorems and ε -Lagrangian Multiplier theorems are established in sections 4 and 5.

2. DEFINITIONS AND NOTATIONS

Let *X* be locally convex topological vector space and *Y*, *Z* be real locally convex Hausdorff topological vector spaces; let $D \subset Y$, $E \subset Z$ be pointed closed convex cones. For a set $A \subset Y$, we write cone $A = \{\lambda a : \lambda \ge 0, a \in A\}$.

The closure and interior of the set *A* are denoted by cl *A* and int *A*. A convex subset *B* of cone *A* is a base of *A* if $0 \notin \text{cl } B$ and *A* = cone *B*. Let *Y*^{*} be the dual space of *Y*, the positive dual cone *D*^{*} of *D* ⊂ *Y* is defined as $D^* = \{f \in Y^* : f(y) \ge 0 \text{ for all } y \in D\}$. The set $D^{\#}$ of strictly positive functions is defined as $D^{\#} = \{f \in Y^* : f(y) > 0 \text{ for all } y \in D \setminus \{0\}\}.$

For a set-valued map $F : X \to 2^Y$ the domain of F, denoted by dom F, is defined as dom $F = \{x \in X : F(x) \neq \phi\}$, and the image of F, denoted as imF, is defined as im $F = F(X) = \bigcup_{x \in X} F(x)$.

Benson [1] introduced the following definition of proper efficiency.

Definition 2.1. If *S* is non empty set in *Y* and *D* is a convex cone in *Y*, then $y \in S$ is called Benson proper efficient point of *S* over *D* written as $y \in BPMin[S, D]$ if $clcone(S + D - y) \cap (-D) = \{0\}$ (1)

Now we introduce the notion of Strict Benson proper- ε -efficient point of a set *S* over a cone *D*.

Definition 2.2. Let *S* be a non empty set in *Y*, *D* be a convex cone in *Y* and $\varepsilon \in D$, then $\bar{y} \in S$ is called a Strict Benson proper- ε -efficient point of *S* over *D* written as $\bar{y} \in BP-\varepsilon$ -Min[*S*, *D*] if clcone($S + \varepsilon - \bar{y}$) $\cap (-D \setminus \{0\}) = \phi$. (2)

388

It is easy to verify that $BPMin[S, D] \subset BP-\varepsilon-Min[S, D]$.

The following example illustrates the proper containment, that is, there exists $\bar{y} \notin BP-\varepsilon$ -Min[*S*, *D*] but $\bar{y} \in BPMin[S, D]$.

Example 2.3. Let $Y = \mathbb{R}^2$, $D = \{(x, y) : x \le y, y \ge 0\}$, $\varepsilon = \left(\frac{3}{2}, \frac{3}{2}\right)$, $S = \{\left(\frac{1}{2}, \frac{3}{4}\right), \left(\frac{5}{4}, 1\right), \left(\frac{5}{2}, \frac{5}{2}\right), (1, 1)\}, \bar{y} = (1, 1)$, then $S + \varepsilon - \bar{y} = \{\left(1, \frac{5}{4}\right), \left(\frac{7}{4}, \frac{3}{2}\right), (3, 3), \left(\frac{3}{2}, \frac{3}{2}\right)\}$ and clone $(S + \varepsilon - \bar{y}) \cap (-D \setminus \{0\}) = \phi$. Thus, $\bar{y} \in BP - \varepsilon$ -Min[S, D]. Also, $S - \bar{y} = \{\left(\frac{-1}{2}, \frac{-1}{4}\right), \left(\frac{1}{4}, 0\right), \left(\frac{3}{2}, \frac{3}{2}\right), (0, 0)\}$ which shows that $\left(\frac{-1}{2}, \frac{-1}{4}\right) \in \text{clcone}(S + D - \bar{y}) \cap (-D \setminus \{0\})$ and clone $(S + D - \bar{y}) \cap (-D \setminus \{0\}) \neq \phi$. Thus, $\bar{y} \notin BP - \varepsilon$ -Min[S, D].

Li, Xu and Zhu [10] introduced ε -strictly minimal efficient point which is defined as follows.

Definition 2.4. Let *S* be a non empty subset of *Y*, *D* be a convex cone in *Y*, *B* be a base of *D*, $\varepsilon \in D$, then $\overline{y} \in S$ is called an ε -strictly minimal efficient point of *S* with respect to *B*, written as $\overline{y} \in \varepsilon$ -Fmin[*S*, *B*] if there is a neighborhood *U* of 0 such that clcone($S + \varepsilon - \overline{y}$) $\cap (U - B) = \phi$ (3)

It is shown in the following theorem that every ε -strict minimal efficient point of *S* with respect to *B* is Strict Benson proper- ε -efficient point of *S* over *D*.

Theorem 2.5. ε -Fmin[*S*, *B*] \subset BP- ε -Min[*S*, *D*].

Proof. Let $\bar{y} \in \varepsilon$ -Fmin[*S*, *B*], which implies that there is neighborhood *U* of 0 such that clcone($S + \varepsilon - \bar{y}$) $\cap (U - B) = \phi$.

Now, to show $\bar{y} \in BP-\varepsilon$ -Min[*S*, *D*], we have to prove clcone($S+\varepsilon-\bar{y}$) \cap ($-D\setminus\{0\}$) = ϕ . On the contrary, suppose that there exists $y^* \in \text{clcone}(S + \varepsilon - \bar{y}) \cap (-D \setminus \{0\})$. It follows that $y^* \in \text{clcone}(S + \varepsilon - \bar{y})$ and $y^* \in (-D \setminus \{0\})$, which gives that $y^* = -d$, for $d \in D \setminus \{0\}$. Since *B* is a base of *D*, therefore D = cone B, which gives that $d = \lambda b$, for $\lambda \ge 0$, $b \in B$. It follows that $y^* = -d = -\lambda b$.

Clearly, $\frac{y^*}{\lambda} = -b \in (U - B)$ and also, $\frac{y^*}{\lambda} \in \text{clcone}(S + \varepsilon - \overline{y})$. Thus, $\frac{y^*}{\lambda} \in \text{clcone}(S + \varepsilon - \overline{y}) \cap (U - B)$, which gives a contradiction.

Remark 2.6. The following example illustrates that the set of Strict Benson proper- ε -efficient points is not contained in the set of ε -strictly minimal efficient points.

Example 2.7. Let $Y = \mathbb{R}^2$, $S = \left\{ \left(\frac{-1}{2}, \frac{1}{2}\right), \left(-2, \frac{3}{4}\right), \left(\frac{-1}{10}, \frac{3}{2}\right) \right\}$, $D = \{(x, y) : x \le 0, y \le 0\}$, $B = \{(x, y) : x + y + 1 = 0, x \le 0, y \le 0\}$ be a base of cone D, $\varepsilon = \left(\frac{-1}{2}, 0\right), \bar{y} = \left(\frac{-1}{2}, \frac{1}{2}\right)$

and $U = \{(x, y) : x^2 + y^2 < \frac{1}{4}\}$, then $S + \varepsilon - \overline{y} = \{\left(\frac{-1}{2}, 0\right), \left(-2, \frac{1}{4}\right), \left(\frac{-1}{10}, 1\right)\}$ and $\operatorname{clcone}(S + \varepsilon - \overline{y}) \cap (-D \setminus \{0\}) = \phi$, which gives that $\overline{y} \in \operatorname{BP-}\varepsilon\operatorname{-Min}[S, D]$. Also, $\left(\frac{-1}{10}, 1\right) \in \text{clcone}(S + \varepsilon - \overline{y}) \cap (U - B)$, which shows that $\overline{y} \notin \varepsilon$ -Fmin[S, B]. Thus BP- ε -Min[\hat{S}, D] $\not\subset \varepsilon$ -Fmin[S, B].

3. THEOREM OF ALTERNATIVE

A theorem of the alternative will be established in this section for ic-D-convexlike set-valued maps, which were introduced by Sach [13] and are defined as follows.

Definition 3.1. A set-valued map $F : X \to 2^Y$ is called ic-*D*-convexlike on *X* if intcone(F(X) + D) is a convex cone and $F(X) + D \subset \text{clintcone}(F(X) + D)$.

Theorem 3.2. Let int $D \neq \phi$ and let the set-valued map $F : X \rightarrow 2^{Y}$ be ic-*D*convexlike on X then, one and only one of the following statements is true: (I) there exists $x \in X$ such that $F(x) \cap (-\operatorname{int} D) \neq \phi$

(II) there exists $\mu \in (D^* \setminus \{0\})$ such that $\mu(y) \ge 0$, for all $y \in F(X)$.

Proof. Assume that both (I) and (II) hold. Then there exist $x \in X$, $y \in F(x)$ such that $y \in -$ int *D*, which gives that $\mu(y) < 0$ for every $\mu \in D^* \setminus \{0\}$. This contradicts (II). Thus (I) and (II) cannot hold simultaneously.

Now, we show that if (I) is not true, then (II) holds.

Suppose that $F(X) \cap (-\operatorname{int} D) = \phi$.

(4)

Now we claim that $intcone(F(X)+D) \cap (-int D) = \phi$. Indeed, let $y^* \in intcone(F(X)+D) \cap (-int D) = \phi$. D) \cap (- int D), then there exist $x \in X$, $d \in D$, $\lambda > 0$ such that $y^* = \lambda(F(x)+d) \in -$ int D, which gives that $\frac{y^*}{\lambda} - d \in F(x)$. Since $y^* \in -\operatorname{int} D$, $\lambda > 0$ therefore, $\frac{y^*}{\lambda} \in -\operatorname{int} D$, which implies that $\frac{y^*}{\lambda} - d \in -\operatorname{int} D$. Thus, $\frac{y^*}{\lambda} - d \in F(X) \cap (-\operatorname{int} D)$, which contradicts (4).

By the assumption *F* is ic-*D*-convexlike on *X*, we have that intcone(F(X) + D) is a convex cone. Thus, by separation theorem for convex sets in topological vector spaces as given by Jahn [7], there exists $\mu \in Y^* \setminus \{0\}$ such that

 $\mu(y + td) \ge 0$ for all $y \in F(X)$, $d \in D$ and t > 0. (5)

We assert that $\mu(d) \ge 0$ for all $d \in D$ otherwise, suppose that there exists $\overline{d} \in D$ with $\mu(\bar{d}) < 0$. Then we will have $\mu(y + t\bar{d}) = \mu(y) + t\mu(\bar{d}) < 0$, for given y and sufficiently large t, which contradicts (5). Thus, $\mu \in D^* \setminus \{0\}$. Letting $t \to 0$ in (5), we obtain $\mu(y) \ge 0$ for all $y \in F(X)$. This implies that (II) is true.

4. SCALARIZATION

We consider the following set-valued optimization problem: (VP) $D-\min_{x \in X_0} F(x)$ s.t. $G(x) \cap (-E) \neq \phi$

where $X_0 \subset X$ is a nonempty set, $E \subset Z$ is a pointed closed convex cone, $-E = \{-x : x \in E\}$, $F : X_0 \to 2^Y$, $G : X_0 \to 2^Z$ are set-valued maps. The set of feasible solutions of (VP) is denoted by $V = \{x \in X_0 : G(x) \cap (-E) \neq \phi\}$.

We now introduce Strict Benson proper- ε -efficient solution of (VP).

Definition 4.1. A point $\bar{x} \in V$ is said to be Strict Benson proper- ε -efficient solution of (VP) if $F(\bar{x}) \cap BP$ - ε -Min[F(V), D] $\neq \phi$.

A pair (\bar{x}, \bar{y}) is said to be Strict Benson proper- ε -minimizer of (VP) if $\bar{y} \in F(\bar{x}) \cap$ BP- ε -Min[F(V), D].

Corresponding to the set-valued optimization problem (VP), we associate the following scalar optimization problem:

(SP) $\mu \min_{x \in V} (\mu F)(x)$ where $\mu \in D^* \setminus \{0\}$

Definition 4.2. Let $\bar{x} \in V$, $\bar{y} \in F(\bar{x})$, then \bar{x} is said to be an ε -minimal solution of $(SP)\mu$, if $\mu(\bar{y}) \leq \mu(y) + \mu(\varepsilon)$ for all $y \in F(V)$ and (\bar{x}, \bar{y}) is said to be an ε -minimizer pair of $(SP)\mu$.

The fundamental results characterizing Strict Benson proper- ε -minimizer of (VP) in terms of ε - minimizer of (SP) μ are now discussed.

Theorem 4.3. Let $\mu \in D^{\#}$ be fixed. If (\bar{x}, \bar{y}) is an ε -minimizer pair of (SP) μ , then (\bar{x}, \bar{y}) is a Strict Benson proper- ε -minimizer pair of (VP).

Proof. Since (\bar{x}, \bar{y}) is an ε -minimizer of (SP) μ , therefore $\mu(\bar{y}) \leq \mu(y) + \mu(\varepsilon)$, for all $y \in F(V)$. (6) Now, we shall show that (\bar{x}, \bar{y}) is a Strict Benson proper- ε -minimizer pair of (VP). It is enough to show that, $\operatorname{clcone}(F(V) + \varepsilon - \bar{y}) \cap (-D \setminus \{0\}) = \phi$. Indeed, if there exists $y^* \in \operatorname{clcone}(F(V) + \varepsilon - \bar{y}) \cap (-D \setminus \{0\})$, then, there exist $\{y_n\} \subset F(V)$ and $\{\lambda_n\} \subset \mathbb{R}_+$ such that $y^* = \lim_{n \to \infty} \lambda_n(y_n + \varepsilon - \bar{y})$ and $y^* \in -D \setminus \{0\}$ By using (6), we have $\mu(y^*) = \lim_{n \to \infty} \lambda_n \mu(y_n + \varepsilon - \bar{y}) \geq 0$ (7) Since $\mu \in D^{\#}$ and $y^* \in -D \setminus \{0\}$, therefore $\mu(y^*) < 0$, which contradicts (7). Thus, we conclude (\bar{x}, \bar{y}) is a Strict Benson proper- ε -minimizer pair of (VP).

Below we give an example to illustrate the above theorem.

Example 4.4. Let $X = \mathbb{R}$, $Y = \mathbb{R}^2$, $Z = \mathbb{R}^2$ and $D = \{(x, y) : x \ge y, y \ge 0\}$, $E = \{(x, y) : y \ge x, x \le 0\}$ and $\varepsilon = (\frac{1}{2}, \frac{1}{2})$.

Define $F: X \to 2^{Y}$, as $F(x) = \begin{cases} [0,1] \times [0,1] & \text{if } x \ge 0\\ [0,x^{2}] \times [0,x^{2}] & \text{if } x < 0 \end{cases}$ and define $G: X \to 2^{Z}$, as $G(x) = \begin{cases} ([0,x], \frac{x}{2}) & \text{if } x \ge 0\\ [-2,-1] \times [-2,-1] & \text{if } x < 0 \end{cases}$ The feasible set of the problem (VP) is $V = \{x : x \ge 0\}$. Let $\mu = (\frac{3}{2}, \frac{3}{2}) \in D^{\#}, \bar{x} = 1 \text{ and } \bar{y} = (\frac{1}{2}, 0) \in F(\bar{x})$. Then, $F(V) = [0,1] \times [0,1], \mu(\bar{y}) = \frac{3}{4}, \mu(\varepsilon) = \frac{3}{2} \text{ and } \mu(\bar{y}) \le \mu(y) + \mu(\varepsilon)$, for all $y \in F(V)$, which implies that, (\bar{x}, \bar{y}) is an ε -minimizer pair of (SP) μ . Since $\varepsilon - \bar{y} = (0, \frac{1}{2})$, therefore clcone($F(V) + \varepsilon - \bar{y}$) $\cap (-D \setminus \{0\}) = \phi$. Thus, (\bar{x}, \bar{y}) is a Strict Benson proper- ε -minimizer pair of (VP).

Theorem 4.5. Let $\overline{F} : X \to 2^Y$ be defined as $\overline{F}(x) = F(x) + \varepsilon - \overline{y}$ for all $x \in X$ and \overline{F} be ic-*D*-convexlike on *V*. If $(\overline{x}, \overline{y})$ is a Strict Benson proper- ε -minimizer pair of (VP), then there exists $\mu \in D^* \setminus \{0\}$ such that $(\overline{x}, \overline{y})$ is an ε -minimizer pair of (SP) μ .

Proof. Let (\bar{x}, \bar{y}) be a strict Benson proper- ε -minimizer pair of (VP). Then $\bar{x} \in V$ and $\bar{y} \in F(x) \cap BP$ - ε -Min[F(V), D], which gives that clcone($F(V) + \varepsilon - \bar{y}$) $\cap (-D \setminus \{0\}) = \phi$. It follows that ($F(V) + \varepsilon - \bar{y}$) $\cap (- \operatorname{int} D) = \phi$.

By assumption \overline{F} is ic-*D*-convexlike on *V*, then by Theorem 3.1 there exists $\mu \in D^* \setminus \{0\}$ such that $\mu(z) \ge 0$ for all $z \in \overline{F}(V)$, which gives that $\mu(y + \varepsilon - \overline{y}) \ge 0$, for all $y \in F(V)$.

Thus, $\mu(y) + \mu(\varepsilon) \ge \mu(\bar{y})$, for all $y \in F(V)$. Hence, (\bar{x}, \bar{y}) is an ε -minimizer pair of (SP) μ .

5. ε-LAGRANGIAN MULTIPLIER THEOREMS

In this section we present two ε -Lagrangian Multiplier theorems which show that a Strict Benson proper- ε -minimizer of the constrained set-valued vector optimization problem (VP) is exactly a Strict Benson proper- ε -minimizer for an appropriate unconstrained set-valued vector optimization problem under certain conditions. Let L(Z, Y) be the space of continuous linear operators from Z to Y, and let $L_+(Z, Y) = \{T \in L(Z, Y) : T(E) \subset D\}$. Denote by (F, G) the set-valued map from X to $Y \times Z$ defined by $(F, G)(x) = F(x) \times$

G(x), for all $x \in X$. If $\mu \in Y^*$, $T \in L(Z, Y)$, we define $\mu F : X \to 2^{\mathbb{R}}$ and $F + TG : X \to 2^{Y}$ as

 $(\mu F)(x) = \mu(F(x))$ and (F + TG)(x) = F(x) + T(G(x)), respectively. The set-valued Lagrange map of (VP), $L : X_0 \times L_+(Z, Y) \to 2^Y$ is defined as L(x, T) = F(x) + T(G(x)), where $(x, T) \in X_0 \times L_+(Z, Y)$.

We consider the following unconstrained set-valued minimization problem associated with (VP) for a fixed $T \in L_+(Z, Y)$ $\overline{(VP)}_T$ $D-\min_{x \in X_0} L(x, T)$

392

Sach [13] gave the following result for ic-cone convexlike set-valued maps.

Lemma 5.1. Let intcone(imF + D) $\neq \phi$, then *F* is an ic-*D*-convexlike if and only if *k* intcone(imF + D) + (1 - *k*) cone(imF + D) \subset intcone(imF + D), for all $k \in (0, 1)$.

We establish the following result by using the above lemma.

Lemma 5.2. If (F, G) is ic-*D*-convexlike on *X* and intcone $(im(F, G) + D \times E) \neq \phi$ then for $\mu \in D^* \setminus \{0\}, (\mu F, G)$ is ic- $(\mathbb{R}_+ \times E)$ -convexlike on *X*.

Proof. Let (*F*, *G*) be ic-*D*-convexlike on *X*. Then by using Lemma 5.1 $k(intcone(imF+D), intcone(imG+E)) + (1 - k)(cone(imF+D), cone(imG+E)) \subset$ (intcone(imF +D), intcone(imG +E)), for all $k \in (0, 1)$ which gives that k intcone(imF +D) + (1 - k) cone(imF +D) \subset intcone(imF +D), for all $k \in (0, 1)$ and *k* intcone(im*G*+*E*) + (1 − *k*) cone(im*G*+*E*) ⊂ intcone(im*G*+*E*), for all $k \in (0, 1)$. Now, it is enough to show k intcone(im $\mu F + \mathbb{R}_+$) + (1 - k) cone(im $\mu F + \mathbb{R}_+$) \subset intcone(im $\mu F + \mathbb{R}_+$), for all $k \in (0, 1)$. Let $y^* \in k$ intcone(im $\mu F + \mathbb{R}_+$) + (1 - k) cone(im $\mu F + \mathbb{R}_+$), then there exists $\lambda_1 > 0$, $\lambda_2 \ge 0, x_1, x_2 \in X, y_1 \in F(x_1), y_2 \in F(x_2) \text{ and } r_1, r_2 \in \mathbb{R}_+ \text{ such that } y^* = k\lambda_1(\mu(y_1) + \mu(y_2))$ r_1)+ $(1-k)\lambda_2(\mu(y_2)+r_2)$, which gives that $y^* = \mu(k\lambda_1y_1+(1-k)\lambda_2y_2)+k\lambda_1r_1+(1-k)\lambda_2r_2$ Now $k\lambda_1 y_1 + (1-k)\lambda_2 y_2 \in k\lambda_1(F(x_1) + D) + (1-k)\lambda_2(F(x_2) + D)$ \subset *k* intcone(im*F*+*D*) + (1 - *k*) cone(im*F*+*D*) \subset intcone(im*F*+*D*), for all *k* \in (0, 1). This gives that there exists $\lambda_3 > 0$, $x_3 \in X$, $y_3 \in F(x_3)$ and $d_3 \in D$ such that $k\lambda_1y_1 + (1-k)\lambda_2y_2 = \lambda_3(y_3 + d_3).$ Then, $y^* = \mu(\lambda_3(y_3 + d_3)) + k\lambda_1r_1 + (1 - k)\lambda_2r_2 = \lambda_3\mu(y_3) + \lambda_3\mu(d_3) + k\lambda_1r_1 + (1 - k)\lambda_2r_2$ $\in \lambda_3(\mu(F(x_3)) + \mu(d_3) + (k\lambda_1r_1 + (1-k)\lambda_2r_2)/\lambda_3)$ \subset intcone(im $\mu F + \mathbb{R}_+$), as $\mu(d_3) \in \mathbb{R}_+$ and $(k\lambda_1r_1 + (1-k)\lambda_2r_2)/\lambda_3 \in \mathbb{R}_+$.

We now give ε -Lagrangian multiplier theorems:

Theorem 5.3. Let *Y* be locally convex space, *D* be closed convex pointed cone with a non empty interior. Let $\overline{F} : X \to 2^Y$ be defined as $\overline{F}(x) = F(x) + \varepsilon - \overline{y}$ for all $x \in X$, \overline{F} be ic-*D*-convexlike on *V* and (*F*, *G*) be ic-($D \times E$)-convexlike on X_0 and intcone((im*F*, *G*) + $D \times E$) $\neq \phi$. Further, let (VP) satisfy the generalized slater constraint qualification, that is, im $G \cap (-$ int E) $\neq \phi$. If $(\overline{x}, \overline{y})$ is a Strict Benson proper- ε -minimizer of (VP) and $0 \in T(G(\overline{x}))$, then there exist $T \in L_+(Z, Y)$ and $\mu \in D^* \setminus \{0\}$ such that $(\overline{x}, \overline{y})$ is an ε -minimizer pair of the following scalar setvalued optimization problem $\overline{(VP)}_{\mu}$ min $\mu(F(x) + T(G(x))$

If $\mu \in D^{\#}$ then (\bar{x}, \bar{y}) is a Strict Benson proper- ε -minimizer of $(VP)_T$.

Proof. Since (\bar{x}, \bar{y}) is a Strict Benson proper- ε -minimizer of (VP), therefore by Theorem 4.2 there exists $\mu \in D^* \setminus \{0\}$ such that

Thus, $(\mu F, G)$ is ic- $(\mathbb{R}_+ \times E)$ -convexlike on *X*.

 $\mu(F(x) + \varepsilon - \overline{y}) \ge 0$, for all $x \in V$ (8)Let us define $H: X_0 \to 2^{\mathbb{R} \times \mathbb{Z}}$ as $H(x) = \mu(F(x) + \varepsilon - \overline{y}) \times G(x) = (\mu F, G)(x) + (\mu(\varepsilon) - \varepsilon)$ $\mu(\bar{y}), 0$). Since (F, G) is ic- $(D \times E)$ -convexlike on X_0 , and intcone $[(imF, G)+D \times E] \neq \phi$, therefore by Lemma 5.2 *H* is ic-($\mathbb{R}_+ \times E$) convexlike on X_0 . Further, (8) implies that the system $x \in X_0$, $H(x) \cap (-int(\mathbb{R}_+ \times E)) \neq \phi$ has no solution. Hence by Theorem 3.1, there exists $(\lambda, \psi) \in \mathbb{R}_+ \times E^* \setminus \{0, 0\}, y \in F(x)$, $z \in G(x)$ such that $\lambda \mu(y + \varepsilon - \overline{y}) + \psi(z) \ge 0$ for all $x \in X_0$ (9) We claim that $\lambda \neq 0$. On the contrary, suppose that $\lambda = 0$ then, we have $\psi \in E^* \setminus \{0\}$. By generalized slater constraint qualification, there exists $x_1 \in X_0$ such that $G(x_1) \cap (-\operatorname{int} E) \neq \phi$. Thus, there exists $z_1 \in G(x_1)$ such that $z_1 \in (-\operatorname{int} E)$, which gives that $\psi(z_1) < 0$ but on substituting $\lambda = 0$ and taking $x = x_1$ and $z = z_1$ in (9), we have $\psi(z_1) \ge 0$, which is a contradiction. Hence $\lambda > 0$. Since $\mu \in D^* \setminus \{0\}$. We can choose $d \in D \setminus \{0\}$ such that $\lambda \mu(d) = 1$. We define the operator $T : Z \to Y$ as $T(z) = \psi(z)d$ (10)then $T \in L_+(Z, Y)$ and $0 \in \psi(G(\bar{x}))d = T(G(\bar{x}))$. Hence, $\bar{y} \in F(\bar{x}) + T(G(\bar{x}))$. From (9) and (10), we obtain $\lambda \mu (y + \varepsilon + T(z)) = \lambda \mu (y) + \lambda \mu (\varepsilon) + \psi (z) \lambda \mu (d) = \lambda \mu (y) + \lambda \mu (\varepsilon) + \psi (z)$ $\geq \lambda \mu(\bar{y})$, for all $x \in X_0$ which gives that $\mu(\bar{y}) \le \mu(y + T(z)) + \mu(\varepsilon)$ for all $x \in X_0$, $y \in F(x)$ and $z \in G(x)$. Hence, (\bar{x}, \bar{y}) is an ε -minimizer pair of set-valued optimization problem $(VP)\mu$. If $\mu \in D^{\#}$, then by using Theorem 4.1, we get that (\bar{x}, \bar{y}) is Strict Benson proper- ε minimizer of $\overline{(VP)}_T$.

We now establish the converse of Theorem 5.1.

Theorem 5.4. Let $\bar{x} \in V$, $\bar{y} \in F(\bar{x})$. If there exists $T \in L_+(Z, y)$ such that $0 \in T(G(x))$, and (\bar{x}, \bar{y}) is a Strict Benson proper- ε -minimizer $\overline{(VP)}_T$, then (\bar{x}, \bar{y}) is a Strict Benson proper- ε -minimizer of (VP).

Proof. Since $0 \in T(G(\bar{x}))$, and (\bar{x}, \bar{y}) is a Strict Benson proper- ε -minimizer of $\overline{(VP)}_T$, therefore, $\bar{y} \in F(\bar{x}) + T(G(\bar{x}))$ and clcone($F(V) + T(G(V)) + \varepsilon - \bar{y}) \cap (-D \setminus \{0\}) = \phi$. (11)

Now we shall show that (\bar{x}, \bar{y}) is a Strict Benson proper- ε -minimizer pair of (VP). For that, it is enough to show that cone($F(V) + \varepsilon - \bar{y}$) $\cap (-D \setminus \{0\}) = \phi$.

On the contrary, if $y^* \in \operatorname{cone}(F(V) + \varepsilon - \overline{y}) \cap (-D \setminus \{0\})$ then there exists $x \in V$, $y \in F(x)$, k > 0 such that $y^* = k(y + \varepsilon - \overline{y})$ and $y^* \in (-D \setminus \{0\})$.

Since $0 \in T(G(\bar{x}))$, therefore, $y^* \in \text{clcone}(F(V) + T(G(V)) + \varepsilon - \bar{y})$, which contradicts (11).

Hence, (\bar{x}, \bar{y}) is a Strict Benson proper- ε -minimizer of (VP).

394

6. CONCLUSION

The objective of this paper is to introduce the notion of Strict Benson proper- ε -efficient solution for vector optimization problem with set-valued maps to generalize the notion of Benson proper efficiency and establish an alternative theorem. We also obtain scalarization theorems and ε -Lagrangian multiplier theorems under the assumption of ic-cone-convexlikeness.

Acknowledgement: The authors are thankful to the unknown reviewers for their constructive suggestions which has improved the quality of presentation of the paper.

REFERENCES

- [1] Benson, H.P., "An improved definition of proper efficiency for vector maximization with respect to cones", Journal of Mathematical Analysis and Applications, 71 (1979) 232-241.
- [2] Borwein, J.M., "Proper efficient points for maximizations with respect to cones", SIAM Journal on Control and Optimization, 15 (1977) 57-63. [3] Chen, G.Y., and Huang X.X., "Ekeland's variational principles for set-valued mappings", Math-
- ematical Methods of Operations Research, 48 (1998) 181-186.[4] Chen, G.Y., and Rong, W.D., "Characterization of the Benson proper efficiency for non convex
- [5] Cheng, Y.H., and Kong, M.D., "Characterization of the benson proper efficiency for non convex vector optimization", Journal of Optimization Theory and Applications, 98 (1998) 365-384.
 [5] Cheng, Y.H., and Fu, W.T., "Strong efficiency in a locally convex space", Mathematical Methods of Operations Research, 50 (1999) 373-384.
 [6] Coeffrien A.M. "Proceeding of the second statement of the second sec
- [6] Geoffrion, A.M., "Proper efficiency and the theory of vector maximization", Journal of Mathematical Analysis and Applications, 22 (1968) 618-630.
- [7] Jahn, J., Vector optimization theory, applications and extensions, Peter Lang, Springer-Verlag, Germany, (2004).
- [8] Kuhn, H.W., and Tucker A.W., Nonlinear Programming. Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, California, (1951) 481-492.
- [9] Li, Z.F., "Benson Proper efficiency in vector optimization of set-valued Maps", Journal of Optimization Theory and Applications, 98 (1998) 623-649.
- [10] Li, T., Xu, Y.H., and Zhu, C.X., "ε-Strictly efficient solutions of vector optimization problems with set-valued maps", Asia Pacific Journal of Opel ational Research, 24(6) (2007) 841-854.
- [11] Liu, J.C., "ε-Duality theorem of nondifferentiable multiobjective programming", Journal of Optimization Theory and Applications, 691 (1991) 153-167.
- [12] Rong, W.D., and Wu, Y.N., "E-Weak minimal solution of vector optimization problems with set-valued maps", Journal of Optimization Theory and Applications, 106(3) (2000) 569-579.
- [13] Sach, P.H., "New generalized convexity notion for set-valued maps and application to vector optimization", Journal of Optimization Theory and Applications, 125 (2005) 157-179.