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1. INTRODUCTION

A classical transportation problem [6] is a special class of linear programming
problem. In this problem, a homogenous commodity is available in known quantity
at each of the m origins which needs to be transported to each of n destinations.
The cost of transporting a unit of the commodity from any origin to any destination
is known. The objective is to determine a transportation schedule which minimizes
the total transportation cost . This classical transportation model is based on the
assumption that the total quantity required at the destinations is equal to the
total quantity available at the origins. But in real life, there are situations when
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more than one commodity is to be transported. In such a situation, classical
transportation problem is extended to multi-dimensions. Sometimes, the supply
and demand of a firm may also vary. Due to the varying nature of demand,
supply, and type of commodity, there is a need to fix bounds on demand,supply,
and commodity constraints. This gives rise to a bounded transportation problem.

Dahiya and Verma [4] discussed bounded transportation problem in two dimen-
sions. Zhang et al. [12] presented three different uncertain solid transportation
models in which both variable cost and fixed cost are taken into consideration.
They designed an algorithm on the basis of tabu search algorithm and theory
of uncertainty. Gupta et.al. [5] formulated a capacitated transportation prob-
lem with linear and fractional objective functions which are conflicting in nature.
Ozdemir et al. [10]presented a multi-location transshipment problem in which the
decision variables are bounded.

In 1981, Misra et al. [9] gave a note on solid transportation problem with
bounds on rim conditions. In 1988, Bandopadhyaya et al. [2] discussed transporta-
tion problem in multi- dimensions subjected to mixed type of axial constraints.
Malhotra et al. [8] studied time-minimization transportation problem in three
dimensions. Bandopadhyaya et al.[3] discussed impaired flow in a solid trans-
portation problem. Jalil et al.[7] proposed a multi-level decision making model
for an uncertain multi-index transportation problem. Tzeng et al.[11] explained
the planning of annual coal purchase by formulating a fuzzy solid transportation
problem. They provided an allocation schedule of Taipower, the official authority
of Taiwan. In 2004, Arora and Khurana [1] formulated indefinite quadratic trans-
portation problem in three dimensions. In this paper, they perceived cost-time
trade off pairs but the problem that they have studied is not bounded. This mo-
tivated the authors to study three dimensional bounded transportation problem.

This paper is organized as follows : In section 2, a mathematical model of
a three dimensional bounded transportation problem is presented. In section 3,
a related transportation problem is presented. In section 4, equivalence between
the two problems is ratified.In section 5, the devised model solves the problem of
public distribution system of North Delhi.

Notations
The following notations are used throughout the paper:
I = {1, 2, .....,m} represents m origins.
J = {1, 2, ......., n} represents n destinations.
K = {1, 2, ......., p} represents p types of products to be transported.
xijk = amount of kth type of product shipped from the ith origin to the jth

destination.
cijk = per unit cost of shipping the kth type of product from the ith origin to
the jth destination irrespective of the amount of the product shipped, so long as
xijk > 0.
ajk and Ajk are respectively the minimum and maximum amount of the kth type
of product demanded by the jth destination from all the origins.
bki and Bki are respectively the minimum and maximum amount of the kth type
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of product available at the ith origin to be shipped to all the destinations.
eki and Eki are respectively the minimum and maximum amount of units of all
types of products to be supplied from ith origin to the jth destination.
lijk and uijk are respectively the lower bounds and upper bounds on the amount
of kth type of product shipped from the ith origin to the jth destination.

2. MATHEMATICAL MODEL OF A THREE DIMENSIONAL
BOUNDED TRANSPORTATION PROBLEM (P1)

Mathematically, the three dimensional bounded transportation problem is de-
fined as follows

min

∑
i∈I

∑
j∈J

∑
k∈K

cijkxijk

 (P1)

subject to

bki ≤
∑
j∈J

xijk ≤ Bki,∀i ∈ I;∀k ∈ K (1)

ajk ≤
∑
i∈I

xijk ≤ Ajk,∀j ∈ J ;∀k ∈ K (2)

eij ≤
∑
k∈K

xijk ≤ Eij ,∀i ∈ I;∀j ∈ J (3)

lijk ≤ xijk ≤ uijk and integers ∀i ∈ I;∀j ∈ J ;∀k ∈ K (4)

The problem (P1) is unbalanced as the quantity of distinct products received by
all the destinations,the quantity of products supplied from all the origins to all
destinations, and the quantity of distinct types of products supplied from all the
origins are not equal. The problem (P1) will possess a feasible solution when it is
balanced. We introduce a dummy row , a dummy column and a dummy product
to balance problem (P1). This leads to the formulation of a related transportation
problem which is balanced and hence, possess a feasible solution.

3. RELATED TRANSPORTATION PROBLEM (P2)

Let I
′

= {1, 2, .....,m + 1} represents m + 1 origins.
J

′
= {1, 2, ......., n + 1} represents n + 1 destinations.

K
′

= {1, 2, ......., p + 1} represents p + 1 types of products.

min

∑
i∈I′

∑
j∈J′

∑
k∈K′

c
′

ijkyijk

 (P2)
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subject to ∑
j∈J′

yijk = B
′

ki,∀i ∈ I
′
;∀k ∈ K

′
(5)

∑
i∈I′

yijk = A
′

jk,∀j ∈ J
′
;∀k ∈ K

′
(6)

∑
k∈K′

yijk = E
′

ij ,∀i ∈ I
′
;∀j ∈ J

′
(7)

lijk ≤ yijk ≤ uijk and integers ∀i ∈ I;∀j ∈ J ;∀k ∈ K (8)

0 ≤ yi,n+1,k ≤ Bki − bki ,∀i ∈ I;∀k ∈ K (9)

0 ≤ ym+1,j,k ≤ Ajk − ajk ,∀j ∈ j;∀k ∈ K (10)

0 ≤ yi,j,p+1 ≤ Eij − eij ,∀i ∈ I;∀j ∈ J (11)

yi,n+1,p+1 ≥ 0 ,∀i ∈ I (12)

ym+1,j,p+1 ≥ 0 ,∀j ∈ J (13)

ym+1,n+1,k ≥ 0 ,∀k ∈ K (14)

ym+1,n+1,p+1 ≥ 0 (15)

A
′

jk = Ajk ,∀j ∈ J ;∀k ∈ K (16)

A
′

n+1,k =
∑
i∈I

Bki ,∀k ∈ K (17)

B
′

ki = Bki ∀i ∈ I, ∀k ∈ K (18)

B
′

k,m+1 =
∑
j∈J

Ajk ,∀k ∈ K (19)

E
′

ij = Eij ∀i ∈ I, ∀j ∈ J (20)
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E
′

i,n+1 =
∑
k∈K

Bki ,∀i ∈ I (21)

B
′

p+1,i =
∑
j∈J

Eij ,∀i ∈ I (22)

An+1,p+1 = Bp+1,m+1 = Em+1,n+1 =
∑
i∈I

∑
j∈J

Eij ,∀i ∈ I;∀j ∈ J (23)

A
′

j,p+1 =
∑
i∈I

Eij ,∀j ∈ J (24)

E
′

m+1,j =
∑
k∈K

Ajk ,∀j ∈ J (25)

c
′

ijk = cijk ∀i ∈ I, ∀j ∈ J ;∀k ∈ K (26)

c
′

m+1,j,k = c
′

i,n+1,k = c
′

i,j,p+1 ,∀i ∈ I;∀j ∈ J ;∀k ∈ K (27)

c
′

m+1,n+1,p+1 = 0 (28)

4. THEORETICAL DEVELOPMENT

4.1. Existence of feasible solution of problem (P2)

A feasible solution to problem (P2) will exist if the quantity of distinct prod-
ucts received by all the destinations,the quantity of products supplied from all the
origins to all destinations, and the quantity of distinct types of products supplied
from all the origins are equal [1]. Mathematically,

∑
i∈I′

∑
k∈K′

B
′

ki =
∑
i∈I′

∑
j∈J′

E
′

ij =
∑
j∈J′

∑
k∈K′

A
′

jk

For this, we will prove a series of theorems given below.

Theorem 1.∑
i∈I′

∑
k∈K′

B
′

ki =
∑
i∈I′

∑
j∈J′

E
′

ij (29)
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Proof. We first show that distinct products supplied by the ith origin is equal to
the quantity of products received by all destinations from the ith origin.
That is,

∑
k∈K′

B
′

ki =
∑
j∈J′

E
′

ij .

Now,
∑

k∈K′
B

′

ki =
∑
k∈K

B
′

ki + B
′

p+1,i

= E
′

i,n+1 +
∑
j∈J

Eij ,∀i ∈ I by (21) and (22)

= E
′

i,n+1 +
∑
j∈J

E
′

ij by (20)

=
∑
j∈J′

E
′

ij

⇒
∑

k∈K′
B

′

ki =
∑
j∈J′

E
′

ij

Summing over i ∈ I
′
, we get∑

i∈I′

∑
k∈K′

B
′

ki =
∑
i∈I′

∑
j∈J′

E
′

ij

Theorem 2.∑
k∈K′

∑
j∈J′

A
′

jk =
∑
k∈K′

∑
i∈I′

B
′

ki (30)

Proof. We first show that kth type of product received by all destinations is equal
to the kth type of product supplied from all origins.
That is,

∑
j∈J′

A
′

jk =
∑
i∈I′

B
′

ki.

Now,
∑
j∈J′

A
′

jk =
∑
j∈J

A
′

jk + A
′

n+1,k

= B
′

k,m+1 +
∑
i∈I

Bki;∀k ∈ K by (16), (17) and (19)

= B
′

k,m+1 +
∑
i∈I

B
′

ki by (18)

=
∑
i∈I′

B
′

ki

⇒
∑
j∈J′

A
′

jk =
∑
i∈I′

B
′

ki

Summing over k ∈ K
′
, we get∑

k∈K′

∑
j∈J′

A
′

jk =
∑

k∈K′

∑
i∈I′

B
′

ki

Theorem 3.∑
j∈J′

∑
i∈I′

E
′

ij =
∑
j∈J′

∑
k∈K′

A
′

jk (31)

Proof. We first show that quantity of products supplied from all origins to jth

destination is equal to distinct products received by jth destination.
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That is,
∑
i∈I′

E
′

ij =
∑

k∈K′
A

′

jk.

Now,
∑
i∈I′

E
′

ij =
∑
i∈I

E
′

ij + E
′

m+1,j

= A
′

j,p+1 +
∑
k∈K

Ajk,∀j ∈ J by (20), (24) and (25)

= A
′

j,p+1 +
∑
k∈K

A
′

jk,∀j ∈ J by (16)

=
∑

k∈K′
A

′

jk

⇒
∑
i∈I′

E
′

ij =
∑

k∈K′
A

′

jk

Summing over j ∈ J
′
, we get∑

j∈J′

∑
i∈I′

E
′

ij =
∑
j∈J′

∑
k∈K′

A
′

jk

Theorem 4. To every feasible solution of problem (P1), there exists a feasible
solution to problem (P2) and conversely.

Proof. Let {yijk} be a feasible solution to problem (P2).
Define {xijk}, i ∈ I, j ∈ J, k ∈ K by the following transformation.

xijk = yijk ∀i ∈ I;∀j ∈ J ;∀k ∈ K (32)

As lijk ≤ yijk ≤ uijk ∀i ∈ I;∀j ∈ J ;∀k ∈ K by (8),
therefore, lijk ≤ xijk ≤ uijk ∀i ∈ I;∀j ∈ J ;∀k ∈ K by (32).

Also,
∑
j∈J′

yijk = B
′

ki,∀i ∈ I
′
;∀k ∈ K

′
by (5).

⇒
∑
j∈J

yijk + yi,n+1,k = Bki, because B
′

ki = Bki ∀i ∈ I;∀k ∈ K by (18).

⇒
∑
j∈J

yijk = Bki − yi,n+1,k, ∀i ∈ I;∀k ∈ K

⇒
∑
j∈J

yijk ≤ Bki, because yi,n+1,k ≥ 0, ∀i ∈ I;∀k ∈ K

Also, 0 ≤ yi,n+1,k ≤ Bki − bki, ∀i ∈ I;∀k ∈ K by (9)
⇒ 0 ≥ −yi,n+1,k ≥ bki −Bki

⇒ Bki ≥ Bki − ti,n+1,k ≥ bki
⇒ bki ≤

∑
j∈J

yijk ≤ Bki, ∀i ∈ I;∀k ∈ K

⇒ bki ≤
∑
j∈J

xijk ≤ Bki, ∀i ∈ I;∀k ∈ K by (32)

Now,
∑
i∈I′

yijk = A
′

jk,∀j ∈ J
′
;∀k ∈ K

′
by (6)

⇒
∑
i∈I

yijk + ym+1,j,k = Ajk,∀j ∈ J ;∀k ∈ K by (16)

⇒
∑
i∈I

yijk = Ajk − ym+1,j,k,∀j ∈ J ;∀k ∈ K

⇒
∑
i∈I

yijk ≤ Ajk, because ym+1,j,k ≥ 0, ∀j ∈ J ;∀k ∈ K

Also, 0 ≤ ym+1,j,k ≤ Ajk − ajk, ∀j ∈ J ;∀k ∈ K by (10)
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⇒ ajk ≤
∑
i∈I

yijk ≤ Ajk ∀j ∈ J ;∀k ∈ K

⇒ ajk ≤
∑
i∈I

xijk ≤ Ajk ∀j ∈ J ;∀k ∈ K by (32).

Similarly, we can show that eij ≤
∑
k∈K

xijk ≤ Eij ,∀i ∈ I;∀j ∈ J

So,{xijk}, i ∈ I, j ∈ J, k ∈ K defined by (32) is a feasible solution to problem (P1).
Conversely, let {xijk}, i ∈ I, j ∈ J, k ∈ K be a feasible solution to problem (P1).

Define yijk = xijk ∀i ∈ I;∀j ∈ J ;∀k ∈ K (33)

ym+1,j,k = Ajk −
∑
i∈I

xijk ∀j ∈ J ;∀k ∈ K (34)

yi,n+1,k = Bki −
∑
j∈J

xijk ∀i ∈ I;∀k ∈ K (35)

yi,j,p+1 = Eij −
∑
k∈K

xijk ∀i ∈ I;∀j ∈ J (36)

ym+1,n+1,p+1 =
∑
i∈I

∑
j∈J

∑
k∈K

xijk (37)

yi,n+1,p+1 =
∑
j∈J

∑
k∈K

xijk ∀i ∈ I (38)

ym+1,j,p+1 =
∑
i∈I

∑
k∈K

xijk ∀j ∈ J (39)

ym+1,n+1,k =
∑
i∈I

∑
j∈J

xijk ∀k ∈ K (40)

Since, lijk ≤ xijk ≤ uijk ∀i ∈ I;∀j ∈ J ;∀k ∈ K by (4),
⇒ lijk ≤ yijk ≤ uijk ∀i ∈ I;∀j ∈ J ;∀k ∈ K by (33).
Also,

∑
j∈J′

yijk =
∑
j∈J

yijk + yi,n+1,k

=
∑
j∈J

xijk + Bki −
∑
j∈J

xijk by (33) and (35).

= Bki, i ∈ I, k ∈ K.
= B

′

ki, i ∈ I, k ∈ K by (18).
Also,

∑
j∈J′

yi,j,p+1 =
∑
j∈J

yi,j,p+1 + yi,n+1,p+1

=
∑
j∈J

Eij −
∑
j∈J

∑
k∈K

xijk + yi,n+1,p+1 by (36).

=
∑
j∈J

Eij −
∑
j∈J

∑
k∈K

xijk +
∑
j∈J

∑
k∈K

xijk by (38).
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=
∑
j∈J

Eij

= B
′

p+1,i by (22).
Also,

∑
j∈J′

ym+1,j,k =
∑
j∈J

ym+1,j,k + ym+1,n+1,k

=
∑
j∈J

Ajk −
∑
j∈J

∑
i∈I

xijk +
∑
i∈I

∑
j∈J

xijk by (34)and (40).

=
∑
j∈J

Ajk

= B
′

k,m+1 by (19).
Now,

∑
i∈I′

yijk =
∑
i∈I

yijk + ym+1,j,k

=
∑
i∈I

xijk + Ajk −
∑
i∈I

xijk ,∀j ∈ J ;∀k ∈ K by (33)and (34).

= Ajk, j ∈ J, k ∈ K.

= A
′

jk, j ∈ J, k ∈ K by (16).
Also,

∑
i∈I′

yi,n+1,k =
∑
i∈I

yi,n+1,k + ym+1,n+1,k

=
∑
i∈I

(Bki −
∑
j∈J

xijk) +
∑
i∈I

∑
j∈J

xijk by (35)and (40).

=
∑
i∈I

Bki

= A
′

n+1,k ,∀k ∈ K by (17).
Also,

∑
i∈I′

yi,j,p+1 =
∑
i∈I

yi,j,p+1 + ym+1,j,p+1

=
∑
i∈I

(Eij −
∑
k∈K

xijk) +
∑
i∈I

∑
k∈K

xijk by (36)and (39).

=
∑
i∈I

Eij

= A
′

j,p+1 ,∀j ∈ J by (24).
Now,

∑
k∈K′

yijk =
∑
k∈K

yijk + yi,j,p+1

=
∑
k∈K

xijk + Eij −
∑
k∈K

xijk by (36)and (38).

= Eij , i ∈ I, j ∈ J .

= E
′

ij , i ∈ I, j ∈ J by (20).
Also,

∑
k∈K′

yi,n+1,k =
∑
k∈K

yi,n+1,k + yi,n+1,p+1

=
∑
k∈K

(Bki −
∑
j∈J

xijk) +
∑
k∈K

∑
j∈J

xijk by (35)and (38).

=
∑
k∈K

Bki

= E
′

i,n+1 ,∀i ∈ I by (21).
Also,

∑
k∈K′

ym+1,j,k =
∑
k∈K

ym+1,j,k + ym+1,j,p+1

=
∑
k∈K

(Ajk −
∑
i∈I

xijk) +
∑
k∈K

∑
i∈I

xijk by (34)and (39).

=
∑
k∈K

Ajk

= E
′

m+1,j ,∀j ∈ J by (25).
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Now, ajk ≤
∑
i∈I

xijk ≤ Ajk,∀j ∈ J ;∀k ∈ K by (2),

⇒ −ajk ≥ −
∑
i∈I

xijk ≥ −Ajk,∀j ∈ J ;∀k ∈ K

⇒ Ajk − ajk ≥ Ajk −
∑
i∈I

xijk ≥ Ajk −Ajk

⇒ 0 ≤ ym+1,j,k ≤ Ajk − ajk, ∀j ∈ J ;∀k ∈ K by (34) which proves (10)
Now, eij ≤

∑
k∈K

xijk ≤ Eij ,∀i ∈ I;∀j ∈ J by (3),

⇒ −eij ≥ −
∑
k∈K

xijk ≥ −Eij ,∀j ∈ J ;∀i ∈ I

⇒ Eij − eij ≥ Eij −
∑
k∈K

xijk ≥ 0

⇒ 0 ≤ yi,j,p+1 ≤ Eij − eij , ∀i ∈ I;∀j ∈ J by (36) which proves (11)
Now, bki ≤

∑
j∈J

xijk ≤ Bki,∀i ∈ I;∀k ∈ K by (1),

⇒ −bki ≥ −
∑
j∈J

xijk ≥ −Bki,∀i ∈ I;∀k ∈ K

⇒ Bki − bki ≥ Bki −
∑
j∈J

xijk ≥ 0

⇒ 0 ≤ yi,n+1,k ≤ Bki − bki, ∀i ∈ I;∀k ∈ K by (35) which proves (9)
Clearly, ym+1,n+1,p+1 =

∑
i∈I

∑
j∈J

∑
k∈K

xijk ≥ 0

All the above arguments show that {yijk} is a feasible solution to problem (P2).

Theorem 5. The value of the objective function of problem (P1) at a feasible
solution is equal to the value of the objective function of problem (P2) at its corre-
sponding feasible solution and conversely.

Proof. Let {yijk : i ∈ I
′
, j ∈ J

′
, k ∈ K

′} be a feasible solution to problem (P2)
and {xijk : i ∈ I, j ∈ J, k ∈ K} be the corresponding feasible solution to problem
(P1).
Let z = objective function value of problem (P2) at {yijk : i ∈ I

′
, j ∈ J

′
, k ∈ K

′}
⇒ z =

∑
i∈I′

∑
j∈J′

∑
k∈K′

c
′

ijkyijk

=
∑
i∈I

∑
j∈J

∑
k∈K

c
′

ijkyijk +
∑
i∈I

∑
j∈J

c
′

i,j,p+1yi,j,p+1 +
∑
i∈I

∑
k∈K

c
′

i,n+1,kyi,n+1,k

+
∑
j∈J

∑
k∈K

c
′

m+1,j,kym+1,j,k + c
′

m+1,n+1,p+1ym+1,n+1,p+1

=
∑
i∈I

∑
j∈J

∑
k∈K

cijkxijk by(26),(27)(28)and (33).

= value of the objective function of problem (P1) at {xijk : i ∈ I, j ∈ J, k ∈ K}.
Converse can be proved similarly.

Theorem 6. There is one to one correspondence between optimal solution of prob-
lem (P1) and optimal solution of problem (P2).

Proof. Let {x0
ijk : i ∈ I, j ∈ J, k ∈ K} be the optimal solution to problem (P1).

Let the objective function value be z0 at this optimal solution. Since {x0
ijk : i ∈

I, j ∈ J, k ∈ K} is an optimal solution to problem (P1), so it is a feasible solution
also. Therefore, by theorem (4), there exists a corresponding feasible solution
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of problem (P2). Let {t0ijk : i ∈ I
′
, j ∈ J

′
, k ∈ K

′} be the corresponding feasible
solution of problem (P2). Then by theorem (5), the objective function value yielded
by {t0ijk : i ∈ I

′
, j ∈ J

′
, k ∈ K

′} is same as the objective function value yielded

by {x0
ijk : i ∈ I, j ∈ J, k ∈ K}. Therefore, the objective function value yielded by

{t0ijk : i ∈ I
′
, j ∈ J

′
, k ∈ K

′} is also z0. Let, if possible,{t0ijk : i ∈ I
′
, j ∈ J

′
, k ∈

K
′} is not an optimal solution to problem (P2). Then, there exists a feasible

solution {t′ijk : i ∈ I
′
, j ∈ J

′
, k ∈ K

′}, say, to problem (P2) with the objective

function value z
′
< z0. Let {x′

ijk : i ∈ I, j ∈ J, k ∈ K} be the corresponding

feasible solution to problem (P1). Then by theorem (5),
∑
i∈I

∑
j∈J

∑
k∈K

cijkx
′

ijk = z
′
,

which is a contradiction to the assumption that {x0
ijk : i ∈ I, j ∈ J, k ∈ K}is an

optimal solution of problem (P1). Similarly, an optimal solution to problem (P2)
will give an optimal solution to problem (P1).

5. APPLICATION OF THREE DIMENSIONAL BOUNDED
TRANSPORTATION PROBLEM TO PUBLIC DISTRIBUTION

SYSTEM OF NORTH DELHI

The government stores wheat, rice, and sugar in three godowns at Civil Lines,
Sadar Bazar, and Nai Sarak. The products are transported from these godowns to
fair price shops at Ashok Vihar, Daryaganj, Karol Bagh, and Rohini. The cost (in
thousand rupees per quintal) of transporting these products from the godowns to
fair price shops are given in Table 1. The minimum and maximum availability of
these products (in quintals) at three godowns are mentioned in column 7 of Table
1. Moreover, the minimum and maximum demand of these products (in quintals)
at fair price shops are mentioned in row 5. The minimum and maximum quantity
(in quintals) of products received by each fair price shop from each godown are
given in the last row of each cell. Lower bound (LB) and upper bound (UB) on
the quantity (in quintals) of wheat, rice, and sugar supplied from each godown to
each fair price shop are given in the respective cell in brackets under row heading
(LB,UB) in Table 1. The objective is to determine the quantity of each type of
product to be shipped from each godown to each fair price shop such that the
overall transportation cost is minimum and the rim conditions are satisfied.

5.1. Formulation of the problem of public distribution system as a three dimen-
sional capacitated transportation problem

Let I={1,2,3} be three godowns at Civil Lines, Sadar Bazar, and Nai Sarak
respectively.
J={1,2,3,4} be fair price shops at Ashok Vihar, Daryaganj, Karol Bagh, and Rohini
respectively.
K={1,2,3} be the set of three products such as wheat, rice, and sugar respectively.
xijk = quantity of kth type of product shipped from the ith godown to the jth fair
price shop.
Mathematically,
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Fair Price Shop → Ashok Darya- Karol Rohini Supply
Godowns↓ Commodity↓ Vihar Ganj Bagh (Min , Max)

Wheat→ 2(0,30) 4(1,30) 3(2,50) 4(0,40) (5,30)
Civil Lines Rice→ 3(1,60) 2(2,70) 1(0,70) 4(0,50) (3,40)

Sugar→ 1(0,70) 2(0,50) 3(0,40) 1(0,50) (2,70)
(LB,UB)→ (0,60) (2,50) (2,30) (0,40) –
Wheat→ 3(1,40) 2(0,30) 5(0,50) 3(0,70) (3,50)

Sadar Bazar Rice→ 1(1,70) 4(1,60) 2(2,80) 4(0,50) (5,40)
Sugar→ 2(0,50) 3(0,60) 3(2,70) 2(0,80) (2,60)
(LB,UB)→ (0,70) (3,50) (2,60) (2,50) –
Wheat→ 1(1,40) 4(0,30) 2(0,50) 1(0,70) (2,50)

Nai Sarak Rice→ 2(1,70) 3(1,60) 3(1,50) 2(0,60) (3,50)
Sugar→ 3(2,80) 2(2,70) 4(2,50) 3(0,60) (5,50)
(LB,UB)→ (0,60) (0,60) (0,60) (0,60) –

Demand Wheat→ (3,50) (5,30) (3,50) (2,70) –
(Min, Max) Rice→ (5,50) (3,40) (5,40) (0,60) –

Sugar→ (2,50) (2,70) (2,60) (0,40) –

Table 1: cost and capacity bounds

min z = (2x111 + 3x112 + x113) + (4x121 + 2x122 + 2x123)
+ (3x131 + x132 + 3x133) + (4x141 + 4x142 + x143) + (3x211 + x212 + 2x213)
+ (2x221 + 4x222 + 3x223) + (5x231 + 2x232 + 3x233) + (3x241 + 4x242 + 2x243)
+ (x311 + 2x312 + 3x313) + (4x321 + 3x322 + 2x323) + (2x331 + 3x332 + 4x333)
+ (x341 + 2x342 + 3x343) (P3)
subject to the constraints
5 ≤ x111 + x121 + x131 + x141 ≤ 30
3 ≤ x112 + x122 + x132 + x142 ≤ 40
2 ≤ x113 + x123 + x133 + x143 ≤ 70
3 ≤ x211 + x221 + x231 + x241 ≤ 50
5 ≤ x212 + x222 + x232 + x242 ≤ 40
2 ≤ x213 + x223 + x233 + x243 ≤ 60
2 ≤ x311 + x321 + x331 + x341 ≤ 50
3 ≤ x312 + x322 + x332 + x342 ≤ 50
5 ≤ x313 + x323 + x333 + x343 ≤ 50
3 ≤ x111 + x211 + x311 ≤ 50
5 ≤ x112 + x212 + x312 ≤ 50
2 ≤ x113 + x213 + x313 ≤ 50
5 ≤ x121 + x221 + x321 ≤ 30
3 ≤ x122 + x222 + x322 ≤ 40
2 ≤ x123 + x223 + x323 ≤ 70
3 ≤ x131 + x231 + x331 ≤ 50
5 ≤ x132 + x232 + x332 ≤ 40
2 ≤ x133 + x233 + x333 ≤ 60
2 ≤ x141 + x241 + x341 ≤ 70
0 ≤ x142 + x242 + x342 ≤ 60
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0 ≤ x143 + x243 + x343 ≤ 40
0 ≤ x111 + x112 + x113 ≤ 60
2 ≤ x121 + x122 + x123 ≤ 50
2 ≤ x131 + x132 + x133 ≤ 30
0 ≤ x141 + x142 + x143 ≤ 40
0 ≤ x211 + x212 + x213 ≤ 70
3 ≤ x221 + x222 + x223 ≤ 50
2 ≤ x231 + x232 + x233 ≤ 60
2 ≤ x241 + x242 + x243 ≤ 50
0 ≤ x311 + x312 + x313 ≤ 60
0 ≤ x321 + x322 + x323 ≤ 60
0 ≤ x331 + x332 + x333 ≤ 60
0 ≤ x341 + x342 + x343 ≤ 60
0 ≤ x111 ≤ 30, 1 ≤ x112 ≤ 60, 0 ≤ x113 ≤ 70
1 ≤ x121 ≤ 30, 2 ≤ x122 ≤ 70, 0 ≤ x123 ≤ 50
2 ≤ x131 ≤ 50, 0 ≤ x132 ≤ 70, 0 ≤ x133 ≤ 40
0 ≤ x141 ≤ 40, 0 ≤ x142 ≤ 50, 0 ≤ x143 ≤ 50
1 ≤ x211 ≤ 40, 1 ≤ x212 ≤ 70, 0 ≤ x213 ≤ 50
0 ≤ x221 ≤ 30, 1 ≤ x222 ≤ 60, 0 ≤ x223 ≤ 60
0 ≤ x231 ≤ 50, 2 ≤ x232 ≤ 80, 2 ≤ x233 ≤ 70
0 ≤ x241 ≤ 70, 0 ≤ x242 ≤ 50, 0 ≤ x243 ≤ 80
1 ≤ x311 ≤ 40, 1 ≤ x312 ≤ 70, 2 ≤ x313 ≤ 80
0 ≤ x321 ≤ 30, 1 ≤ x322 ≤ 60, 2 ≤ x323 ≤ 70
0 ≤ x331 ≤ 50, 1 ≤ x332 ≤ 50, 2 ≤ x333 ≤ 50
0 ≤ x341 ≤ 70, 0 ≤ x342 ≤ 60, 0 ≤ x343 ≤ 60
Introduce a dummy origin, a dummy destination, and a dummy product in problem
(P3)). The related transportation problem is defined as follows.
min z = (2y111 + 3y112 + y113 + 0y114) + (4y121 + 2y122 + 2y123 + 0y124) + (3y131 +
y132 + 3y133 + 0y134) + (4y141 + 4y142 + y143 + 0y144)
+ (0y151 + 0y152 + 0y153 + 0y154) + (3y211 + y212 + 2y213 + 0y214) + (2y221 + 4y222 +
3y223 + 0y224) + (5y231 + 2y232 + 3y233 + 0y234)
+ (3y241 + 4y242 + 2y243 + 0y244) + (0y251 + 0y252 + 0y253 + 0y254) + (y311 + 2y312 +
3y313 + 0y314) + (4y321 + 3y322 + 2y323 + 0y324)
+ (2y331 + 3y332 + 4y333 + 0y334) + (y341 + 2y342 + 3y343 + 0y344) + (0y351 + 0y352 +
0y353 + 0y354) + (0y411 + 0y412 + 0y413 + 0y414)
+(0y421 +0y422 +0y423 +0y424)+(0y431 +0y432 +0y433 +0y434)+(0y441 +0y442 +
0y443 + 0y444) + (0y451 + 0y452 + 0y453 + 0y454) (P4)
subject to the constraints:
y111 + y121 + y131 + y141 + y151 = 30
y112 + y122 + y132 + y142 + y152 = 40
y113 + y123 + y133 + y143 + y153 = 70
y114 + y124 + y134 + y144 + y154 = 180
y211 + y221 + y231 + y241 + y251 = 50
y212 + y222 + y232 + y242 + y252 = 40
y213 + y223 + y233 + y243 + y253 = 60
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y214 + y224 + y234 + y244 + y254 = 230
y311 + y321 + y331 + y341 + y351 = 50
y312 + y322 + y332 + y342 + y352 = 50
y313 + y323 + y333 + y343 + y353 = 50
y314 + y324 + y334 + y344 + y354 = 240
y411 + y421 + y431 + y441 + y451 = 200
y412 + y422 + y432 + y442 + y452 = 190
y413 + y423 + y433 + y443 + y453 = 220
y414 + y424 + y434 + y444 + y454 = 650
y111 + y211 + y311 + y411 = 50
y112 + y212 + y312 + y412 = 50
y113 + y213 + y313 + y413 = 50
y114 + y214 + y314 + y414 = 190
y121 + y221 + y321 + y421 = 30
y122 + y222 + y322 + y422 = 40
y123 + y223 + y323 + y423 = 70
y124 + y224 + y324 + y424 = 160
y131 + y231 + y331 + y431 = 50
y132 + y232 + y332 + y432 = 40
y133 + y233 + y333 + y433 = 60
y134 + y234 + y334 + y434 = 150
y151 + y251 + y351 + y451 = 130
y152 + y252 + y352 + y452 = 130
y153 + y253 + y353 + y453 = 180
y154 + y254 + y354 + y454 = 650
y141 + y241 + y341 + y441 = 70
y142 + y242 + y342 + y442 = 60
y143 + y243 + y343 + y443 = 40
y144 + y244 + y344 + y444 = 150
y111 + y112 + y113 + y114 = 60
y121 + y122 + y123 + y124 = 50
y131 + y132 + y133 + y134 = 30
y141 + y142 + y143 + y144 = 40
y151 + y152 + y153 + y154 = 140
y211 + y212 + y213 + y214 = 70
y221 + y222 + y223 + y224 = 50
y231 + y232 + y233 + y234 = 60
y241 + y242 + y243 + y244 = 50
y251 + y252 + y253 + y254 = 150
y311 + y312 + y313 + y314 = 60
y321 + y322 + y323 + y324 = 60
y331 + y332 + y333 + y334 = 60
y341 + y342 + y343 + y344 = 60
y351 + y352 + y353 + y354 = 150
y411 + y412 + y413 + y414 = 150
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y421 + y422 + y423 + y424 = 140
y431 + y432 + y433 + y434 = 150
y441 + y442 + y443 + y444 = 170
y451 + y452 + y453 + y454 = 650
0 ≤ y111 ≤ 30, 1 ≤ y112 ≤ 60, 0 ≤ y113 ≤ 70, 0 ≤ y114 ≤ 60, 0 ≤ y151 ≤ 25
1 ≤ y121 ≤ 30, 2 ≤ y122 ≤ 70, 0 ≤ y123 ≤ 50, 0 ≤ y124 ≤ 48, 0 ≤ y152 ≤ 37
2 ≤ y131 ≤ 50, 0 ≤ y132 ≤ 70, 0 ≤ y133 ≤ 40, 0 ≤ y134 ≤ 28, 0 ≤ y153 ≤ 68
0 ≤ y141 ≤ 40, 0 ≤ y142 ≤ 50, 0 ≤ y143 ≤ 50, 0 ≤ y144 ≤ 40, y154 ≥ 0
1 ≤ y211 ≤ 40, 1 ≤ y212 ≤ 70, 0 ≤ y213 ≤ 50, 0 ≤ y214 ≤ 70, 0 ≤ y221 ≤ 30
1 ≤ y222 ≤ 60, 0 ≤ y223 ≤ 60, 0 ≤ y224 ≤ 47, 0 ≤ y231 ≤ 50, 2 ≤ y232 ≤ 80
2 ≤ y233 ≤ 70, 0 ≤ y234 ≤ 58, 0 ≤ y241 ≤ 70, 0 ≤ y242 ≤ 50, 0 ≤ y243 ≤ 80
0 ≤ y244 ≤ 48, 0 ≤ y251 ≤ 47, 0 ≤ y252 ≤ 35, 0 ≤ y253 ≤ 58, y254 ≥ 0
1 ≤ y311 ≤ 40, 1 ≤ y312 ≤ 70, 2 ≤ y313 ≤ 80, 0 ≤ y314 ≤ 60, 0 ≤ y321 ≤ 30
1 ≤ y322 ≤ 60, 2 ≤ y323 ≤ 70, 0 ≤ y324 ≤ 60, 0 ≤ y331 ≤ 50, 1 ≤ y332 ≤ 50
2 ≤ y333 ≤ 50, 0 ≤ y334 ≤ 60, 0 ≤ y341 ≤ 70, 0 ≤ y342 ≤ 60, 0 ≤ y343 ≤ 60
0 ≤ y344 ≤ 60, 0 ≤ y351 ≤ 48, 0 ≤ y352 ≤ 47, 0 ≤ y353 ≤ 45, y354 ≥ 0
0 ≤ y411 ≤ 47, 0 ≤ y412 ≤ 45, 0 ≤ y413 ≤ 48, y414 ≥ 0, 0 ≤ y421 ≤ 25
0 ≤ y422 ≤ 37, 0 ≤ y423 ≤ 68, y424 ≥ 0, 0 ≤ y431 ≤ 47, 0 ≤ y432 ≤ 35
0 ≤ y433 ≤ 58, y434 ≥ 0, 0 ≤ y441 ≤ 68, 0 ≤ y442 ≤ 60, 0 ≤ y443 ≤ 40
y444 ≥ 0, y451 ≥ 0, y452 ≥ 0, y453 ≥ 0, y454 ≥ 0

5.2. Solution

We solved problem (P4) on LINGO 17.0 and obtained the solution given in
Table 2 and Table 3. From the solution of problem (P4), we obtained the solution
of problem (P3), which is shown in Table 4.

Interpretation: x111 = 1.00 means that 1 quintal of wheat is supplied from
the godown at Civil lines to fair price shop at Ashok Vihar. Similarly, value of
other decision variables can be interpreted. The overall minimum transportation
cost is eighty five thousand rupees when this transportation schedule is followed.

Objective Function Value z = 85.000
Infeasibilities 0.000
Total solver iterations 35
Elapsed runtime seconds 0.05
Model Class LP
Total variables 80
Nonlinear variables 0
Integer variables 0
Total constraints 57
Nonlinear constraints 0
Total non-zeros 276
Nonlinear non-zeros 0

Table 2: Global optimal solution obtained on LINGO 17.0



136 K. Gupta, R. Arora / Three Dimensional Bounded Transportation Problem

y111 = 1.00 y121 = 1.00 y131 = 3.00 y141 = 0.00 y151 = 25.00
y112 = 1.00 y122 = 2.00 y132 = 2.00 y142 = 0.00 y152 = 35.00
y113 = 0.00 y123 = 0.00 y133 = 0.00 y143 = 2.00 y153 = 68.00
y114 = 58.00 y124 = 47.00 y134 = 25.00 y144 = 38.00 y154 = 12.00
y211 = 1.00 y221 = 4.00 y231 = 0.00 y241 = 0.00 y251 = 45.00
y212 = 3.00 y222 = 1.00 y232 = 2.00 y242 = 0.00 y252 = 34.00
y213 = 0.00 y223 = 0.00 y233 = 2.00 y243 = 2.00 y253 = 56.00
y214 = 66.00 y224 = 45.00 y234 = 56.00 y244 = 48.00 y254 = 15.00
y311 = 1.00 y321 = 0.00 y331 = 0.00 y341 = 2.00 y351 = 47.00
y312 = 1.00 y322 = 1.00 y332 = 1.00 y342 = 0.00 y352 = 47.00
y313 = 2.00 y323 = 2.00 y333 = 2.00 y343 = 0.00 y353 = 44.00
y314 = 56.00 y324 = 57.00 y334 = 57.00 y344 = 58.00 y354 = 12.00
y411 = 47.00 y421 = 25.00 y431 = 47.00 y441 = 68.00 y451 = 13.00
y412 = 45.00 y422 = 36.00 y432 = 35.00 y442 = 60.00 y452 = 14.00
y413 = 48.00 y423 = 68.00 y433 = 56.00 y443 = 36.00 y453 = 12.00
y414 = 10.00 y424 = 11.00 y434 = 12.00 y444 = 6.00 y454 = 611.00

Table 3: Solution of problem (P4)

x111 = 1.00 x121 = 1.00 x131 = 3.00 x141 = 0.00
x112 = 1.00 x122 = 2.00 x132 = 2.00 x142 = 0.00
x113 = 0.00 x123 = 0.00 x133 = 0.00 x143 = 2.00
x211 = 1.00 x221 = 4.00 x231 = 0.00 x241 = 0.00
x212 = 3.00 x222 = 1.00 x232 = 2.00 x242 = 0.00
x213 = 0.00 x223 = 0.00 x233 = 2.00 x243 = 2.00
x311 = 1.00 x321 = 0.00 x331 = 0.00 x341 = 2.00
x312 = 1.00 x322 = 1.00 x332 = 1.00 x342 = 0.00
x313 = 2.00 x323 = 2.00 x333 = 2.00 x343 = 0.00

Table 4: Solution of problem (P3)

6. CONCLUSIONS AND SUGGESTIONS

In this study, we formulated a transportation problem in three dimensions.
In this problem, the demand,supply, and commodity constraints are bounded .
Moreover, the decision variables are also bounded. We first convert the original
problem into a related transportation problem by introducing a dummy row, a
dummy column, and a dummy product. The equivalence between the original
problem and the related transportation problem is shown.It is shown that there is
one to one correspondence between optimal solution of the original problem and
optimal solution of related transportation problem. The developed model is then
applied to the problem of Public Distribution System of North Delhi. A computing
software LINGO 17.0 is used to solve the problem. This study has managerial
implications. It can assist the managers of small scale and large scale industries
in the selection of distributors, customers, quantity of variety of products, etc.The
prospective research work of this paper is to apply the developed model to multi-
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index bounded transportation problem with specified flow.
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