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1. INTRODUCTION

In this paper, we consider the following semi-infinite optimization problem in
the absence of data uncertainty

(SIP)
min f(x),
s.t. gt(x) ≤ 0,∀t ∈ T,

where T is a nonempty infinite index set and f, gt : Rn → R, t ∈ T are locally
Lipschitz functions.



496 T.H.Pham / Optimality Conditions and Duality

The semi-infinite optimization problem (SIP) in the face of data uncertainty
in the constraints can be captured by the problem

(USIP)
min f(x),
s.t. gt(x, vt) ≤ 0,∀t ∈ T,

where gt : Rn × Rq → R, t ∈ T are locally Lipschitz functions, and for each
t ∈ T, vt ∈ Rq is an uncertain parameter, which belongs to some convex compact
set Vt ⊂ Rq.

The uncertainty set-valued mapping V : T ⇒ Rq is defined as V(t) := Vt for
all t ∈ T . The notation v ∈ V means that v is a selection of V, i.e., v : T → Rq
and vt ∈ Vt for all t ∈ T . So, the uncertainty set is the graph of V, that is,
gphV := {(t, vt) | vt ∈ Vt, t ∈ T}.

The robust counterpart of (USIP) is as follows:

(RSIP)
min f(x),
s.t. gt(x, vt) ≤ 0,∀vt ∈ Vt,∀t ∈ T.

The robust feasible set of (RSIP) is defined by

F := {x ∈ Ω | gt(x, vt) ≤ 0,∀vt ∈ Vt,∀t ∈ T},

where Ω ⊂ Rn is locally closed and nonempty (not necessarily convex).
Let R(T ) be the linear space given below

R(T ) := {λ = (λt)t∈T | λt = 0 for all t ∈ T but only finitely many λt 6= 0}.

Let R(T )
+ be the positive cone in R(T ) defined by

R(T )
+ := {λ = (λt)t∈T ∈ R(T ) | λt ≥ 0 for all t ∈ T}.

With λ ∈ R(T ), its supporting set, T (λ) := {t ∈ T | λt 6= 0}, is a finite subset of
T .

For gt, t ∈ T ,

∑
t∈T

λtgt =


∑

t∈T (λ)

λtgt, if T (λ) 6= ∅,

0, if T (λ) = ∅.

Now, we introduce some concepts of robust approximate minima for (RSIP).

Definition 1. Let ε ≥ 0. A point x̄ ∈ F is said to be

(i) [14] a quasi ε−solution to problem (RSIP) if

f(x̄) ≤ f(x) +
√
ε||x− x̄||,∀x ∈ F.

(ii) a quasi weakly ε−solution to problem (RSIP) if

f(x̄) < f(x) +
√
ε||x− x̄||,∀x ∈ F.
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In recent years, the study of one among more a semi-infinite programming
problem (SIP), which is an optimization problem on a feasible set described by
an infinite number of inequality constraints, has occupied attention of researches.
Many successful treatments of deterministic semi-infinite programming have been
investigated from several different perspectives. We refer the readers to the book
[10], the survey papers [12, 24], and the references therein.

Semi-infinite programming problems could be applied in various fields such as
in engineering design, mathematical physics, robotics, optimal control, transporta-
tion problems, fuzzy sets, cooperative games, see [10, 24].

On the other hand, robust optimization has emerged as a remarkable deter-
ministic framework for studying optimization problems with uncertain data [1, 2].
Many researchers have been attracted to work on the real-world application of
robust optimization in engineering, business and management. Many interesting
results could be found in [3, 7, 8, 11, 21] and the references therein.

Furthermore, since sometimes the exact solutions do not exist while the approx-
imate ones do, even in the convex case [25, 26] and other references therein, the
results on optimality conditions and duality theorems for approximate solutions
to multiobjective optimization problems and problem SIP have been investigated
in [6, 29]. Recently, many researchers have worked on the theory of approximate
optimal solutions for various types of uncertain optimization problems, such as
uncertain convex optimization problems in [30], uncertain convex multiobjective
optimization problems in [32], uncertain nonconvex multiobjective optimization
problems in [9] and uncertain convex semidefinite optimization problems in [13].
However, the results on optimality conditions as well as duality for approximate so-
lutions to semi-infinite programming problems under uncertainty have been stud-
ied in few papers. More precisely, robust approximate optimality theorems and du-
ality results for an uncertain convex semi-infinite programming problem have been
obtained in [22]. By using robust optimization technique, results on necessary and
sufficient optimality conditions for robust quasi approximate optimal solution of
problem SIP have been established in [31]. Recently, some new characterizations of
robust quasi epsilon-solutions for a nonsmooth semi-infinite optimization problems
with data uncertainty have been given in [20]. More recently, robust approximate
quasi optimal solutions for a class of nonlinear semi-infinite programming with
data uncertainty in both the objective and constraints have been studied in [33].
By using techniques of variational analysis, Mordukhovich and Nghia [28] estab-
lished necessary optimality conditions for SIP via Mordukhovich/limiting subdif-
ferential. Kanzi [18] considered nonsmooth semi-infinite programming with mixed
constraints in terms of the Michel–Penot subdifferential. For nonsmooth semi-
infinite multiobjective programming (SIMP) with inequality constraints, by using
the Clarke subdifferential, Kanzi and Nobakhtian [19] established necessary condi-
tions for weakly efficient solutions . Chuong and Kim [4], and Chuong and Yao [5]
proposed a basic constraint qualification in terms of the Mordukhovich/limiting
subdifferential and applied it to optimality conditions for nonsmooth SIMP. Jiao et
al. [14] investigated necessary condition, sufficient condition and type dual model
for a quasi ε−solution to a semi-infinite programming problem (SIP) in terms
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of the Mordukhovich/limiting subdifferential. In [15, 16], Joshi implied sufficient
conditions and weak and strong duality theorems for semi-infinite mathematical
programming problems with equilibrium constraints by using convexificators. Re-
cently, some concepts of approximate efficient solutions for vector optimization
problem have been introduced in [17]. Joshi formulated approximate vector varia-
tional inequalities in terms of the Clarke subdifferentials and applied them to char-
acterize an approximate efficient solution of the vector optimization problem. By
using the Clarke subdifferential, Khantree and Wangkeeree [20], and Sun et al. [33]
established approximate optimality conditions and approximate duality theorems
for semi-infinite optimization problems with data uncertainty. However, to the
best of our knowledge, there is no paper dealing with the Mordukhovich/limiting
subdifferential for approximate optimality conditions and approximate duality the-
orems of semi-infinite optimization problems with data uncertainty.

Inspired by the above observations, we provide some new results for quasi
ε−solutions of nonsmooth semi-infinite programming problems with data uncer-
tainty in constraints (RSIP) via Mordukhovich/limiting subdifferential.

The rest of the paper is organized as follows. Section 1, and Section 2 present
introduction, notations and preliminaries. In Section 3, we establishe necessary
and sufficient conditions for ε−quasi-solution to problem (RSIP). In Section 4,
we obtain ε−Mond-Weir type duality of semi-infinite optimization problem under
uncertainty in constraints. Finally, conclusions are given in Section 5.

2. PRELIMINARIES

Throughout the paper we use the standard notation of variational analysis in
[27]. Let Rn denote the Euclidean space equipped with the usual Euclidean norm
||.||, and Rn for its topological dual, because (Rn)∗ = Rn. The nonnegative (resp.,
nonpostive) orthant cone of Rn is denoted by Rn+ = {(x1, ..., xn) | xi ≥ 0, i =
1, ..., n} (resp., Rn−). The inner product is defined by 〈., .〉. The closed unit ball of
Rn is denoted by B. For a given set Ω ⊂ Rn, we use convΩ to indicate the convex

hull of Ω, and the notation x
Ω−→ x̄ means that x→ x̄ with x ∈ Ω.

A given set-valued mapping F : Ω ⊂ Rn ⇒ Rm is said to be closed at x̄ ∈ Ω
if for any sequence {xk} ⊂ Ω, xk → x̄ and any sequence {yk} ⊂ Rm, yk → ȳ, one
has ȳ ∈ F (x̄).

Given a set-valued map F : Rn ⇒ Rm with values F (x) ⊂ Rm in the collection
of all the subsets, we denote by

Lim sup
x→x

F (x) := {y ∈ Rm | ∃xk → x̄, yk → y with yk ∈ F (xk),∀k = 1, 2, ...}

the sequential Painlevé Kuratowski upper limit of F at x̄.
Let Ω ⊂ Rn be a nonempty set. Given any x̄ ∈ Ω, we define the Fréchet/regular

normal cone to Ω at x by

NF (x̄; Ω) :=

{
v ∈ Rn | lim sup

x
Ω−→x̄

〈v, x− x̄〉
‖ x− x̄ ‖

≤ 0

}
,
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where x
Ω−→ x̄ means that x→ x̄ with x ∈ Ω. If x̄ /∈ Ω, we put NF (x̄; Ω) := ∅.

The Mordukhovich/limiting [27] normal cone NM (x̄; Ω) to Ω at x̄ ∈ Ω ⊂ R
is obtained from Fréchet/regular normal cones by taking the sequential Painlevé
Kuratowski upper limit as

NM (x̄; Ω) := Lim sup

x
Ω−→x̄

NF (x̄; Ω).

If x̄ /∈ Ω, we put NM (x̄; Ω) := ∅.
Let f : Rn → R̄ := [−∞,+∞] be an extended real-valued function. The

domain and epigraph of f are given by

domf := {x ∈ Rn | f(x) <∞}

and
epif := {(x, t) ∈ Rn × R | t ≥ f(x)}.

Let f : Rn → R̄ := [−∞,+∞] be finite at x̄ ∈ domf , then the Mordukhovich/limiting
subdifferential [27] of f at x̄ is defined by

∂Mf(x) :=
{
v ∈ Rn | (v,−1) ∈ NM ((x̄, f(x̄)); epif)

}
.

If |f(x̄)| =∞, then one puts ∂Mf(x̄) := ∅.
Given Ω ⊂ Rn and consider the indicator function δ(.,Ω) defined by

δ(x; Ω) :=

{
0, if x ∈ Ω,

+∞, otherwise.

Furthermore, we have a relation between the Mordukhovich/limiting normal
cone and the Mordukhovich/limiting subdifferential of the indicator function as
follows

NM (x̄; Ω) = ∂Mδ(x̄; Ω),∀x ∈ Ω.

Let f : Rn → R̄ be a given real valued function. We say that f is locally
Lipschitz, if for any x ∈ Rn, there exist a positive constant L and an open neigh-
bourhood N (x) of x, such that for any x1, x2 ∈ N (x),

||f(x1)− f(x2)|| ≤ L||x1 − x2||.

Lemma 2. [27] Let f : Rn → R̄ be finite at x̄. If x̄ is a local minimizer of f then

0 ∈ ∂M (x̄).

Lemma 3. [27] Suppose that fi : Rn → R̄, i = 1, 2, ..., n, n ≥ 2 is lower semi-
continuous around x̄ ∈ Rn, and let all but one of these functions be Lipschitz
continuous around x̄. Then, for any x ∈ Rn,

∂M (f1 + f2 + ...+ fn)(x̄) ⊂ ∂Mf1(x̄) + ∂Mf2(x̄) + ...+ ∂Mfn(x̄).
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3. ROBUST APPROXIMATE OPTIMALITY CONDITIONS

In this section, we establish the necessary and sufficient optimality conditions
for approximate solutions to problem(RSIP).

The following constraint qualification is an extension of Definition 3.1 in [14].

Definition 4. Let x̄ ∈ F . We say that the following robust-type Mordukhovich
constraint qualification (RMCQ) is satisfied at x̄ if

NM (x̄;F ) ⊆
⋃

λ∈A(x)
vt∈Vt

[∑
t∈T

λt∂
M
x gt(x̄, vt)

]
+NM (x̄; Ω),

where A(x̄) := {λ ∈ R(T )
+ | λtgt(x̄, vt) = 0,∀vt ∈ Vt, t ∈ T} is set of active

constraint multipliers at x̄.

If Vt is a singleton, (RMCQ) becomes the constraint qualification (CQ) for
(SIP). The qualification conditions of (CQ) type have been introduced and used
in [14] and the references therein.

Now, we propose necessary optimality condition for robust approximate solu-
tion of (RSIP) under the (RMCQ).

Theorem 5. Let ε ≥ 0 and let x̄ ∈ F be a quasi ε−solution of (RSIP). Suppose

that (RMCQ) at x̄ holds. Then, there exist (λ̄t)t∈T ∈ R(T )
+ and v̄t ∈ Vt, t ∈ T ,

such that

0 ∈ ∂Mf(x̄) +
∑
t∈T

λ̄t∂
M
x gt(x̄, v̄t) +NM (x̄; Ω) +

√
εB, λ̄tgt(x̄, v̄t) = 0. (1)

Proof. Suppose that x̄ ∈ F is a quasi ε−solution of (RSIP). Then, for any x ∈ F ,

f(x̄) ≤ f(x) +
√
ε||x− x̄||. (2)

From (2), x̄ is a minimizer of the following problem

min
x∈F
{f(x) +

√
ε||x− x̄||}.

Equivalently, x̄ is an optimal solution of the following unconstrained optimization
problem

min
x∈Rn
{f(x) +

√
ε||x− x̄||+ δF (x)}.

By Lemma 2, we have

0 ∈ ∂M
(
f(.) +

√
ε||.− x̄||+ δF (.)

)
(x̄). (3)

From the fact that ∂M ||.− x̄|| = B at x̄, (3) and from the Lemma 3, we have

0 ∈ ∂Mf(x̄) +NM (x̄;F ) +
√
εB. (4)
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By (RMCQ), (4) is equivalent to

0 ∈ ∂Mf(x̄) +
⋃

λ∈A(x̄)
vt∈Vt

[∑
t∈T

λt∂
M
x gt(x̄, vt)

]
+NM (x̄; Ω),+

√
εB,

where
A(x̄) := {λ ∈ R(T )

+ | λtgt(x̄, vt) = 0,∀vt ∈ Vt, t ∈ T}.

Then, there exist λ̄t ∈ R(T )
+ and v̄t ∈ Vt, t ∈ T such that

0 ∈ ∂Mf(x̄) +
∑
t∈T

λ̄t∂
M
x gt(x̄, v̄t) +NM (x̄; Ω),+

√
εB, λ̄tgt(x̄, v̄t) = 0.

This completes the proof.

The following simple example shows that the condition (RMCQ) is essential in
Theorem 5.

Example 6. Let f : R→ R and g : R× Vt → R be defined by

f(x) = 2x and gt(x, vt) = tvtx
2,

where Ω = R, x ∈ R, t ∈ T = [0, 1] and vt ∈ Vt = [2 − t, 2 + t] for any t ∈ T . By

simple computation, F = {0}. Now, take x̄ = 0, ε =
1

4
. Then, it is easy to show

that x̄ = 0 is a quasi ε−solution of (RSIP). Indeed, we have

f(x) +
√
ε|x− x̄| = 2x+

1

2
|x| ≥ 0 = f(x̄),∀x ∈ F.

On the other hand, we have NM (x̄; Ω) = NM (x̄;R) = {0} and ∂Mx gt(x̄, vt) =
{0}, vt ∈ Vt, for any t ∈ T , one has

⋃
λ∈A(x)
vt∈Vt

[∑
t∈T

λt∂
M
x gt(x̄, vt)

]
+NM (x̄;R) = {0}.

Moreover, NM (x̄;F ) = R. Clearly, the (RMCQ) is not satisfied at x̄. On the

other hand, take ε =
1

4
and B = [−1, 1]. It is easy to see that

0 /∈
[

3

2
,

5

2

]
= {2}+

[
−1

2
,

1

2

]
= ∂Mf(x̄) +

∑
t∈T

λt∂
M
x gt(x̄, vt) +NM (x̄;R) +

√
εB,

for any λt ∈ R(T )
+ and vt ∈ Vt, t ∈ T . Then, (1) is not valid. Thus, Theorem 5 is

not valid either.

In the special case when Vt is a singleton, we have the following result in [14].
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Corollary 7. Let ε ≥ 0 and let x̄ be a quasi ε−solution of (SIP). Suppose that

CQ at x̄ holds. Then, there exists (λ̄t)t∈T ∈ R(T )
+ , such that,

0 ∈ ∂Mf(x̄) +
∑
t∈T

λ̄t∂
Mgt(x̄) +NM (x̄; Ω) +

√
εB, λ̄tgt(x̄) = 0.

Now, we introduce a new concept of Karush-Kahn-Tucker (KKT) type condi-
tions for (RSIP).

Definition 8. Let ε ≥ 0 and let F be the robust feasible set of (RSIP). A point
x̄ ∈ F is said to satisfy the robust approximate KKT condition on F if there exist

(λ̄t)t∈T ∈ R(T )
+ and v̄t ∈ Vt, t ∈ T , which (λ̄t)t∈T are not all zero such that

0 ∈ ∂Mf(x̄) +
∑
t∈T

λ̄t∂
M
x gt(x̄, v̄t) +NM (x̄; Ω) +

√
εB, λ̄tgt(x̄, v̄t) = 0.

Remark 9. In the special case that Vt is a singleton, the robust approximate KKT
conditions with respect to ε for (RSIP) reduces to following the approximate KKT
condition with respect to ε for (SIP), i.e.

0 ∈ ∂Mf(x̄) +
∑
t∈T

λ̄t∂
Mgt(x̄) +NM (x̄; Ω) +

√
εB, λ̄tgt(x̄) = 0.

Before we discuss the sufficient conditions for quasi ε−solutions to problem
(RSIP), we introduce the concepts of convexity, which is inspired by [23].

Definition 10. Let Ω ⊆ Rn be a nonempty subset. A local Lipschitz function
f : Rn → R is said to be

(i) Mordukhovich pseudo-convex at x ∈ Ω if for all y ∈ Ω,

〈ξ, y − x〉 ≥ 0,∃ξ ∈ ∂Mf(x)⇒ f(y) ≥ f(x).

(ii) Mordukhovich quasi-convex at x ∈ Ω if for all y ∈ Ω,

f(y) ≤ f(x)⇒ 〈ξ, y − x〉 ≤ 0,∀ξ ∈ ∂Mf(x).

(iii) Mordukhovich ε−quasi-convex at x ∈ Ω if for all y ∈ Ω,

f(y) ≤ f(x)⇒ 〈ξ, y − x〉+
√
ε||y − x|| ≤ 0,∀ξ ∈ ∂Mf(x),

for all positive numbers ε.

Definition 11. Let Ω ⊆ Rn be a nonempty subset and ε ≥ 0. A local Lipschitz
function f : Rn → R is said to be

(i) Mordukhovich ε−pseudo-convex of type I at x ∈ Ω if for all y ∈ Ω,

〈ξ, y − x〉+
√
ε||y − x|| ≥ 0,∃ξ ∈ ∂Mf(x)⇒ f(y) +

√
ε||y − x|| ≥ f(x).
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(ii) Mordukhovich ε−pseudo-convex of type II at x ∈ Ω if for all y ∈ Ω,

〈ξ, y − x〉 ≥ 0,∃ξ ∈ ∂Mf(x)⇒ f(y) +
√
ε||y − x|| ≥ f(x).

Remark 12. If f is Mordukhovich ε−pseudo-convex of type I at x, then it is also
Mordukhovich ε−pseudo-convex of type II at x. But the converse is not true in
general.

Example 13. Let f : R→ R be defined by

f(x) =

{ x

4
, if x ≥ 0,

x, if x < 0.

By simple computation, we have

∂Mf(0) = {1

4
, 1}.

It is easy to see that f is ε−pseudo-convex of type II but not ε−pseudo-convex
of type I at x = 0. We fisrt prove that f is ε−pseudo-convex of type II at x = 0.

Indeed, take y = −1, ξ =
1

4
∈ ∂Mf(0) = {1

4
, 1} and ε =

1

4
. Clearly,

f(y) +
√
ε|y − x| = −1 +

1

2
= −1

2
≤ 0 = f(x),

which implies

〈ξ, y − x〉 = −1

4
≤ 0.

We now prove that f is not ε−pseudo-convex of type I at x = 0. Indeed, take

y = −1, ξ =
1

4
∈ ∂Mf(0) = {1

4
, 1} and ε =

1

4
. Clearly,

f(y) +
√
ε|y − x| = −1 +

1

2
= −1

2
≤ 0 = f(x).

However,

〈ξ, y − x〉+
√
ε|y − x| = −1

4
+

1

2
=

1

4
≥ 0.

Next, we can derive the following sufficient condition for a quasi ε−solution of
(RSIP).

Theorem 14. Let ε ≥ 0 and Ω be convex set. Assume that (x̄, λ̄t, v̄t) ∈ F×R(T )
+ ×

Vt satisfies the robust approximate KKT condition with respect to ε. If f(.) is
Mordukhovich ε−pseudo-convex of type I at x̄ and gt(., v̄t), t ∈ T is Mordukhovich
quasi-convex at x̄, then x̄ ∈ F is a quasi ε−solution of (RSIP).
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Proof. Let (x̄, λ̄t, v̄t) ∈ F × R(T )
+ × Vt be satisfied regarding the robust approxi-

mate KKT condition with respect to ε. Therefore, there exist ξ0 ∈ ∂Mf(x̄), ξt ∈
∂Mx g(x̄, v̄t),∀t ∈ T with w ∈ NM (x̄; Ω) and b ∈ B, such that

ξ0 +
∑
t∈T

λ̄tξt + w +
√
εb = 0. (5)

Since b ∈ B, w ∈ NM (x̄; Ω) and Ω is convex set, it follows that, for any x ∈ F ,

〈w, x− x̄〉 ≤ 0, 〈b, x− x̄〉 ≤ ||x− x̄||.

From (5), we have 〈
ξ0 +

∑
t∈T

λ̄tξt, x− x̄

〉
+
√
ε||x− x̄|| ≥ 0,

which means that

〈ξ0, x− x̄〉+
√
ε||x− x̄|| ≥ −

〈∑
t∈T

λ̄tξt, x− x̄

〉
. (6)

Moreover, if t ∈ T (λ), then gt(x̄, v̄t) = 0. Note that for any x ∈ F , then gt(x, v̄t) ≤
0 for any t ∈ T . It follows that gt(x, v̄t) ≤ gt(x̄, v̄t) for any x ∈ F and t ∈ T (λ). By
the Mordukhovich quasi-convexity of gt(., v̄t) at x̄ and ξt ∈ ∂Mx gt(x̄, v̄t), we obtain

〈ξt, x− x̄〉 ≤ 0. (7)

Combining (6) and (7), we obtain

〈ξ0, x− x̄〉+
√
ε||x− x̄|| ≥ 0.

Since f(., ū) is Mordukhovich ε−pseudo-convex of type I at x̄, it follows from
Definition 11 that

f(x) +
√
ε||x− x̄|| ≥ f(x̄).

Therefore, x̄ is a quasi ε−solution of (RSIP). This completes the proof.

Now, we present an example to show the importance of the Mordukhovich
ε−pseudo-convexity of type I in Theorem 14 (function f(.) is given in [27] page
87).

Example 15. Let x ∈ R, t ∈ T = [0, 1],Ω = [0,+∞) and vt ∈ Vt = [2− t, 2 + t]
for any t ∈ T . Let f : R→ R and g : R× Vt → R be defined by

f(x) =

{
x2 sin

1

x
, if x 6= 0,

0, if x = 0,
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and
gt(x, vt) = tx2 − 2vtx.

Then, F = [0, 2] and NM (x̄; Ω) = NM (x̄; [0,+∞)) = (−∞, 0]. Let us consider
x̄ = 0, λ̄t = 0 and v̄t = 2 − t. Note that f(.) is locally Lipschitz at x̄ and gt(., v̄t)
is convex at x̄. We have,

∂Mf(x̄) = [−1, 1]( see [27] page 87) and ∂Mx gt(x̄, v̄t) = {2(t− 2)} .

We prove that f(.) is not Mordukhovich ε−pseudo-convex of type I at x̄. Indeed,

take ȳ =
2

3π
, ξ = 0 ∈ ∂Mf(x̄) = [−1, 1] and 0 ≤

√
ε ≤ 2

3π
. Clearly,

〈ξ, ȳ − x̄〉+
√
ε|ȳ − x̄| =

√
ε|ȳ − x̄| ≥ 0.

However,

f(ȳ) +
√
ε|ȳ − x̄| = − 4

9π2
+
√
ε.

2

3π
≤ 0 = f(x̄).

Now, take an arbitrarily 0 ≤
√
ε ≤ 2

3π
. Then, (x̄, λ̄t, v̄t) ∈ F × R(T )

+ × Vt satisfies

the robust approximate KKT conditions with respect to ε. Indeed, let us select
√
ε =

1

9
, x̄ = 0, λ̄t = 0, v̄t = 2− t and B = [−1, 1]. Then,

0 ∈
(
−∞, 4

3

]
= ∂Mf(x̄) +

∑
t∈T

λ̄t∂
M
x gt(x̄, v̄t) +NM (x̄;R) +

√
εB,

and λ̄tg(x̄, v̄t) = 0.
However, x̄ = 0 is not a quasi ε−solution of (RSIP). In order to see this, let

us take x =
2

3π
∈ F and

√
ε =

1

9
. Then,

f(x) +
√
ε|x− x̄| = − 4

9π2
+

2

27π
< 0 = f(x̄).

In the special case when Vt is a singleton, we can obtain the following result.

Corollary 16. Consider problem (SIP). Let ε ≥ 0 and Ω be convex set. Assume

that (x̄, λ̄t) ∈ F × R(T )
+ satisfies approximate KKT condition with respect to ε. If

f is Mordukhovich ε−pseudo-convex of type I at x̄ and gt, t ∈ T is Mordukhovich
quasi-convex at x̄, then x̄ ∈ F is a quasi ε−solution of (SIP).

In the following theorem, we give another sufficient optimality condition for
robust ε−quasi-minimum of (RSIP).

Theorem 17. Let ε ≥ 0 and Ω be convex set. Assume that (x̄, λ̄t, v̄t) ∈ F×R(T )
+ ×

Vt satisfies the robust approximate KKT condition with respect to ε. If f(.) is
Mordukhovich ε−pseudo-convex of type II at x̄ and gt(., v̄t), t ∈ T is Mordukhovich
ε−quasi-convex at x̄, then x̄ ∈ F is a quasi ε−solution of (RSIP).
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Proof. Similarly to the proof of Theorem 14, there exist ξ0 ∈ ∂Mf(x̄), ξt ∈
∂Mx g(x̄, v̄t),∀t ∈ T with w ∈ NM (x̄; Ω) and b ∈ B, such that

〈ξ0, x− x̄〉 ≥ −
√
ε||x− x̄|| −

〈∑
t∈T

λ̄tξt, x− x̄

〉
. (8)

On the other hand, if t ∈ T (λ), then gt(x̄, v̄t) = 0. Note that for any x ∈ F ,
gt(x, v̄t) ≤ 0 for any t ∈ T . It follows that gt(x, v̄t) ≤ gt(x̄, v̄t) for any x ∈ F
and t ∈ T (λ). By the Mordukhovich ε−quasi-convexity of gt(., v̄t) at x̄ and ξt ∈
∂Mx gt(x̄, v̄t), we obtain

〈ξt, x− x̄〉+
√
ε||x− x̄|| ≤ 0. (9)

Combining (8) and (9), we obtain

〈ξ0, x− x̄〉 ≥ 0.

Since f(., ū) is Mordukhovich ε−pseudo-convex of type II at x̄, it follow from
Definition 11 that

f(x) +
√
ε||x− x̄|| ≥ f(x̄).

Therefore, x̄ is a quasi ε−solution of (RSIP). This completes the proof.

Now, we present an example to show the importance of the Mordukhovich
ε−pseudo-convexity of type II in Theorem 17.

Example 18. Let f, gt, t ∈ T,Ω and Vt be defined as in Example 15. Then, F =
[0, 2] and NM (x̄; Ω) = NM (x̄; [0,+∞)) = (−∞, 0]. Let us consider x̄ = 0, λ̄t = 0,
and v̄t = 2− t. Note that f(.) is locally Lipschitz at x̄ and gt(., v̄t) is convex at x̄.
We have,

∂Mf(x̄) = [−1, 1] and ∂Mx gt(x̄, v̄t) = {2(t− 2)} .

We prove that f(., ū) is not Mordukhovich ε−pseudo-convex of type II at x̄. Indeed,

take ȳ =
2

3π
, ξ = 0 ∈ ∂Mf(x̄) = [−1, 1] and 0 ≤

√
ε ≤ 2

3π
. Clearly,

〈ξ, ȳ − x̄〉 = 0 ≥ 0.

However,

f(ȳ) +
√
ε|ȳ − x̄| = − 4

9π2
+
√
ε.

2

3π
≤ 0 = f(x̄).

Now, take an arbitrarily 0 ≤
√
ε ≤ 2

3π
. From Example 15, (x̄, λ̄t, v̄t) ∈ F ×R(T )

+ ×
Vt satisfies the robust approximate KKT conditions with respect to ε. By virtue of
Example 15, x̄ = 0 is not a quasi ε−solution of (RSIP).

In the special case when Vt is a singleton, we can obtain the following result.



T.H.Pham / Optimality Conditions and Duality 507

Corollary 19. Consider problem (SIP). Let ε ≥ 0 and Ω be convex set. Assume

that (x̄, λ̄t) ∈ F × R(T )
+ satisfies approximate KKT condition with respect to ε. If

f is Mordukhovich ε−pseudo-convex of type II at x̄ and gt, t ∈ T is Mordukhovich
ε−quasi-convex at x̄, then x̄ ∈ F is an ε−quasi-minimum of (SIP).

Motivated by the definition of generalized convexity due to [8, 9] and [20], we
introduce a new concept of generalized convexity as follows:

Definition 20. Let gT := (gt)t∈T , ε ≥ 0.

(i) We say that (f, gT ) is Mordukhovich ε−quasi generalized convex on F at x̄,
if for any x ∈ F, ξ0 ∈ ∂Mf(x̄) and ξt ∈ ∂Mx gt(x̄, vt), vt ∈ Vt, t ∈ T , there
exists w ∈ Rn such that

〈ξ0, w〉+
√
ε||x− x̄|| ≥ 0⇒ f(x) +

√
ε||x− x̄|| ≥ f(x̄),

gt(x, vt) ≤ gt(x̄, vt)⇒ 〈ξt, w〉 ≤ 0,∀t ∈ T,

and
〈b, w〉 ≤ ||x− x̄||,∀b ∈ B.

(ii) We say that (f, gT ) is Mordukhovich strictly ε−quasi generalized convex on
F at x̄, if for any x ∈ F, ξ0 ∈ ∂Mf(x̄) and ξt ∈ ∂Mx gt(x̄, vt), vt ∈ Vt, t ∈ T ,
there exists w ∈ Rn such that

〈ξ0, w〉+
√
ε||x− x̄|| ≥ 0⇒ f(x) +

√
ε||x− x̄|| > f(x̄),

gt(x, vt) ≤ gt(x̄, vt)⇒ 〈ξt, w〉 ≤ 0,∀t ∈ T,

and
〈b, w〉 ≤ ||x− x̄||,∀b ∈ B.

Now, let us provide an example illustrating our Definition 20 (i).

Example 21. Let x ∈ R, t ∈ T = [0, 1] and vt ∈ Vt = [−t − 1,−t] for any
t ∈ T,B = [−1, 1]. Let f : R→ R and g : R× Vt → R be defined by

f(x) = |x|+ x3 and gt(x, vt) = vtx
2.

Then F = R. Let us consider x̄ = 0, we have ∂Mf(x̄) = [−1, 1] and ∂Mx g(x̄, vt) =
{0}. Let us consider x = −1 ∈ F = R, ξ0 = 0 ∈ ∂Mf(x̄), ξt ∈ ∂Mx g(x̄, vt), 0 ≤ ε ≤
1, by taking w = x = −1, it follows that w ∈ R,

〈ξ0, w〉+
√
ε|x− x̄| =

√
ε ≥ 0⇒ f(x) +

√
ε|x− x̄| =

√
ε ≥ 0 = f(x̄),

gt(x, vt) = vt ≤ gt(x̄, vt) = 0⇒ 〈ξt, w〉 = 0 ≤ 0, t ∈ T,

and
〈b, w〉 = −b ≤ ||x− x̄|| = 1,∀b ∈ [−1, 1].

This shows that (f, gT ) is Mordukhovich ε−quasi generalized convex on F at x̄ ∈ F .
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Next, we give sufficient conditions for a feasible point of problem (RSIP) to be
a quasi ε−solution and a quasi weakly ε−solution.

Theorem 22. Let ε ≥ 0. Assume that (x̄, λ̄t, v̄t) ∈ F × R(T )
+ × Vt satisfies the

robust approximate KKT conditions with respect to ε.

(i) If (f, gT ) is Mordukhovich ε−quasi generalized convex on F at x̄, then x̄ is
a quasi weakly ε−solution of (RSIP).

(ii) If (f, gT ) is Mordukhovich strictly ε−quasi generalized convex on F at x̄,
then x̄ is a quasi ε−solution of (RSIP).

Proof. Since (x̄, λ̄t, v̄t) ∈ F × R(T )
+ × Vt satisfies the robust approximate KKT

condition with respect to ε, there exists ξ0 ∈ ∂Mf(x̄), ξt ∈ ∂Mx g(x̄, v̄t),∀t ∈ T with
w ∈ NM (x̄; Ω) and b ∈ B, such that

ξ0 +
∑
t∈T

λ̄tξt + w +
√
εb = 0, λ̄tgt(x̄, v̄t) = 0.

or, equivalent

ξ0 +
∑
t∈T

λ̄tξt +
√
εb = −w. (10)

We first prove (i). Suppose on contrary that x̄ is not a quasi weakly ε−solution of
(RSIP). It then follows that there exists x ∈ F satisfying

f(x) +
√
ε||x− x̄|| ≤ f(x̄). (11)

On the other hand, if t ∈ T (λ), then gt(x̄, v̄t) = 0. Note that for any x ∈ F , then
gt(x, v̄t) ≤ 0 for any t ∈ T . It follows that

gt(x, v̄t) ≤ gt(x̄, v̄t), for any x ∈ F and t ∈ T (λ). (12)

By the Mordukhovich ε−quasi generalized convexity of (f, gT ) on F at x̄ and (11),
(12), there exists d ∈ Rn such that (x 6= x̄)

〈ξ0, d〉+
√
ε||x− x̄|| < 0,

〈ξt, d〉 ≤ 0, t ∈ T,

and

〈b, d〉 ≤ ||x− x̄||,∀b ∈ B. (13)

Therefore, we have

〈ξ0, d〉+
∑
t∈T

λ̄t 〈ξt, d〉+
√
ε||x− x̄|| < 0.
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On the other hand, by (13), one has〈
ξ0 +

∑
t∈T

λ̄tξt +
√
εb, d

〉
< 0,

which contradicts (10).
We now prove (ii). Suppose on contrary that x̄ is not a quasi ε−solution of

(RSIP). It then follows that there exists x ∈ F satisfying

f(x) +
√
ε||x− x̄|| < f(x̄). (14)

On the other hand, if t ∈ T (λ), then gt(x̄, v̄t) = 0. Note that for any x ∈ F , then
gt(x, v̄t) ≤ 0 for any t ∈ T . It follows that

gt(x, v̄t) ≤ gt(x̄, v̄t), for any x ∈ F and t ∈ T (λ). (15)

By the Mordukhovich strictly ε−quasi generalized convexity of (f, gT ) on F at x̄
and (14), (15), there exists d ∈ Rn such that

〈ξ0, d〉+
√
ε||x− x̄|| < 0,

〈ξt, d〉 ≤ 0, t ∈ T,

and

〈b, d〉 ≤ ||x− x̄||,∀b ∈ B. (16)

Therefore, we have

〈ξ0, d〉+
∑
t∈T

λ̄t 〈ξt, d〉+
√
ε||x− x̄|| < 0.

On the other hand, by (16), one has〈
ξ0 +

∑
t∈T

λ̄tξt +
√
εb, d

〉
< 0,

which contradicts (10). This completes the proof.

4. MOND-WEIR TYPE DUALITY IN ROBUST APPROXIMATE
OPTIMIZATION PROBLEM

In this section, we investigate some results for ε−Mond-Weir type robust du-
ality for robust optimization problems under Mordukhovich ε−quasi generalized
convexity assumptions.
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Now, we consider the Mond–Weir type dual problem (RUD) of (RSIP) as given
by

(RUD)


max f(y)

s.t. 0 ∈ ∂Mf(y) +
∑
t∈T

λt∂
M
x gt(y, vt) +NM (y; Ω) +

√
εB,

λtgt(y, vt) ≥ 0,

y ∈ Ω, λt ∈ R(T )
+ , ε ≥ 0, vt ∈ Vt, t ∈ T.

The feasible set of (RUD) is defined by

FRUD = {(y, λt, vt) ∈ Ω×R(T )
+ × Vt | 0 ∈ ∂Mf(y) +

∑
t∈T

λt∂
M
x gt(y, vt) +NM (y; Ω)

+
√
εB, λtgt(y, vt) ≥ 0.}.

Now, we give the following definition of a robust approximate quasi-solution
for (RUD).

Definition 23. Let ε ≥ 0.

(i) We say that (ȳ, λ̄t, v̄t) ∈ FRUD is a quasi ε−solution of (RUD) if for any
(y, λt, vt) ∈ FRUD,

f(ȳ) +
√
ε||y − ȳ|| ≥ f(y).

(ii) We say that (ȳ, λ̄t, v̄t) ∈ FRUD is a quasi weakly ε−solution of (RUD) if for
any (y, λt, vt) ∈ FRUD,

f(ȳ) +
√
ε||y − ȳ|| > f(y).

Now, we establish the following approximate weak duality theorem, which holds
between (RSIP) and (RUD).

Theorem 24. Let ε ≥ 0 and x ∈ F . Suppose that (x̄, λ̄t, v̄T ) ∈ FRUD.

(i) If (f, gT ) is Mordukhovich ε−quasi generalized convex on F at x̄, then

f(x) > f(x̄)−
√
ε||x− x̄||.

(ii) If (f, gT ) is Mordukhovich strictly ε−quasi generalized convex on F at x̄,
then

f(x) ≥ f(x̄)−
√
ε||x− x̄||.

Proof. Since (x̄, λ̄t, v̄t) ∈ FRUD, we have x̄ ∈ Ω, v̄t ∈ Vt, λ̄t ≥ 0, t ∈ T and

0 ∈ ∂Mf(x̄) +
∑
t∈T

λ̄t∂
M
x gt(x̄, v̄t) +NM (x̄; Ω) +

√
εB, (17)
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From (17), there exist ξ0 ∈ ∂Mf(x), ξt ∈ ∂Mx g(x, vt),∀t ∈ T with w ∈ NM (x; Ω)
and b ∈ B, such that

ξ0 +
∑
t∈T

λtξ +
√
εb = −w. (18)

We first prove (i). Let x ∈ F . Suppose on contrary that

f(x) ≤ f(x̄)−
√
ε||x− x̄||. (19)

Note that for any x ∈ F , gt(x, v̄t) ≤ 0 for any t ∈ T and λ̄t ≥ 0, λ̄tgt(x̄, v̄t) ≥
0, v̄t ∈ Vt, t ∈ T . It follows that

gt(x, v̄t) ≤ 0 ≤ gt(x̄, v̄t). (20)

By the Mordukhovich ε−quasi generalized convexity of (f, gT ) on F at x̄ and (19),
(20), there exists d ∈ Rn such that (x 6= x̄)

〈ξ0, d〉+
√
ε||x− x̄|| < 0,

〈ξt, d〉 ≤ 0, t ∈ T,

〈b, d〉 ≤ ||x− x̄||,∀b ∈ B.

Therefore, we have

〈ξ0, d〉+
∑
t∈T

λ̄t 〈ξt, d〉+
√
ε||x− x̄|| < 0. (21)

On the other hand, by (18), one has

〈ξ0, d〉+
∑
t∈T

λ̄t 〈ξt, d〉+
√
ε||x− x̄|| = −〈w, d〉 ≥ 0,

which contradicts (21). Thus,

f(x) > f(x̄)−
√
ε||x− x̄||.

We now prove (ii). Let x ∈ F . Suppose on contrary that

f(x) < f(x̄)−
√
ε||x− x̄||. (22)

Note that for any x ∈ F , gt(x, v̄t) ≤ 0 for any t ∈ T and λ̄t ≥ 0, λ̄tgt(x̄, v̄t) ≥
0, v̄t ∈ Vt, t ∈ T . It follows that

gt(x, v̄t) ≤ 0 ≤ gt(x̄, v̄t). (23)

By the Mordukhovich strictly ε−quasi generalized convexity of (f, gT ) on F at x̄
and (22), (23), there exists d ∈ Rn such that

〈ξ0, d〉+
√
ε||x− x̄|| < 0,
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〈ξt, d〉 ≤ 0, t ∈ T,
〈b, d〉 ≤ ||x− x̄||,∀b ∈ B.

Therefore, we have

〈ξ0, d〉+
∑
t∈T

λ̄t 〈ξt, d〉+
√
ε||x− x̄|| < 0. (24)

On the other hand, by (18), one has

〈ξ0, d〉+
∑
t∈T

λ̄t 〈ξt, d〉+
√
ε||x− x̄|| = −〈w, d〉 ≥ 0,

which contradicts (24). Thus,

f(x) ≥ f(x̄)−
√
ε||x− x̄||.

This completes the proof.

Theorem 25. Let ε ≥ 0. Assume that (x̄, λ̄t, v̄t) ∈ F × R(T )
+ × Vt satisfies the

robust approximate KKT condition with respect to ε. Let (x̄, λ̄t, v̄t) ∈ FRUD and
suppose that the objective values of (RSIP) and (RUD) at this point are equal. In
addition,

(i) if (f, gT ) is Mordukhovich ε−quasi generalized convex on F at x̄, then (x̄, λ̄t, v̄t)
is a quasi weakly ε−solution of (RUD) and x̄ is a quasi weakly ε−solution
of (RSIP).

(ii) if (f, gT ) is Mordukhovich strictly ε−quasi generalized convex on F at x̄,
then (x̄, λ̄t, v̄t) is a quasi ε−solution of (RUD) and x̄ is a quasi ε−solution
of (RSIP).

Proof. We first prove (i). Since (x̄, λ̄t, v̄t) ∈ F × R(T )
+ × Vt satisfies the robust

approximate KKT condition with respest to ε, there exist ξ0 ∈ ∂Mf(x̄), ξt ∈
∂Mx g(x̄, v̄t),∀t ∈ T with w ∈ NM (x̄; Ω) and b ∈ B, such that

ξ0 +
∑
t∈T

λ̄tξt + w +
√
εb = 0, λ̄tgt(x̄, v̄t) = 0.

Note that for any x ∈ F , gt(x, v̄t) ≤ 0 for any t ∈ T and λ̄t ≥ 0, λ̄tgt(x̄, v̄t) =
0, v̄t ∈ Vt, t ∈ T . It follows that

gt(x, v̄t) ≤ 0 = gt(x̄, v̄t).

From (x̄, λ̄t, v̄t) ∈ FRUD, clearly the objective values of (RSIP) and (RUD) at
(x̄, ū) are equal to f(x̄). If (f, gT ) is Mordukhovich ε−quasi generalized at x̄, by
Theorem 24 for all (x, λt, vt) ∈ FRUD and x̄ ∈ F , we obtain

f(x̄) > f(x)−
√
ε||x̄− x||.

Thus, x is a quasi weakly ε−solution of (RSIP). From Definition 23, we have
(x̄, λ̄t, v̄t) is a quasi weakly ε−solution of (RUD).

The proof of (ii) is similar to the one of (i). This completes the proof.
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5. CONCLUSIONS

In this paper, we obtained a necessary optimality condition for a quasi ε−solution
to a semi-infinite programming problem with data uncertainty (RSIP). In order to
formulate sufficient conditions for quasi ε−solution to a semi-infinite programming
problem with data uncertainty (RSIP), we give concepts of Mordukhovich (strictly)
ε−quasi generalized convex functions defined in terms of the Mordukhovich subd-
ifferential of locally Lipschitz functions. Moreover, sufficient optimality conditions
for such ε−quasi-solution to a semi-infinite programming problem with data un-
certainty (RSIP) was proposed in term of Mordukhovich ε−pseudo-convex of type
I (and type II) functions of locally Lipschitz functions. In addition, we establish
robust ε− type duality of uncertain optimization problem under new generalized
convexity assumptions. Finally, we give some examples to illustrate the obtained
results.
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