
Yugoslav Journal of Operations Research
33 (2023), Number 1, 71–90
DOI: https://doi.org/10.2298/YJOR210715027H

A METHOD FOR SOLVING INTERVAL
TYPE-2 TRIANGULAR FUZZY BILEVEL
LINEAR PROGRAMMING PROBLEM

Niloofar DAVOUDI
Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran

davoudiniloufar@pgs.usb.ac.ir

Farhad HAMIDI
Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran

f hamidi@math.usb.ac.ir

Hasan Mishmast NEHI
Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran

hmnehi@hamoon.usb.ac.ir

Received: July 2021 / Accepted: October 2022

Abstract: In this paper, we consider the bilevel linear programming problem (BLPP)
where all the coefficients in the problem are interval type-2 triangular fuzzy numbers
(IT2TFNs). First, we convert a BLPP with IT2TFN parameters to an interval BLPP.
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1. INTRODUCTION

The BLPP was formulated by Bracken and McGill [1], which is very similar to
the problem first introduced by Stackelberg [2]. So far, several methods have been
proposed to solve the BLPP [3, 4, 5, 6, 7, 8, 9].

In the real world, the parameters of a problem may not be exact values; instead,
they may be expressed as fuzzy numbers or intervals. Zadeh first introduced the
theory of fuzzy sets in 1965 [10]. Lai et al. [11, 12] presented a fuzzy method for
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solving the crisp BLPP. Then Zhang et al. [13, 14, 15, 16] generalized crisp solving
techniques for BLPPs with fuzzy parameters.

On the other hand, interval programming is a method for modeling problems
under uncertainty. Recently, many researchers have studied interval linear pro-
gramming [17, 18, 19, 20, 21, 22]. Calvete et al. [23] proposed two algorithms to
find the worst and the best optimal values of the leader objective function in the
BLPP when the coefficients of the leader and the follower objective functions are
intervals. Mishmast Nehi and Hamidi [24] generalized the algorithm provided by
Calvete et al. [23] for the BLPP when all coefficients were intervals and provided
corrections to improve their algorithm. Li and Fang [25] used a heuristic algorithm
for interval BLPP.

Zadeh introduced type-2 fuzzy sets (T2FS) [26, 27, 28]. Hisdal [29] presented
interval T2FS. Figueroa [30] proposed two methods for solving linear program-
ming problems that the right-hand side parameters were interval type-2 fuzzy sets
(IT2FSs). One of them presented a Type-reduction method based on finding a
fuzzy set embedded on the FOU of the IT2FS right-hand side parameters of the
problem. Other proposed method provided pre-defuzzification procedure to find a
solution by α-cut of the IT2FS. [31, 32, 33] presented methods for solving linear
programming problems with interval type-2 fuzzy constraints and obtained solu-
tion problems as crisp numbers. In [34], linear programming with technological
coefficients IT2FSs has been solved through an α-cuts approach. Kundu et al. [35]
used the chance-constraint programming method for solving linear programming
with interval type-2 fuzzy variables.

Also, many studies have been done on multi-criteria decision-making (MCDM)
approaches based on IT2FSs so far. For example, an approach for solving MCDM
problems, which is based on new arithmetic operations and the ranking rules of
interval type-2 fuzzy number (IT2FN) was expressed in [36]. Chen [37] presented
an algorithmic approach for analyzing the MCDM problems described by inter-
val type-2 trapezoidal fuzzy numbers. Chen [38] developed interval type-2 fuzzy
PROMETHEE I and II methods to manage the MCDM analysis problems in the
context of interval type-2 trapezoidal fuzzy numbers. A signed-distance-based ap-
proach to importance assessment and MCDM analysis based on IT2FS is proposed
in [39]. Chen in [40] expressed an Elimination Et Choice Translating Reality based
outranking method for MCDM within the environment of IT2FS. An interactive
method for MCDM analysis based on IT2FSs is presented in [41]. Chen [42] pro-
posed the interval type-2 fuzzy TOPSIS method for addressing MCDM analysis
problems in the interval type-2 trapezoidal fuzzy framework. Chen in [43] pre-
sented the extended QUALIFLEX method for MCDM analysis based on IT2FSs.
Hu et al. [44] introduced deviation degree for trapezoidal IT2FN, and then they
proposed a new approach based on possibility degree to solve MCDM problems
that the criteria value was IT2FN. Sinha et al. [45] used the expected value of
trapezoidal IT2FN defined by Hu et al. [44]. They maximized the profit and min-
imized the transportation time for two transportation models. In one of models,
the unit purchase cost, unit selling price, unit transportation cost, and transporta-
tion time were trapezoidal IT2FNs, while in other models, all the parameters were
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trapezoidal IT2FNs.
In this paper, we express a BLPP with IT2TFN parameters that to the best

of our knowledge, this problem has not been investigated so far. The use of
ranking functions in optimization problems with IT2TFN parameters where each
IT2FN is approximated with a crisp number [40, 44, 46], is relatively efficient and
appropriate. But there is always a general defect of losing problem information
due to ranking in all ranking methods. Using a well-defined approximate closed
interval for an IT2FN is more acceptable and logical than replacing it with a crisp
number. In this article, we convert any IT2TFN into an interval.

In many above cases IT2FS or IT2FN is approximated by a crisp number and
the optimal value and the optimal solution are obtained as crisp number. One of
the problems in the defuzzification procedures is the loss of information. Although
this exists in all defuzzification procedures, but using a well-defined approximate
interval is more acceptable and logical than replacing it with a crisp number.
The general structure of this article is as follows: After stating the basic concepts of
BLPP and the type-2 fuzzy, we consider BLPP with IT2TFN parameters. We use
an approximate interval for IT2TFN and convert BLPP with IT2TFN parameters
to interval BLPP. Then we achieve five BLPPs that by solving them, the optimal
value and the optimal solution obtain as IT2TFNs.

2. PRELIMINARIES

This section provides a brief overview and the key concepts required for un-
derstanding this paper.

2.1. BLPP

The general form of the BLPP is as (1):

max
x1∈X1

F1(x1,x2) = c1x1 + d1x2

s.t. max
x2∈X2

F2(x1,x2) = c2x1 + d2x2

s.t. Ax1 +Bx2 ≤ b,

x1,x2 ≥ 0,

(1)

where x1 and x2 are the leader and the follower decision variables, respectively.
F1(x1,x2) and F2(x1,x2) are called the leader objective function and the follower
objective function, respectively. Also, x1 ∈ X1 ⊂ Rn, x2 ∈ X2 ⊂ Rm, F1, F2 :
X1 × X2 → R1, c1, c2 ∈ Rn, d1,d2 ∈ Rm, b ∈ Rp, A ∈ Rp×n and B ∈ Rp×m.
The BLPP involves two problems, (a) the problem of the leader level and (b) the
problem of the follower level. First the leader tries to optimize F1(x1,x2) under
some constraints by selecting x1. Then, the follower tries to optimize F2(x1,x2)
by choosing x2 for the specific value of x1 [47].

Remark 1. Suppose I = {d2 ∈ Rm : d2i ∈ [ď2i, d̂2i]; i = 1, ...,m} and IE rep-
resents the set of extreme points of I. Throughout this paper, it is assumed that
inducible region [3] does not change for any d2 ∈ IE.
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2.2. IT2TFN

Definition 2. [10] Let X be a universal set. A fuzzy set Ã is defined as an
ordered pairs Ã = {(x, µÃ(x)|x ∈ X,µÃ(x) ∈ [0, 1]} where µÃ(x) is the membership
function of x ∈ X.

Definition 3. [48] Let Ã be a fuzzy set in X. The support of Ã is the crisp set
given by {x ∈ X : µÃ(x) > 0}.

Definition 4. [48] Let Ã be a fuzzy set in R. Ã is called a fuzzy number (FN) if
(i) Ã is normal,
(ii) Ã is convex,
(iii) µÃ is upper semicontinuous, and,

(iv) the support of Ã is bounded.

Definition 5. [48] A FN Ã = (a, b, c) is called a triangular FN (TFN) if its
membership function µÃ(x) is defined as follows:

µÃ(x) =


x−a
b−a a ≤ x ≤ b
c−x
c−b b ≤ x ≤ c

0 O.W.

Definition 6. [48] The α-cut of a FN Ã is a set defined as Ãα = {x ∈ R|µÃ(x) ≥
α} = [Al(α), Au(α)] where Al(α) = inf{x ∈ R|µÃ(x) ≥ α} and Au(α) = sup{x ∈
R|µÃ(x) ≥ α}.

Definition 7. [48] The core of a FN Ã is defined as Core(Ã) = {x ∈ R|µÃ(x) =
1}.

Definition 8. [49] A T2FS ˜̃A, is characterized by a type-2 membership function
µ ˜̃A

(x, u) where x ∈ X and u ∈ Jx ⊂ [0, 1]:

˜̃A = {((x, u), µ ˜̃A
(x, u))|∀x ∈ X,∀u ∈ Jx ⊂ [0, 1], 0 ≤ µ ˜̃A

(x, u) ≤ 1},

where Jx is called the primary membership of x and µ ˜̃A
(x, u) for x ∈ X and u ∈ Jx

is called a secondary membership.

Definition 9. [50] In Definition 8, when µ ˜̃A
(x, u) = 1,∀x ∈ X,u ∈ Jx ⊂ [0, 1], ˜̃A

is called interval T2FS.

Definition 10. [51] Uncertainty in the primary membership of an interval T2FS,
consists of a bounded region called the footprint of uncertainty (FOU). It is the
union of all primary memberships, i.e., FOU= ∪x∈XJx.

Definition 11. [51] Interval T2FS ˜̃A = (Ãl, Ãu) is bounded by two fuzzy sets Ãl

and Ãu, the named lower membership function and upper membership function,
respectively.
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Definition 12. [46] An IT2TFN ˜̃A = (Ãl, Ãu) =
(
(ǎl, ā, âl), (ǎu, ā, âu)

)
is defined

on the interval [ǎu, âu]. Its lower membership function and upper membership
function takes the value equal to 1 in the point ā, where ǎu ≤ ǎl ≤ ā ≤ âl ≤ âu.
Fig. 1 shows an IT2TFN.

Figure 1: The interval type-2 triangular fuzzy number

3. BLPP WITH IT2TFN PARAMETERS

Consider the BLPP wherein all the parameters (the objective function, tech-
nological coefficients and the resource values) are expressed as IT2TFNs:

max
x1∈X1

˜̃Z = ˜̃c1x1 +
˜̃
d1x2

s.t. max
x2∈X2

˜̃z = ˜̃c2x1 +
˜̃
d2x2

s.t. ˜̃Ax1 +
˜̃Bx2 ≤ ˜̃

b

x1,x2 ≥ 0,

(2)

where ˜̃c1 =
(
(čl1, c̄1, ĉ

l
1), (č

u
1 , c̄1, ĉ

u
1 )
)
,
˜̃
d1 =

(
(ď

l

1, d̄1, d̂
l

1), (ď
u

1 , d̄1, d̂
u

1 )
)
,

˜̃c2 =
(
(čl2, c̄2, ĉ

l
2), (č

u
21, c̄2, ĉ

u
2 )
)
,
˜̃
d2 =

(
(ď

l

2, d̄2, d̂
l

2), (ď
u

2 , d̄2, d̂
u

2 )
)
,

˜̃A =
(
(Ǎl, Ā, Âl), (Ǎu, Ā, Âu)

)
, ˜̃B =

(
(B̌l, B̄, B̂l), (B̌u, B̄, B̂u)

)
and

˜̃
b =

(
(b̌

l
, b̄, b̂

l
), (b̌

u
, b̄, b̂

u
)
)
.

In our proposed algorithm, the solution of (2) is obtained by solving five BLPPs
and finally, by solving them, we get the optimal solution as IT2TFNs
˜̃Z =

(
(Žl, Z̄, Ẑl), (Žu, Z̄, Ẑu)

)
for leader objective function and ˜̃z =

(
(žl, z̄, ẑl),

(žu, z̄, ẑu)
)
for follower objective function.
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According to the proposed method, we first solve problem (3) to obtain Z̄ and
z̄, which we call the middle problem,

max
x1∈X1

c̄1x1 + d̄1x2

s.t. max
x2∈X2

c̄2x1 + d̄2x2

s.t. Āx1 + B̄x2 ≤ b̄

x1,x2 ≥ 0,

(3)

which is a BLPP and can be easily solved using the K-th best method and x̄1 opt,
x̄2 opt, Z̄opt and z̄opt are obtained.

Since an IT2TFN is formed of the infinite union of the characteristic TFNs,
the traditional embedded TFNs are used for all the IT2TFN in (2). So (2) can be
written as following type-1 triangular fuzzy BLPP :

max
x1∈X1

c̃e1x1 + d̃
e

1x2

s.t. max
x2∈X2

c̃e2x1 + d̃
e

2x2

s.t. Ãex1 + B̃ex2 ≤ be

x1,x2 ≥ 0,

(4)

that c̃e1 ∈ FOU(˜̃c1), d̃
e

1 ∈ FOU(
˜̃
d1), c̃

e
2 ∈ FOU(˜̃c2), d̃

e

2 ∈ FOU(
˜̃
d2), Ã

e ∈ FOU( ˜̃A),

B̃e ∈ FOU( ˜̃B) and b̃
e
∈ FOU(

˜̃
b) are the TFNs (See Fig. 2).

Figure 2: A FN c̃ej = (čej , c̄j , ĉ
e
j)

First, we transform problem (4) into a problem where all the coefficients are
intervals and then solve it.



N. Davoudi, et al. / A Method for Solving Interval Type-2 Triangular Fuzzy 77

Ban and Coroianu presented an approximation in [52] as follows:

Theorem 13. [52] Suppose Ã be a fuzzy number. Ban and Coroianu’s nearest
interval approximation for Ã is given by IÃ = [v, w] where

v =

∫ 1

0

(α+
1

2
)AL(α)dα+

∫ 1

0

(−α+
1

2
)AU (α)dα,

w =

∫ 1

0

(−α+
1

2
)AL(α)dα+

∫ 1

0

(α+
1

2
)AU (α)dα.

Theorem 14. If Ã = (a, b, c) be a TFN, then Ban and Coroianu’s nearest interval
approximation for Ã is given by IÃ = [v, w] where

v =
5

12
a+

7

12
b+

1

12
(c− b),

w =
7

12
b+

5

12
c+

1

12
(a− b).

Proof. Using the membership function of TFN and Theorem 13 we have:

v =

∫ 1

0

(α+
1

2
)ÃL(α)dα+

∫ 1

0

(−α+
1

2
)ÃU (α)dα =

∫ 1

0

(α+
1

2
)

(
α(b− a) + a

)
dα+∫ 1

0

(−α+
1

2
)

(
c− α(c− b)

)
dα =

5

12
a+

7

12
b+

1

12
(c− b),

v =

∫ 1

0

(−α+
1

2
)ÃL(α)dα+

∫ 1

0

(α+
1

2
)ÃU (α)dα =

∫ 1

0

(−α+
1

2
)

(
α(b− a) + a

)
dα+∫ 1

0

(α+
1

2
)

(
c− α(c− b)

)
dα =

7

12
b+

5

12
c+

1

12
(a− b).

Now, by using Ban and Coroianu’s approximation for (4) we have:

max
x1∈X1

[
5

12
če1 +

7

12
c̄1 +

1

12
(ĉe1 − c̄1),

7

12
c̄1 +

5

12
ĉe1 +

1

12
(če1 − c̄1)]x1

+ [
5

12
ď
e

1 +
7

12
d̄1 +

1

12
(d̂

e

1 − d̄1),
7

12
d̄1 +

5

12
d̂
e

1 +
1

12
(ď

e

1 − d̄1)x2

s.t. max
x2∈X2

[
5

12
če2 +

7

12
c̄2 +

1

12
(ĉe2 − c̄2),

7

12
c̄2 +

5

12
ĉe2 +

1

12
(če2 − c̄2)]x1

+ [
5

12
ď
e

2 +
7

12
d̄2 +

1

12
(d̂

e

2 − d̄2),
7

12
d̄2 +

5

12
d̂
e

2 +
1

12
(ď

e

2 − d̄2)]x2

s.t. [
5

12
Ǎe +

7

12
Ā+

1

12
(Âe − Ā),

7

12
Ā+

5

12
Âe +

1

12
(Ǎe − Ā)]x1

+ [
5

12
B̌e +

7

12
B̄ +

1

12
(B̂e − B̄),

7

12
B̄ +

5

12
B̂e +

1

12
(B̌e − B̄)]x2

≤ [
5

12
b̌
e
+

7

12
b̄+

1

12
(b̂

e
− b̄),

7

12
b̄+

5

12
b̂
e
+

1

12
(b̌

e − b̄)]

x1,x2 ≥ 0,

(5)
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where če1 ∈ [ču1 , č
l
1], ĉ

e
1 ∈ [ĉl1, ĉ

u
1 ], ď

e

1 ∈ [ď
u

1 , ď
l

1], d̂
e

1 ∈ [d̂
l

1, d̂
u

1 ], č
e
2 ∈ [ču2 , č

l
2], ĉ

e
2 ∈

[ĉl2, ĉ
u
2 ], ď

e

2 ∈ [ď
u

2 , ď
l

2], d̂
e

2 ∈ [d̂
l

2, d̂
u

2 ], Ǎ
e ∈ [Ǎu, Ǎl], Âe ∈ [Âl, Âu], B̌e ∈ [B̌u, B̌l],

B̂e ∈ [B̂l, B̂u], b̌
e ∈ [b̌

u
, b̌

l
] and b̂

e
∈ [b̂

l
, b̂

u
].

According to [53], (5) can be divided into the worst and the best subproblems,
respectively:

max
x1∈X1

( 5

12
če1 +

7

12
c̄1 +

1

12
(ĉe1 − c̄1)

)
x1 +

( 5

12
ď
e

1 +
7

12
d̄1 +

1

12
(d̂

e

1 − d̄1)
)
x2

s.t. max
x2∈X2

( 5

12
če2 +

7

12
c̄2 +

1

12
(ĉe2 − c̄2)

)
x1 +

( 5

12
ď
e

2 +
7

12
d̄2 +

1

12
(d̂

e

2 − d̄2)
)
x2

s.t.
( 7

12
Ā+

5

12
Âe +

1

12
(Ǎe − Ā)

)
x1 +

( 7

12
B̄ +

5

12
B̂e +

1

12
(B̌e − B̄)

)
x2

≤ 5

12
b̌
e
+

7

12
b̄+

1

12
(b̂

e
− b̄)

x1,x2 ≥ 0 and

(6)

max
x1∈X1

( 7

12
c̄1 +

5

12
ĉe1 +

1

12
(če1 − c̄1)

)
x1 +

( 7

12
d̄1 +

5

12
d̂
e

1 +
1

12
(ď

e

1 − d̄1)
)
x2

s.t. max
x2∈X2

( 7

12
c̄2 +

5

12
ĉe2 +

1

12
(če2 − c̄2)

)
x1 +

( 7

12
d̄2 +

5

12
d̂
e

2 +
1

12
(ď

e

2 − d̄2)
)
x2

s.t.
( 5

12
Ǎe +

7

12
Ā+

1

12
(Âe − Ā)

)
x1 +

( 5

12
B̌e +

7

12
B̄ +

1

12
(B̂e − B̄)

)
x2

≤
( 7

12
b̄+

5

12
b̂
e
+

1

12
(b̌

e − b̄)
)

x1,x2 ≥ 0.

(7)

Again by using the proposed method in [53] for (6), we have:
the worst-worst model:

max
x1∈X

( 5

12
ču1 +

7

12
c̄1 +

1

12
(ĉl1 − c̄1)

)
x1 +

( 5

12
ď
u

1 +
7

12
d̄1 +

1

12
(d̂

l

1 − d̄1)
)
x2

s.t. max
x2∈X2

( 5

12
ču2 +

7

12
c̄2 +

1

12
(ĉl2 − c̄2)

)
x1 +

( 5

12
ď
u

2 +
7

12
d̄2 +

1

12
(d̂

l

2 − d̄2)
)
x2

s.t.
( 7

12
Ā+

5

12
Âu +

1

12
(Ǎl − Ā)

)
x1 +

( 7

12
B̄ +

5

12
B̂u +

1

12
(B̌l − B̄)

)
x2

≤ 5

12
b̌
u
+

7

12
b̄+

1

12
(b̂

l
− b̄)

x1,x2 ≥ 0,

(8)
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By solving BLPP (8) x̌u
1 , x̌

u
2 , Ž

u and žu are achieved.
the worst-best model:

max
x1∈X1

( 5

12
ču1 +

7

12
c̄1 +

1

12
(ĉu1 − c̄1)

)
x1 +

( 5

12
ď
u

1 +
7

12
d̄d1 +

1

12
(d̂

u

1 − d̄1)
)
x2

s.t. max
x2∈X2

( 5

12
ču2 +

7

12
c̄2 +

1

12
(ĉu2 − c̄2)

)
x1 +

( 5

12
ď
u

2 +
7

12
d̄2 +

1

12
(d̂

u

2 − d̄2)
)
x2

s.t.
( 7

12
Ā+

5

12
Âu +

1

12
(Ǎu − Ā)

)
x1 +

( 7

12
B̄ +

5

12
B̂u +

1

12
(B̌u − B̄)

)
x2

≤ 5

12
b̌
u
+

7

12
b̄+

1

12
(b̂

u
− b̄)

x1,x2 ≥ 0,

(9)

which is a BLPP that x̌l
1, x̌

l
2, Ž

l and žl get by solving it.
Now, by using the method [53], the best-worst and the best-best models are

obtained from (7) as follows:
the best-worst model:

max
x1∈X1

( 7

12
c̄1 +

5

12
ĉu1 +

1

12
(ču1 − c̄1)

)
x1 +

( 7

12
d̄1 +

5

12
d̂
u

1 +
1

12
(ď

u

1 − d̄1)
)
x2

s.t. max
x2∈X2

( 7

12
c̄2 +

5

12
ĉu2 +

1

12
(ču2 − c̄2)

)
x1 +

( 7

12
d̄2 +

5

12
d̂
u

2 +
1

12
(ď

u

2 − d̄2)
)
x2

s.t.
( 5

12
Ǎu +

7

12
Ā+

1

12
(Âu − Ā)

)
x1 +

( 5

12
B̌u +

7

12
B̄ +

1

12
(B̂u − B̄)

)
x2

≤ 7

12
b̄+

5

12
b̂
u
+

1

12
(b̌

u − b̄)

x1,x2 ≥ 0,

(10)

By solving the BLPP (10), x̂l
1, x̂

l
2, Ẑ

l and ẑl are obtained, and
the best-best model:

max
x1∈X1

( 7

12
c̄1 +

5

12
ĉu1 +

1

12
(čl1 − c̄c1)

)
x1 +

( 7

12
d̄1 +

5

12
d̂
u

1 +
1

12
(ď

l

1 − d̄1)
)
x2

s.t. max
x2∈X2

( 7

12
c̄2 +

5

12
ĉu2 +

1

12
(čl2 − c̄2)

)
x1 +

( 7

12
d̄2 +

5

12
d̂
u

2 +
1

12
(ď

l

2 − d̄2)
)
x2

s.t.
( 5

12
Ǎu +

7

12
Ā+

1

12
(Âl − Ā)

)
x1 +

( 5

12
B̌u +

7

12
B̄ +

1

12
(B̂l − B̄)

)
x2

≤ 7

12
b̄+

5

12
b̂
u
+

1

12
(b̌

l − b̄)

x1,x2 ≥ 0.

(11)

By solving (11), x̂u
1 , x̂

u
2 , Ẑ

u and ẑu are achieved.
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Therefore, by solving (3), (8), (9), (10) and (11), we obtain the optimal solution
˜̃x1opt = ((x̌l

1opt, x̄1opt, x̂
l
1opt), (x̌

u
1opt, x̄1opt, x̂

u
1opt)) and ˜̃x2opt = ((x̌l

2opt, x̄2opt, x̂
l
2opt)

, (x̌u
2opt, x̄2opt, x̂

u
2opt)) and optimal values ˜̃Zopt = ((Žl

opt, Z̄opt, Ẑ
l
opt), (Ž

u
opt, Z̄opt, Ẑ

u
opt))

and ˜̃zopt = ((žlopt, z̄opt, ẑ
l
opt), (ž

u
opt, z̄opt, ẑ

u
opt)) for (2).

4. COMPARATIVE ANALYSIS AND DISCUSSION

Considering that BLPP with IT2TFN parameters has not been studied so far,
in this section, we discuss and examine the advantages of the proposed method by
reviewing similar problems.

One of the common methods to solve optimization problems in uncertainty
environment is to use ranking functions. Ranking methods assign a crisp number
to each fuzzy number or IT2FNs and turn the problem into a crisp problem that
is easy to solve.

Chen in [40] expressed an ELECTRE-based outranking method for multi-
criteria decision making within the environment of IT2FS. Chen used a hybrid
averaging approach with signed distances to construct a collective decision matrix
and proposes using ELECTRE-based outranking methods to analyze the collec-
tive interval type-2 fuzzy data. Hu et al. [44] proposed a new approach based on
possibility degree as well as deviation degree, to construct a key optimal model for
using interval type-2 fuzzy number in multi-criteria decision making problems in
which the weights were partially known. Then, they calculated the overall value
of each alternative by the defined aggregation operators. Furthermore, they intro-
duced a new possibility degree, which is proposed to overcome some drawbacks of
the existing methods, for comparisons between the overall values of alternatives
to construct a possibility degree matrix. Based on the constructed matrix, Hu et
al. ranked all of the alternatives according to the ranking vector derived from the
matrix, and selected the best one. Javanmard and Mishmast Nehi [46] proposed a
new ranking function method for IT2FN. Then they considered a linear program-
ming problem in which the parameters were IT2FN. Using the proposed ranking
method, they assigned a crisp number to each IT2FN and turned the linear pro-
gramming problem with IT2FN parameters into a linear programming problem
and solved it easily.

Also, the ranking method has been used to solve BLPPs with fuzzy parameters.
Ren [54] converted BLPP with fuzzy parameters into a BLPP using the deviation
degree measures and a ranking function method of fuzzy numbers. Taking into
account the overall balance between improving the objective function value and
decreasing the allowed deviation degree, they presented a computational method to
obtain a fuzzy optimal solution. Ren et al. [55] transformed the BLPP with fuzzy
parameters to crisp form under different constraint feasibility degrees based on a
fuzzy relation for ranking fuzzy numbers. Considering the overall balance between
better objective function values and higher feasibility degrees of the constraints,
they developed an interactive programming approach to find a balance solution
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for the BLPP with fuzzy parameters. Tayebnasab et al. [56] solved the BLPP
with triangular fuzzy parameters using the ranking fuzzy numbers with integral
value [57], and converted the BLPP with triangular fuzzy parameters into BLPP.
Then they used the Kth-best method to solve the BLPP and obtained the optimal
solution and the optimal value as triangular fuzzy numbers.

According to the above, although it is common to use the ranking method and
replace a fuzzy number or an IT2FN with a crisp number to solve the optimization
problem in uncertainty environment, there is a general defect of losing problem
information due to ranking in all ranking methods. Using a well-defined approxi-
mate closed interval to tackling uncertainties is more acceptable and logical than
replacing it with a crisp number. In this article, we assigned an interval to each
IT2TFN using the Ban and Coroianu’s nearest interval approximation [52] and
solved the problem. So far, no approximation method for solving the BLPP in
which each IT2TFN in the problem is assigned to a closed interval, has been pre-
sented; so, the proposed technique has a new and different nature. Here, using an
approximation, we convert the BLPP with IT2TFN parameters into an interval
BLPP. Then we achieve five BLPPs that by solving them, the optimal value and
the optimal solution obtain as IT2TFNs.

5. NUMERICAL EXAMPLES

In this section, we solve two examples. In the first example, we express a
FBLPP with interval type-2 symmetric triangular fuzzy numbers and in the sec-
ond example, we express the FBLPP with IT2TFNs which are not necessarily
symmetric.

Example 15. Consider the BLPP with IT2TFNs as:

max
x1

˜̃c1x1 +
˜̃
d1x2

s.t. max
x2

˜̃c2x1 +
˜̃
d2x2

s.t. ˜̃ai1x1 + ˜̃ai2x2 ≤ ˜̃
bi i = 1, 2

x1, x2 ≥ 0, (12)

where,
˜̃c1 =

(
(čl1, c̄1, ĉ

l
1), (č

u
1 , c̄1, ĉ

u
1 )
)
=

(
(1.5, 2, 2.5), (1, 2, 3)

)
,

˜̃
d1 =

(
(ďl1, d̄1, d̂

l
1), (ď

u
1 , d̄1, d̂

u
1 )
)
= ((2.5, 3, 3.5), (2, 3, 4)

)
,

˜̃c2 =
(
(čl2, c̄2, ĉ

l
2), (č

u
2 , c̄2, ĉ

u
2 )
)
=

(
(1, 1.5, 2), (0, 1.5, 3)

)
,

˜̃
d2 =

(
(ďl2, d̄2, d̂

l
2), (ď

u
2 , d̄2, d̂

u
2 )
)
=

(
(2, 3, 4), (1, 3, 5)

)
,

˜̃a11 =
(
(ǎl11, ā11, â

l
11), (ǎ

u
11, ā11, â

u
11)

)
=

(
(0.5, 1, 1.5), (0, 1, 2)

)
,

˜̃a12 =
(
(ǎl12, ā12, â

l
12), (ǎ

u
12, ā12, â

u
12)

)
=

(
(3, 4, 5), (2, 4, 6)

)
,

˜̃
b1 =

(
(b̌l1, b̄1, b̂

l
1), (b̌

u
1 , b̄1, b̂

u
1 )
)
=

(
(9, 11, 13), (7, 11, 15)

)
,

˜̃a21 =
(
(ǎl21, ā21, â

l
21), (ǎ

u
21, ā21, â

u
21)

)
=

(
(3, 4, 5), (2, 4, 6)

)
,
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˜̃a22 =
(
(ǎl22, ā22, â

l
22), (ǎ

u
22, ā22, â

u
22)

)
=

(
(1.5, 2.5, 3.5), (0.5, 2.5, 4.5)

)
and

˜̃
b2 =

(
(b̌l2, b̄2, b̂

l
2)
)
, (b̌u2 , b̄2, b̂

u
2 ) =

(
(8, 12, 16), (4, 12, 20)

)
are IT2TFN.

According to the problem data, the middle problem gets as follows:

max
x1

2x1 + 3x2

s.t. max
x2

1.5x1 + 3x2

s.t. x1 + 4x2 ≤ 11

4x1 + 2.5x2 ≤ 12

x1, x2 ≥ 0.

(13)

By solving (13), we obtain x̄1opt = 1.51851, x̄2opt = 2.37037 and optimal values
are Z̄opt = 10.14815 and z̄opt = 9.38888.
By using Ban and Coroianu’s nearest interval approximation, we have:
1. The worst-worst model:

max
x1

39

24
x1 +

63

24
x2

s.t. max
x2

22

24
x1 +

54

24
x2

s.t. 33x1 + 114x2 ≤ 228

114x1 + 78x2 ≤ 216

x1, x2 ≥ 0,

(14)

x̌u
1opt = 0.65630, x̌u

2opt = 1.81001, Žu
opt = 5.81778 and žuopt = 4.67415 are the

optimal solution of worst-worst problem that by solving (14) are obtained.
2. The worst-best model:

max
x1

40

24
x1 +

64

24
x2

s.t. max
x2

24

24
x1 +

56

24
x2

s.t. 32x1 + 112x2 ≤ 232

112x1 + 76x2 ≤ 224

x1, x2 ≥ 0.

(15)

By solving (15), we obtain x̌l
1opt = 0.73734, x̌l

2opt = 1.86075, Žl
opt = 6.19092 and

žlopt = 5.07911.
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3. The best-worst model:

max
x1

56

24
x1 +

80

24
x2

s.t. max
x2

48

24
x1 +

88

24
x2

s.t. 16x1 + 80x2 ≤ 296

80x1 + 44x2 ≤ 352

x1, x2 ≥ 0,

(16)

which x̂l
1opt = 2.65730, x̂l

2opt = 3.16853, Ẑl
opt = 16.76217 and ẑlopt = 16.93258 are

achieved from solving (16).
4.The best-best model:

max
x1

57

24
x1 +

81

24
x2

s.t. max
x2

50

24
x1 +

90

24
x2

s.t. 15x1 + 78x2 ≤ 300

78x1 + 42x2 ≤ 360

x1, x2 ≥ 0.

(17)

By solving (17), x̂u
1opt = 2.83828, x̂u

2opt = 3.30033, Ẑu
opt = 17.87954 and ẑuopt =

18.28933 are obtained.
Then, for problem (12), by using Ban and Coroianu’s nearest interval approx-

imation, we have:

˜̃x1opt =
(
(0.73734, 1.51851, 2.65730), (0.65630, 1.51851, 2.83828)

)
,

˜̃x2opt =
(
(1.86075, 2.37037, 3.16853), (1.81001, 2.37037, 3.30033)

)
,

˜̃Zopt =
(
(6.19092, 10.14815, 16.76217), (5.81778, 10.14815, 17.87954)

)
and

˜̃zopt =
(
(5.07911, 9.38888, 16.93258), (4.67415, 9.38888, 18.28933)

)
.

Figures 3 and 4 show the optimal solution and the optimal value of example 15, re-
spectively. As we see in figures 3 and 4, the optimal solution and the optimal value
for leader and follower are obtained as an IT2TFNs, but unlike the parameters
that were interval type-2 symmetric triangular fuzzy numbers, the optimal solu-
tions and the optimal value were not obtained interval type-2 symmetric triangular
fuzzy numbers.
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Figure 3: The optimal solution of example 15

Figure 4: The optimal value of example 15

Example 16. Consider the BLPP with IT2TFNs as:

max
x1

˜̃c1x+
˜̃
d1x2

s.t. max
x2

˜̃c2x1 +
˜̃
d2x2

s.t. ˜̃ai1x1 + ˜̃ai2x2 ≤ ˜̃
bi i = 1, 2

x1, x2 ≥ 0, (18)

where,
˜̃c1 =

(
(čl1, c̄1, ĉ

l
1), (č

u
1 , c̄1, ĉ

u
1 )
)
=

(
(2.5, 3, 4), (2, 3, 5)

)
,

˜̃
d1 =

(
(ďl1, d̄1, d̂

l
1), (ď

u
1 , d̄1, d̂

u
1 )
)
= ((2, 4, 5), (1, 4, 6)

)
,

˜̃c2 =
(
(čl2, c̄2, ĉ

l
2), (č

u
2 , c̄2, ĉ

u
2 )
)
=

(
(0.5, 1, 2), (0.25, 1, 3)

)
,

˜̃
d2 =

(
(ďl2, d̄2, d̂

l
2), (ď

u
2 , d̄2, d̂

u
2 )
)
=

(
(3, 5, 6), (2, 5, 7)

)
,

˜̃a11 =
(
(ǎl11, ā11, â

l
11), (ǎ

u
11, ā11, â

u
11)

)
=

(
(1, 2, 3), (0.5, 2, 4)

)
,
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˜̃a12 =
(
(ǎl12, ā12, â

l
12), (ǎ

u
12, ā12, â

u
12)

)
=

(
(5, 6, 7), (4, 6, 8)

)
,

˜̃
b1 =

(
(b̌l1, b̄1, b̂

l
1), (b̌

u
1 , b̄1, b̂

u
1 )
)
=

(
(6, 8, 9), (5, 8, 10)

)
,

˜̃a21 =
(
(ǎl21, ā21, â

l
21), (ǎ

u
21, ā21, â

u
21)

)
=

(
(3, 5, 6), (2, 5, 7)

)
,

˜̃a22 =
(
(ǎl22, ā22, â

l
22), (ǎ

u
22, ā22, â

u
22)

)
=

(
(3, 4, 6), (2, 4, 8)

)
and

˜̃
b2 =

(
(b̌l2, b̄2, b̂

l
2)
)
, (b̌u2 , b̄2, b̂

u
2 ) =

(
(5, 6, 8), (4, 6, 9)

)
are IT2TFNs.

According to the problem data, the middle problem gets as follows:

max
x1

3x1 + 4x2

s.t. max
x2

x1 + 5x2

s.t. 2x1 + 6x2 ≤ 8

5x1 + 4x2 ≤ 6

x1, x2 ≥ 0.

(19)

By solving (19), we obtain x̄1opt = 0.1818, x̄2opt = 1.2727 and optimal values are
Z̄opt = 5.6363 and z̄opt = 6.5454.
By using Ban and Coroianu’s nearest interval approximation, we have:
1. The worst-worst model:

max
x1

64

24
x1 +

68

24
x2

s.t. max
x2

19

24
x1 +

92

24
x2

s.t. 66x1 + 162x2 ≤ 164

136x1 + 134x2 ≤ 128

x1, x2 ≥ 0,

(20)

x̌u
1opt = 0, x̌u

2opt = 0.9552, Žu
opt = 2.7064 and žuopt = 3.6616 are the optimal solution

of worst-worst problem that by solving (20) are obtained.
2. The worst-best model:

max
x1

66

24
x1 +

70

24
x2

s.t. max
x2

21

24
x1 +

94

24
x2

s.t. 65x1 + 160x2 ≤ 166

134x1 + 132x2 ≤ 130

x1, x2 ≥ 0.

(21)

By solving (21), we obtain x̌l
1opt = 0, x̌l

2opt = 0.9848, Žl
opt = 2.8724 and žlopt =

3.8573.
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3. The best-worst model:

max
x1

90

24
x1 +

110

24
x2

s.t. max
x2

43

24
x1 +

134

24
x2

s.t. 37x1 + 128x2 ≤ 206

94x1 + 84x2 ≤ 170

x1, x2 ≥ 0,

(22)

which x̂l
1opt = 0.4993, x̂l

2opt = 1.4650, Ẑl
opt = 8.5872 and ẑlopt = 9.0744 are

achieved from solving (22).
4.The best-best model:

max
x1

91

24
x1 +

112

24
x2

s.t. max
x2

43

24
x1 +

136

24
x2

s.t. 35x1 + 126x2 ≤ 208

92x1 + 80x2 ≤ 172

x1, x2 ≥ 0.

(23)

By solving (23), x̂u
1opt = 0.5723, x̂u

2opt = 1.4918, Ẑu
opt = 9.1319 and ẑuopt = 9.4790

are obtained.
Then, for problem (18), by using Ban and Coroianu’s nearest interval approxima-
tion, we have:

˜̃x1opt =
(
(0, 0.1818, 0.4993), (0, 0.1818, 0.5723)

)
,

˜̃x2opt =
(
(0.9848, 1.2727, 1.4650), (0.9552, 1.2727, 1.4918)

)
,

˜̃Zopt =
(
(2.8724, 5.6363, 8.5872), (2.7064, 5.6363, 9.1319)

)
and

˜̃zopt =
(
(3.8573, 6.5454, 9.0744), (3.6616, 6.5454, 9.4790)

)
.

Figures 5 and 6 show the optimal solution and the optimal value of example 16,
respectively. As figures 5 and 6 show, using the proposed method, the optimal
solution and the optimal value have been obtained as IT2TFNs. Also, the optimal
solution and the optimal value were not interval type-2 symmetric triangular fuzzy
numbers.
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Figure 5: The optimal solution of example 16

Figure 6: The optimal value of example 16

6. CONCLUSIONS

In this paper, we considered a BLPP where all the parameters were IT2TFNs.
Then it is converted to an interval BLPP using Ban and Coroianu’s approximation.
In the next step, we attained five BLPP, by solving which, the optimal value of
problem was achieved as IT2TFN.

We recommend working on solving the BLPP with parameters of the type-2
fuzzy numbers or uncertainty in constraints and objective functions of type-2 fuzzy
numbers and even both of them.
Also, we recommend carrying out the study on interval type-2 non-triangular fuzzy
BLPP.

Funding. This research received no external funding.
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