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Abstract: The paper considers the method of correction of thermographic images
(thermograms) obtained by recording in the infrared range of radiation from the surface
of the object under study using a thermal imager. A thermogram with a certain degree
of reliability transmits an image of the heat-generating structure inside the body. In this
paper, the mathematical correction of images on a thermogram is performed based on an
analytical continuation of the stationary temperature distribution as a harmonic function
from the surface of the object under study towards the heat sources. The continuation is
carried out by solving an ill-posed mixed problem for the Laplace equation in a cylindrical
region of rectangular cross-section. To construct a stable solution to the problem, the
principle of the minimum of the Tikhonov smoothing functional we used.
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1. INTRODUCTION

Thermal imaging is one of the most effective method for studying the internal
heat-generating structure of an object that is inaccessible to direct research. With
the help of a thermal imager that registers thermal electromagnetic radiation from
the surface of the object under study in the infrared range, it is possible to obtain
a thermogram of the object’s surface with an image of the internal heat-generating
structure.

In medicine, thermal imaging has become an effective means of early diagnosis
[5]. The image on the thermogram, which is a map of the temperature distribution
on the surface of the patient’s body, makes it possible to assess functional anomalies
in the state of its internal organs. At the same time, the image on the thermogram
in some cases turns out to be significantly distorted due to the processes of thermal
conductivity and heat exchange, surface irregularities.

The paper proposes a method for correcting the image on a thermogram within
the framework of a certain mathematical model. As an adjusted thermogram, the
image of the temperature distribution function on the plane near the heat sources
is considered as more accurately transmitting their structure than the image on
the original thermogram. It is proposed to obtain this distribution function as
a result of the continuation (similar to the continuation of gravitational fields in
geophysics problems [12]) of the temperature distribution from the surface from
which the initial thermogram is taken.

The continuation is obtained by solving the inverse problem to some mixed
boundary value problem for the Poisson equation. The inverse problem under
consideration is incorrectly posed, since significant errors in the solution of the
inverse problem may correspond to small errors in the initial data (the initial
thermogram, surface data, boundary conditions). To construct its stable approx-
imate solution, the Tikhonov [13] regularization method is used, based on the
principle of the minimum of the smoothing functional.

2. STATEMENT OF THE PROBLEM

Let’s consider a physical and then a mathematical model, within which we will
set the inverse problem.

As a physical model, we consider a homogeneous heat-conducting body in the
form of a rectangular cylinder, bounded by the surface S and containing heat
sources with a time-independent distribution density function. These sources cre-
ate a stationary distribution of temperature in the body. We associate the density
function of the distribution of heat sources with the object under study. We as-
sume that a given temperature distribution is maintained on the side faces of the
cylinder, and on the surface S there is a convective heat exchange with a medium
of temperature U0, described by Newton’s law, according to which the density of
the heat flow at a point on the surface is directly proportional to the temperature
difference inside and outside the body.
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Let’s move on to the mathematical model. In a rectangular cylinder

D∞ = {(x, y, z) : 0 < x < lx, 0 < y < ly, −∞ < z <∞} ⊂ R3 (1)

we consider a cylindrical domain

D(F,∞) = {(x, y, z) : 0 < x < lx, 0 < y < ly, F (x, y) < z <∞}, (2)

bounded with a surface

S = {(x, y, z) : 0 < x < lx, 0 < y < ly, z = F (x, y) < H}. (3)

Let Γ be the set of side faces of the domain D(F,∞) of the form (2). In the domain
D(F,∞), we consider the following mixed boundary value problem for the Poisson
equation

∆u(M) = ρ(M), M ∈ D(F,∞),
∂u

∂n

∣∣∣
S

= h(U0 − u)
∣∣∣
S
,

u|Γ = f1,
u bounded when z →∞.

(4)

The problem (4) corresponds to a steady temperature distribution created by heat
sources with a distribution density function ρ. On the surface S a third boundary
condition is set and corresponds to a convective heat exchange with a medium of
temperature U0 with a constant coefficient h, at the boundary Γ the temperature
is set as a function f1, independent of time.

We assume that the functions ρ, f1 are such that the solution to the problem (4)
exists in C2(D(F,∞))

⋂
C1(D(F,∞)). In particular, the solution to the problem

(4) allows us to find u|S . In addition, we assume that the density carrier ρ is
located in the domain z > H.

Let us now set the inverse problem.

Inverse problem 1. Let the following functions be defined within the frame
of the model (4)

f = u|S , f1 = u|Γ.

We need to find a continuous function ρ.
Note that the reconstruction of the density ρ is associated with the same dif-

ficulties as the solution of the inverse potential problem [11], for which significant
restrictions on uniqueness classes are known. Therefore, to solve the inverse prob-
lem, we apply the [12] approach used in geophysics problems. The source of
information about the density of ρ will be the function u|z=H on the plane z = H,
closer to the density carrier ρ than the surface S.

Since the carrier of the function ρ is conditionally located in the domain z > H,
then the solution to the problem (4) satisfies the Laplace equation in the domain

D(F,H) = {(x, y, z) : 0 < x < lx, 0 < y < ly, F (x, y) < z < H}. (5)
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The set of side faces of the domain D(F,H) denote by ΓH . Then, instead of the
inverse problem 1, we will solve the following inverse problem

Inverse problem 2. Let following functions be defined within the frame of
the model (4)

f = u|S , f1 = u|ΓH . (6)

We want to find in the domain D(F,H) of the form (5) the solution u to the
boundary value problem

∆u(M) = 0, M ∈ D(F,H),
u|S = f,
∂u

∂n

∣∣∣
S

= h(U0 − f)
∣∣∣
S
,

u|ΓH = f1.

(7)

We assume that the functions f, f1 in (6), (7) are taken from the set of solu-
tions to the direct problem (4), so the solution to the inverse problem 2 exists in
C2(D(F,H))

⋂
C1(D(F,H)).

Note that in the problem (7) on the surface S of the form (3), Cauchy conditions
are set, that is, the boundary values f of the desired function u and the values
of its normal derivative are set, so the problem (7) has a unique solution. The
boundary z = H of the domain D(F,H) is free and, thus, the problem (7) is similar
in properties to the Cauchy problem for the Laplace equation and is unstable with
respect to errors in the data, i.e. it is ill-posed.

In the inverse problem 2, the function f corresponds to the original thermogram
obtained using a thermal imager. The function u|z=H will be considered as an
adjusted thermogram, i.e. as a source of more accurate information about the
density ρ.

3. EXACT SOLUTION TO THE PROBLEM

Based on the scheme [7, 3], an explicit representation of the exact solution to
the problem (7) is constructed in [8]. We present this solution.

Consider the source function ϕ(M,P ) of the Dirichlet problem for the Laplace
equation in a cylinder D∞ of the form (1). This function has the form

ϕ(M,P ) =
1

4πrMP
+W (M,P ), (8)

where rMP is the distance between points M ∈ D∞ and P ∈ D∞, W (M,P ) is
a harmonic function with respect to M and P satisfying homogeneous boundary
conditions of the first kind.

The source function (8) can be obtained by the reflection method as a sum of
functions of point sources with a period of 2lx for the variable x and 2ly for the
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variable y

ϕ(M,P ) =
1

4π

∞∑
n,m=−∞

( 1

r1,nm
− 1

r2,nm
− 1

r3,nm
+

1

r4,nm

)
,

where

r1,nm = [(xM − xP + 2lxn)2 + (yM − yP + 2lym)2 + (zM − zP )2]1/2,
r2,nm = [(xM + xP + 2lxn)2 + (yM − yP + 2lym)2 + (zM − zP )2]1/2,
r3,nm = [(xM − xP + 2lxn)2 + (yM + yP + 2lym)2 + (zM − zP )2]1/2,
r4,nm = [(xM + xP + 2lxn)2 + (yM + yP + 2lym)2 + (zM − zP )2]1/2,

so r1,00 = rMP is the distance between the points M ∈ D∞ and P ∈ D∞.
We denote

Π(H) = {(x, y, z) : 0 < x < lx, 0 < y < ly, z = H}. (9)

In the domain zM < H, we introduce the notation

Φ(M) =

∫
S

[
h(U0 − f(P ))ϕ(M,P )− f(P )

∂ϕ

∂nP
(M,P )

]
dσP−

−
∫

ΓH

[
f1(P )

∂ϕ

∂nP
(M,P )

]
dσP . (10)

Then we obtain the solution to the problem (7) in the form [8]:

u(M) = v(M) + Φ(M), M ∈ D(F,H), (11)

where the function Φ is calculated with the known functions f and f1, and the
function v is the solution to the problem

∆v(M) = 0, M ∈ D(−∞, H),
v|z=H = vH ,
v|x=0,lx = 0, v|y=0,ly = 0,
v → 0 when z → −∞,

(12)

and can be expressed using the boundary value vH and the Green function of the
problem (12):

v(M) = −
∫

Π(H)

∂G

∂nP
(M,P )vH(P )dxP dyP , M ∈ D(−∞, H), (13)

where the kernel of the integral representation can be represented as a decompo-
sition

∂G

∂nP
(M,P )

∣∣∣
P∈Π(H)

= − 4

lxly

∞∑
n,m=1

exp
{
knm(−H + zM )

}
×

× sin
πnxM
lx

sin
πmyM
ly

sin
πnxP
lx

sin
πmyP
ly

, (14)
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knm = π

(
n2

l2x
+
m2

l2y

)1/2

, (15)

over the complete system of functions{
sin

πnx

lx
sin

πmy

ly

}∞
n,m=1

. (16)

In turn, vH is the solution of an integral equation of the first kind∫
Π(H)

∂G

∂nP
(M,P )vH(P )dxP dyP = Φ(M), M ∈ Π(a), (17)

where a < min
(x,y)

F (x, y) and Π(a) is the domain of the form (9) for z = a.

From the equation (17) taking into account the decomposition (14) for zM = a,
we obtain the ratio between the Fourier coefficients of the unique solution of the
integral equation vH and the Fourier coefficients of the right part

−(ṽH)nm exp
{
− knm(H − a)

}
= Φ̃nm(a), (18)

where Φ̃nm(a) — Fourier coefficients of the function Φ(M)|M∈Π(a):

Φ̃nm(a) =
4

lxly

∫
Π(a)

Φ(x, y, a) sin
πnx

lx
sin

πmy

ly
dxdy.

We note that the formula (18) characterizes the descending of Fourier coeffi-
cients of Φ̃nm(a) with increasing n and m if the function f and f1 are such that
ensure the existence of solution to the problem (7) and consequently, the function
vH . Expressing the Fourier coefficients (ṽH)nm from (18) and substituting into
(13), we get the function v in the domain D(−∞, H):

v(M) = −
∞∑

n,m=1

(ṽH)nm sin
πnx

lx
sin

πmy

ly
= −

∞∑
n,m=1

Φ̃nm(a)×

exp {knm(z − a)} sin
πnx

lx
sin

πmy

ly
, M(x, y, z) ∈ D(−∞, H). (19)

Series (19) converges uniformly in D(−∞, H − ε) for any arbitrarily small fixed
ε > 0, if the solution to the problem (7) exists for the data f and f1.

The formula (11), where the functions v and Φ are of the form (19) and (10),
respectively, gives an explicit expression for the exact solution to the problem (7).

4. APPROXIMATE CALCULATION OF A NORMAL TO AN
INACCURATELY DEFINED SURFACE

Since the surface S of the form (3) is given with the equation z = F (x, y), the
function f given on S can be considered as a function of the variables x and y on
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the rectangle Π:

Π = {(x, y) : 0 < x < lx, 0 < y < ly}, (20)

then the integral in (10) over the surface S may be reduced to the integral over

the variables xP and yP . Given that
∂ϕ

∂n
= (n,∇ϕ), n =

n1

n1
, n1 = (F ′x, F

′
y,−1),

and dσP = n1(xP , yP )dxP dyP , let’s rewrite (10) in the form

Φ(M) =

∫
Π

[
h(U0 − f(xP , yP ))ϕ(M,P )

∣∣
P∈Sn1(xP , yP )− f(xP , yP )×

× (n1,∇Pϕ(M,P ))
∣∣
P∈S

]
dxP dyP −

∫
ΓH

[
f1(P )

∂ϕ

∂nP
(M,P )

]
dσP . (21)

As follows from (21), when forming the right part of the integral equation (17),
it is necessary to calculate the vector function of the normal n1 to the surface S
of the form (3), which is the gradient of the function F (x, y)− z,

n1 = grad (F (x, y)− z) = ∇xyF − k. (22)

Let the surface S is given with an error, namely, instead of the exact function
F in (3), the function Fµ is known, given on a rectangle Π of the form (9), such
that

‖Fµ − F‖L2(Π) 6 µ. (23)

For the approximate calculation of the integral (21), it is necessary to calculate
the normal to the surface given approximately, which is also an ill-posed problem,
since the calculation of the normal n1 is associated with the calculation of the
derivatives of the function F.

To obtain a stable solution to this problem, we use the substitution [9], that is,
we consider the problem of calculating the gradient of the function as the problem
of calculating values of the unbounded operator [6].

As an approximation to the function∇xyF, calculated from the known function
Fµ, associated with the function F by condition (23), consider the gradient from
the extremal of the functional

Nβ
[
W
]

=
wwwW − Fµwww2

L2(Π)
+ β

www∇Wwww2

L2(Π)
, β > 0, (24)

where Π is the domain of the form (20).
For simplicity of calculating the extremal, we consider such surfaces S, for

which

F |x=0,lx = 0, F |y=0,ly = 0.
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This condition, in particular, occurs in the case when S can be considered as a
perturbation of the plane z = 0. Then the extremal of the functional (24) is the
solution to the following problem for the Euler equation

−β∆W +W = Fµ,
W |x=0,lx = 0, W |y=0,ly = 0.

The solution of this problem is

Wµ
β (x, y) =

∞∑
n,m=1

F̃µnm
1 + βk2

nm

sin
πnx

lx
sin

πmy

ly
. (25)

It is easy to see that the series (25) converges uniformly on Π.
As an approximate value of the gradient of the function Fµ, we’ll consider the

vector function

∇xyWµ
β (x, y) =

∞∑
n,m=1

F̃µnm
1 + βk2

nm

×

×
(
i
πn

lx
cos

πnx

lx
sin

πmy

ly
+ j

πm

ly
cos

πmy

ly
sin

πnx

lx

)
.

(26)

The series (26) also converges uniformly on Π.
Let F−− be an odd-periodic continuation of the function F with a period of

2lx for the variable x and with a period of 2ly for the variable y, i.e.

F−(x, y) = F (x, y), (x, y) ∈ Π,
F−(−x, y) = −F (x, y), (x, y) ∈ Π,
F−(x,−y) = −F (x, y), (x, y) ∈ Π,
F−(−x,−y) = F (x, y), (x, y) ∈ Π,
F−(x+ 2lxn, y + 2lym) = F−(x, y), (x, y) ∈ R2, n,m = ±1,±2, ....

Theorem 1. [9] Let F− ∈ C2(R2), β = β(µ) > 0, β(µ) → 0 and µ/
√
β(µ) → 0

when µ→ 0. Thenww∇xyWβ(µ) −∇xyF
ww
L2(Π)

6
µ

2
√
β

+

√
β

2

ww∆F
ww
L2(Π)

→ 0 when µ→ 0.

Based on the theorem, we can use the formula (26) to approximate the normal
to the surface using the formula (22):

nµ1,β = ∇xyWµ
β − k. (27)

With a known estimate ww∆F
ww
L2(Π)

6M,

it follows from the statement of the theoremwwnµ1,β − n1

ww
L2(Π)

=
ww∇xyWµ

β −∇xyF
ww
L2(Π)

6
µ

2
√
β

+

√
β

2
M.
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The maximum for theβ expression on the right is achieved when

β(µ) =
µ

M

and, thus denoting in accordance with (27)

nµ1 = nµ1,β(µ) = ∇xyWµ
β(µ) − k, (28)

we’ll obtain:wwnµ1 − n1

ww
L2(Π)

6
√
Mµ −−−→

µ→0
0. (29)

It is also not difficult to obtain an estimatewwWβ(µ) − F
ww
L2(Π)

6 2µ. (30)

The surface defined by the equation z = Wµ
β(µ)(x, y), we denote as

Sµ = {(x, y, z) : 0 < x < lx, 0 < y < ly, z = Wµ
β(µ)(x, y)}. (31)

5. CONSTRUCTION OF AN APPROXIMATE SOLUTION

Let the functions f , and f1 in the problem (7) be given with an error, that is,
instead of f , and f1, the functions fδ, and fδ1 are given, such that

‖fδ − f‖L2(Π) 6 δ, ‖fδ1 − f1‖L2(ΓH) 6 δ. (32)

In this case, we assume that the surface S of the form (3) is given approximately
with the condition (23).

We’ll assume that we also know that

a1 < F (x, y) < a2, (x, y) ∈ Π. (33)

Let’s construct an approximate solution to the problem (7).
Using the results of the previous paragraph, the right part of the integral

equation (17) of the form (21) will be calculated approximately in this case on a
rectangle

Π(a) = {(x, y, z) : 0 < x < lx, 0 < y < ly, z = a} ,
a < min

(x,y)
Wµ
β(µ)(x, y), a < a1 (34)

in accordance with the formula (21) as a function

Φδ,µ(M) =

∫
Π

[
h(U0 − fδ(xP , yP ))ϕ(M,P )

∣∣
P∈Sµn

µ
1 (xP , yP )− fδ(xP , yP )×

× (nµ1 ,∇Pϕ(M,P ))
∣∣
P∈Sµ

]
dxP dyP −

∫
ΓH

[
fδ1 (P )

∂ϕ

∂nP
(M,P )

]
dσP , (35)
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where the surface Sµ has the form (31), the approximate normal nµ1 is calculated
by the formula (28).

Let’s estimate the error in calculating the function Φδ,µ of the form (35) with
respect to the function Φ of the form (21) – the right side of the integral equation
(17), i.e. we estimate the differenceΦδ,µ(M)− Φ(M)

 6
Φδ,µ(M)− Φδ,µ,1(M)

+
Φδ,µ,1(M)− Φδ(M)

+

+
Φδ(M) − Φ(M)

, M ∈ Π(a). (36)

In this estimation is introduced the function Φδ,µ,1 of the form (35), where for-
mally the approximate normal nµ1 is replaced by the exact normal n1 (Note that
n1(xP , yP )|P∈Sµ = n1(xP , yP )|P∈S):

Φδ,µ,1(M) =

∫
Π

[
h(U0 − fδ(xP , yP ))ϕ(M,P )

∣∣
P∈Sµn1(xP , yP )− fδ(xP , yP )×

× (n1,∇Pϕ(M,P ))
∣∣
P∈Sµ

]
dxP dyP −

∫
ΓH

[
fδ1 (P )

∂ϕ

∂nP
(M,P )

]
dσP ,

and is also introduced the function Φδ of the form (35), which is calculated on an
exactly specified surface

Φδ(M) =

∫
Π

[
h(U0 − fδ(xP , yP ))ϕ(M,P )

∣∣
P∈Sn1(xP , yP )− fδ(xP , yP )×

× (n1,∇Pϕ(M,P ))
∣∣
P∈S

]
dxP dyP −

∫
ΓH

[
fδ1 (P )

∂ϕ

∂nP
(M,P )

]
dσP . (37)

Let’s estimate the first difference on the right side of the inequality (36):Φδ,µ(M)− Φδ,µ,1(M)

M∈Π(a)

=

=
∫

Π

[
h(U0 − fδ(xP , yP ))ϕ(M,P )

∣∣
P∈Sµ(nµ1 (xP , yP )− n1(xP , yP ))−

− fδ(xP , yP )(nµ1 − n1,∇Pϕ(M,P ))
∣∣
P∈Sµ

]
dxP dyP

 6

6 max
M∈Π(a)
P∈Sµ

ϕ(M,P )
∫

Π

h(U0 − fδ(x, y))
 · |nµ1 (x, y)− n1(x, y)|dxdy+

+ max
M∈Π(a)
P∈Sµ

∇Pϕ(M,P )
∫

Π

fδ(x, y)
 · |nµ1 (x, y)− n1(x, y)|dxdy 6

6 C1

∫
Π

h(U0− fδ(x, y))
 · |nµ1 −n1|dxdy+C2

∫
Π

fδ(x, y)
 · |nµ1 −n1|dxdy.
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Using the Cauchy-Bunyakovsky inequality, the estimate (29) and the estimate
‖fδ‖ 6 ‖f‖ + δ, for the first difference on the right in the inequality (36), we
obtainΦδ,µ(M)−Φδ,µ,1(M)

 6 C1h‖U0− fδ‖ · ‖nµ1 −n1‖+C2‖fδ‖ · ‖nµ1 −n1‖ 6

6 (C1h(‖U0 − f‖+ δ) + C2(‖f‖+ δ))
√
Mµ 6 C3

√
µ, M ∈ Π(a). (38)

Let’s estimate the second difference on the right side of the inequality (36)Φδ,µ,1(M)− Φδ(M)

M∈Π(a)

=

=
∫

Π

[
h(U0 − fδ(xP , yP ))n1(xP , yP )(ϕ(M,P )

∣∣
P∈Sµ − ϕ(M,P )

∣∣
P∈S)−

− fδ(xP , yP )(n1,∇Pϕ(M,P )
∣∣
P∈Sµ −∇Pϕ(M,P )

∣∣
P∈S)

]
dxP dyP

.
Using the Lagrange formula we obtainΦδ,µ,1(M)− Φδ(M)


M∈Π(a)

=

=
∫

Π

[
h(U0−fδ(xP , yP ))n1(xP , yP )

( ∂

∂zP
ϕ(M,P ∗)(zP |P∈Sµ−zP |P∈S)

)
−

− fδ(xP , yP )
(
n1,

∂

∂zP
∇Pϕ(M,P ∗∗)(zP |P∈Sµ − zP |P∈S)

)]
dxP dyP

.
Since according to (31) zP |P∈Sµ = Wµ

β(µ)(xP , yP ) and zP |P∈S = F (xP , yP ), hence

we obtainΦδ,µ,1(M)− Φδ(M)

M∈Π(a)

=
∫

Π

[
h(U0 − fδ(xP , yP ))n1(xP , yP )×

× ∂

∂zP
ϕ(M,P ∗)

(
Wµ
β(µ)(xP , yP )− F (xP , yP )

)
− fδ(xP , yP )×

×
(
n1,

∂

∂zP
∇Pϕ(M,P ∗∗)(Wµ

β(µ)(xP , yP )− F (xP , yP ))
)]
dxP dyP

. (39)

We introduce the notation using (33)

z1(xP , yP ) = min{Wµ
β(µ)(xP , yP ), a1},

z2(xP , yP ) = max{Wµ
β(µ)(xP , yP ), a2}.

(40)

Now from (39) using (40) we obtainΦδ,µ,1(M)−Φδ(M)
 = max

M∈Π(a)
P :z1<zP<z2

 ∂

∂zP
ϕ(M,P )n1

∫
Π

h(U0−fδ(x, y))
×
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×
Wµ

β(µ)(x, y)− F (x, y)
dxdy + max

M∈Π(a)
P :z1<zP<z2

(
n1,

∂

∂zP
∇Pϕ(M,P )

)
×

×
∫
Π

fδ(x, y)
 · Wµ

β(µ)(x, y)− F (x, y)
dxdy, M ∈ Π(a).

Applying the Cauchy-Bunyakovsky inequality, assuming that δ < δ0, and using
the estimate (30), we obtainΦδ,µ,1(M)−Φδ(M)

 6 C4h‖U0−fδ‖·‖Wµ
β(µ)−F‖+C5‖fδ‖·‖Wµ

β(µ)−F‖ 6

6
(
C4h(‖U0 − f‖+ δ) + C5(‖f‖+ δ)

)
‖Wµ

β(µ) − F‖ 6 C6µ, M ∈ Π(a).

(41)

Let’s estimate the third difference on the right side of the inequality (36) using
(37) and (21)Φδ(M)− Φ(M)


M∈Π(a)

6

6
∫
Π

h(fδ(xP , yP )− f(xP , yP ))ϕ(M,P )
∣∣
P∈Sn1(xP , yP )

dxP dyP+

+

∫
Π

(fδ(xP , yP )− f(xP , yP ))(n1,∇Pϕ(M,P ))
∣∣
P∈S

dxP dyP+

+

∫
ΓH

(fδ1 (P ) − f1(P ))
∂ϕ

∂nP
(M,P )

dσP .
Using the Cauchy-Bunyakovsky inequality, as well as (32), we obtain from here

|Φδ(M)− Φ(M)|M∈Π(a) 6

6 h max
M∈Π(a)

( ∫
Π

ϕ2(M,P )
∣∣
P∈SdxP dyP

)1/2‖fδ − f‖L2(Π)+

+ max
M∈Π(a)

( ∫
Π

[
(n1,∇Pϕ(M,P ))

∣∣
P∈S

]2
dxP dyP

)1/2‖fδ − f‖L2(Π)+

+ max
M∈Π(a)

( ∫
ΓH

[ ∂ϕ
∂nP

(M,P )
]2
dσP

)1/2‖fδ1 − f1‖L2(ΓH) 6 C7δ. (42)

Collecting the estimates (38), (41), (42) and assuming that µ < µ0, from (36) we
obtain when M ∈ Π(a)Φδ,µ(M)− Φ(M)

 6 C3
√
µ+C6µ+C7δ 6 C1

√
µ+C2δ = γ(µ, δ) −−−→

µ→0
δ→0

0, (43)
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where C1, C2 are constants. From (43) we obtain an estimate in L2 of the error
of the approximate right part of the integral equation (17)∥∥Φδ,µ − Φ

∥∥
L2(Π(a))

6
2√
lxly

γ(µ, δ) −−−→
µ→0
δ→0

0. (44)

Equation (17) as an integral equation of the first kind is an ill-posed problem.
As an approximate solution to the equation (17) with the right side (35) under
the condition (44) we will consider the extremal of the Tikhonov functional [13]
with a zero-order stabilizer

Mα[w] =
∥∥ ∫

Π(H)

∂G

∂n
wdσ − Φδ,µ

∥∥2

L2(Π(a))
+ α‖w‖2L2(Π(H)), α > 0, (45)

where Π(a) and Π(H) are domains of the form (34) and (9).
In case of additional constraints on the solution, the optimization problem can

be solved using the results [1, 2].
The extremal of the functional (45) can be obtained as a solution of the Euler

equation, that in the Fourier coefficients w̃nm of the desired function w has the
form

exp {−2knm(H − a)} w̃nm + αw̃nm = − exp {−knm(H − a)} Φ̃δ,µnm(a),

where

Φ̃δ,µnm(a) =
4

lxly

∫
Π(a)

Φδ,µ(x, y, a) sin
πnx

lx
sin

πmy

ly
dxdy (46)

— Fourier coefficients of the function Φδ,µ(M)|M∈Π(a).
Solving the equation with respect to Fourier coefficients of the extremal and

substituting the extremal wδ,µα instead of vH in (13), we find an approximation of
vδ,µα to the function v in the domain D(−∞, H):

vδ,µα (M) = −
∞∑

n,m=1

Φ̃δ,µnm(a) exp{knm(zM − a)}
1 + α exp{2knm(H − a)}

sin
πnxM
lx

sin
πmyM
ly

. (47)

We note that members of the series (47) differs from members of the series (19) by
the regularizing factor (1 +α exp{2knm(H − a)})−1, that ensures the convergence
of series.

In accordance with (11), we obtain an approximate solution to the problem (7)
in the form

uδ,µα (M) = vδ,µα (M) + Φδ,µ(M), M ∈ D(W,H), (48)

where vδ,µα and Φδ,µ are functions of the form (47) and (37).
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Theorem 2. Let the solution to the problem (7) exist. Then for any α = α(γ) > 0

such that α(γ) → 0, γ/
√
α(γ) → 0 when γ → 0, the function uδ,µα(γ) of the form

(48), where according to (43) γ = γ(µ, δ) = C1
√
µ + C2δ, converges to the exact

solution to the problem (7) uniformly when δ → 0, µ → 0 on any compact set
K ⊂ D(F,H).

Proof. On the compact set K, in accordance with (48) and (11), we estimate
the difference

|uδ,µα(γ) − u| 6 |v
δ,µ
α(γ) − v|+ |Φ

δ,µ − Φ|. (49)

Obviously, there exists ε > 0, such that K ⊂ D(−∞, H−ε). For the difference

vδ,µα(γ) − v in the domain D(−∞, H − ε) we get

|vδ,µα − v| 6 |vδ,µα − vα|+ |vα − v|, (50)

where vα is a function of the form (47) for exact f and f1:

vα(M) = −
∞∑

n,m=1

Φ̃nm(a) exp{knm(zM − a)}
1 + α exp{2knm(H − a)}

sin
πnxM
lx

sin
πmyM
ly

.

Let’s estimate the difference vδ,µα − vα in (50) for zM < H − ε using (43)

|vδ,µα (M)− vα(M)| 6

6

∣∣∣∣ ∞∑
n,m=1

exp{knm(zM − a)}
1 + α exp{2knm(H − a)}

∣∣∣∣ · 4 max
P∈Π(a)

∣∣Φδ,µ(P )− Φ(P )
∣∣ 6

6 4γ

∞∑
n,m=1

exp{knm(H − ε− a)}
1 + α exp{2knm(H − a)}

6

6 4γmax
x

[ ex

1 + αe2x

] ∞∑
n,m=1

exp{−knmε} 6 C8
γ√
α
. (51)

Let’s estimate the difference vα − v in (50) for zM < H − ε:

|vα − v| 6
∞∑

n,m=1

α exp{2knm(H − a)} exp{knm(H − ε− a)}
1 + α exp{2knm(H − a)}

∣∣Φ̃nm(a)
∣∣.

Using (18) and applying the Cauchy-Bunyakovsky inequality, we obtain

|vα − v| =
∞∑

n,m=1

α exp{2knm(H − a)} exp{−knmε}
1 + α exp{2knm(H − a)}

∣∣ ˜(vH)nm
∣∣ 6

6

[ ∞∑
n,m=1

(
α exp{2knm(H − a)}

1 + α exp{2knm(H − a)}

)2

exp{−2knmε}
]1/2

· 2√
lxly
‖vH‖L2

.
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Since the series depending on the parameter α is majorized by a convergent numer-
ical series with the coefficients exp{−2εknm}, then a limit transition with respect
to α is possible and, thus,

|vα − v| → 0 when α→ 0. (52)

From (50), (51) and (52) and conditions of the theorem it follows that

|vδ,µα(γ) − v| → 0 when µ→ 0, µ→ 0. (53)

The second difference on the right side of (49) is evaluated similarly (43) when
M ∈ KΦδ,µ(M)− Φ(M)


M∈K 6 C3

√
µ+ C4δ.

Hence, as well as from (49) and (53), the statement of the theorem follows.

6. NUMERICAL SOLUTION TO THE OPTIMIZATION PROBLEM

The effectiveness of the proposed method for solving the problem (7) is shown
in the following model example.

In the problem (4), let the surface S be the plane Π(0), f1 = U0 = 24, h =
0.5, lx = 30, ly = 30, H = 1.4. The function ρ corresponds to four point sources
at points in the plane Π(H) : (x1, y1) = (8, 8), (x2, y2) = (10, 8), (x3, y3) =
(10, 10), (x4, y4) = (6, 10). The boundary value of the solution of the model prob-
lem (4) in this case has the form

f(x, y) = U0 +

∞∑
n,m=1

4∑
i=1

qi
e−knmH

knm + h
sin

πnxi
lx

sin
πmyi
ly

sin
πnx

lx
sin

πmy

ly
, (54)

where knm is calculated using the formula (15) and qi = 100., i = 1, 2, 3, 4.
To set the inverse problem (7), we consider that the function f, calculated by

the formula (54), a known function. Also f1 = U0 = 24, h = 0.5, lx = 30, ly =
30, H = 1.4 are known.

To solve the inverse problem (7), we use the formulas (48), (47), (46), (37). In
the formula (37) we use the representation for the fundamental solution

ϕ(M,P ) =
2

lxly

∞∑
n,m=1

e−knm|zM−zP |

knm
sin

πnxM
lx

sin
πmyM
ly

sin
πnxP
lx

sin
πmyP
ly

,

(55)

when zM = a, zP = 0. The Fourier coefficients in the formula (46) are calculated
without calculating the function Φ, similarly to [10]. When using the formula (46),
integration is performed under the sign of the integral in (37) and under the sign
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Figure 1: Initial thermogram on the surface.

Figure 2: The corrected thermogram obtained as an approximate solution of the inverse problem.
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of the sum in (55). Taking into account the orthogonality of the system of func-
tions (16), the calculation formulas for Fourier coefficients Φnm are significantly
simplified.

To obtain a numerical result, the problems (4), (7) are discretized. A uniform
grid of 91x91 points is introduced on the rectangles Π(a), a = −0.5 and Π(H).
The Hamming algorithm [4, p.83] is used for summing discrete Fourier series.

The calculation results are shown in Fig.1 and Fig.2. Fig.1 shows the initial
data of the inverse problem – the function f calculated from the discrete analog
of the formula (54). The relative magnitude of the added error is 0.28%. Four
sources are perceived as a single whole. Fig.2 shows the result of restoring the
u|z=H function using the formulas (48), (47), (46), (37). Four sources are clearly
visible. Regularization parameter α = 10−8. With the regularization parameter
α = 0, the solution is destroyed.

7. CONCLUSION

The inverse problem (7) and its stable solution can be used for mathematical
processing of thermographic images (thermograms), in particular, in medicine [5],
in order to correct the image on the thermogram. The thermogram obtained with
the help of a thermal imager reproduces with a certain degree of reliability the
image of the structure of heat sources located inside the body. Image correction
on the thermogram can be obtained based on the solution to the problem (7).
In this case, the function f will be associated with the original thermogram, and
the function u|z=H will be considered the result of mathematical processing of the
thermogram. Since the function u|z=H represents the temperature distribution
on a plane closer to the studied heat sources than the original surface S, we can
expect a more accurate reproduction of the image of sources on the calculated
thermogram u|z=H . The results of calculations carried out on the model example
show the effectiveness of the proposed method and algorithm based on the formulas
(48), (47), (46), (37), and can be applied for processing thermographic images.
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