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1. INTRODUCTION

Dorn [1] was the first who introduced symmetric duality. Dantzig [2] extended
these results under a more generalized setting for the nonlinear problems under
convexity assumptions. Another effort in this direction is taken by Bazarra and
Goode [3] who extended these results over arbitrary cones. Computing advan-
tage of second as well as higher order analog of the problems was furnished by
Mangasarian [4]. Mond and Weir [5] developed these theorems connecting the
relationship between symmetric dual pairs in nonlinear programming problems.
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Chandra [6] magnified the results to fractional programming problems. Jayswal
and Prasad [7] derived suitable duality results for a Mond-Weir type nondifferen-
tiable second order fractional symmetric dual programs over arbitrary cones while
Jayswal et al. [8] extended the work to higher order counterpart of the problem
and furnished the aforesaid theorems making use of higher order n-invexity. For
more details on fractional programming, one can follow [9], [10],[11].

Chen [12] focused on higher-order analog of the problems having more than one
objective equipped with support functions and set up the duality criteria. Subse-
quent extension of these results were done by Khurana [13] by considering a class
of Mond-Weir symmetric dual type formulations defined over cones. Kaseem [14]
studied multiobjective symmetric first order dual problems under usual convexity
assumptions to set up weak, strong, and converse duality criteria. Jayswal et al.
[15] formulated symmetric variational formulations up to second order consisting
of more than one objective under F-convexity. Prasad et al. [16] focused on sec-
ond order fractional variational problems and derived various duality theorems.
Yang [17] studied suitable duality results to discuss the symmetric dual first order
formulations employing invexity.

Recently, Suneja and Louhan [18] studied symmetric higher order problems and
established the duality results assuming the functions as invex. In this connec-
tion, Kharbanda and Agarwal [19] introduced nonsmooth multiobjective fractional
programming problems involving higher order invex functions. Moreover, a novel
approach is developed by Verma et al. [20] to handle higher order multiobjective
symmetric dual programs under cone invexity. Sharma and Kaur [21] focused
on fractional problems under a more generalized setting over cones and discussed
suitable results on dual formulations assuming that functions satisfy higher order
(P, p) convexity.

In the present paper, the key idea is to study higher order fractional sym-
metric variational programs where constraints are defined over cones and set up
appropriate duality results. In Section 2, we collect formal definitions along with
higher order n-invex function that is needed in the sequel of the paper. A numer-
ical example is also given proper space in order to validate the definitions used
in this paper. In Section 3, we have taken steps to cast higher order symmetric
fractional variational problems equipped with constraints defined over cones and
deduce suitable duality theorems, the static case of our problem, and conclusions
in the next two sections.

2. PRELIMINARIES

Definition 1. [8] A subset C' of R™ is known as cone, if it is characterized by
0<AeR, zelC= el

Definition 2. [15] For any cone C, the polar cone C* is described mathematically
as
C* ={y: 27y £0, 2 being a member of C}.
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Definition 3. The functional f]f f(t,s,8)dt is termed as higher order n-invex at
a point 0 € X C R” corresponding to h : I x X x X x R" — R, if there exists a
function n: I X X x N R" such that

Y2 Y2 Y2 Y2
Fts,8)dt — / F(t o) di — / h(t, 0,6, p)dt + / IV h(t 0, 6, p)dt
v

71 1 71 71

> / 0t 5,0) TV o (1, 0,6) + DV (t,0,6) + Vyht, o, 6, p) it
Y1

Y(s,p) € X x R™.

Next, we layout an appropriate example to display that higher order n-invex func-
tion exist that is not second order n-invex.

Example 4. Let 7 = (m,m2), w = (w1,w2) € X C Ri and a = (a1,az) € R2.
Define f: I xRN xRN R by f(t,7,7) =1 +sinm +sinmy; n: I x X x N R? by
n(t, T, w) = (cosm +sinwy +2, cosma+sinws+2) and h: I x R x X x R? — R by
h(t,w,w,p) = —p1 coswy — pa cosws. We take w = (0,0); p = (1,1) and I = [0, 1].

1 1 1 1
/ ft, 7, 7) dt—/ f(t,w,w)dt—/ h(t,w,w,p)dt—i—/ p'Vyh(t,w,w, p)dt
0 0 0 0

1
_ / 1t 7, 0) T {V o F (0, 65) + DV f(£, w0, 5) + Vph(t, w0, 0, p) Y dt
0

1 1
= / (sinmy + sin g — sinw; — sinws)dt — / (—p1 coswy — pa coswa)
0 0

— COS w1
— COS Wy

+ (p1,p2) {
1 1

= / (sinmy + sinmy — sinwy — sinws)dt — / (—2p1 coswy — 2py cosws) dt
0 0

1
:/ sinmy + sinmwe +4dt > 0,
0

which display that f is higher order invex. Moreover, f is not second order inver
as explained below:

1
[ (rtem ) = ft00) + 50T nn i

—n(t, ﬂ,w)T(Vﬂf(t,w,w) + me(t,w,w)p)>dt
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1 .
1 _
= A <(sin 1 + sinmg — sinwy — sinws) + §(p1,p2) { Slélwl _ Si?m&] [gj

cos wl}

— (cosm +sinwy + 2, cosmy + sinws + 2) |:COS(U2

" {— sin wq 'O } {pl] >dt
0 —sinwsa | |p2

1

o . . . . 1 2 . 2 .

= (sinm +sinmy — sinw; — sinws) + i[pl sinwy + p2” sin ws]
0

coswi) — P1 sinwl} )dt

— (cosmy +sinmy + 2, cosms + sinwy + 2) ;
COS Wy — Pa Sinwsa

1
= / (sinmy + sinmg — cosmy — cos g — 4)dt
0

<0, VweRn

In next couple of sections, C7 and C5 represent cones with non-void interiors in
R™ and R™ respectively. Further, we also assume that C7 and Cy are closed and
convex cones. We take X C R” and R ¢ R™ in such a way that C7 x Coy C N X N.
Also, 1 : T X R x R R" and 1 : [ x R x R — R™.

3. PRIMAL - DUAL FORMULATION

In this paper, we investigate the following primal-dual doublet defined over
cone constraints:

Primal (FVSP)

Minimi ( ,xz(f(ta 0, Q»‘Saé)—’_H(tv 0, év 5767]3) _pTva(tv 0, Q,(;,(;,p))dt)
mimize < < n
S (g(t, 0,0,8,0) + G(t,0,0.6,0,p) = pTV,Gl(t, 0. 6,6,0,p))dt

subject to

Vsf(t, 0,0,0,0)—DVf(t,0,0,6,0)+V,H(t,0,0,0,5,p)
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(f]f (f(t, 0,6,0,0) + H(t, 0,0,6,0,p) — p" V,H(t, 0,6,0,0,p) dt)
2 (g(t, 0,6,6,0) + G(t, 0,6,6,6,p) — pTV,G(t, 0,6,6,6,p) dt

(Vsg(t, 0,0,0,0) — DV;g(t, 0,0,0,6) + V,G(t, 0,0,6,9,p)) € C3,

§T[v5f(ta 0, Q.v 63 5) _Dvgf(tv 0, é)v 67 6)+va(ta 0, 9.7 67 5710)

_ (f]f (f(ta 0, @3 6; 5) + H(tv 0, Q-, 57 5ap) - pTva(ta 0, 4_07 63 5vp) dt)
D2 (g(ts 0,0,6,0) + G(t, 0,0,0,8,p) — pTV,G(t, 0,6,6,8,p) dt

(Vsg(t, 0,0,0,0) — DV;q(t, 0,0,6,0) + V,G(t, 0,6,3,0,p))] =0,

o(t) e C1, tel.

Dual (FVSD)

Mesiimine ( S (f(t0,6,0,9) + X (t,0,6,0,9,9) — 4"V, X (t,0,6,9,9,9)) dt>
J 2 (9(t,0,6,9,0) + Y (t,0,6,90,9,q) — qTV,Y (t,0,6,9,9,q)) dt
subject to
o(m)=0=0(y2), omn)=0=7c(r),
V() =0="9(12), 9(n)=0=173(r),

[V, f(t,0,6,9,0)=DV s f(t,0,5,9,0)+V X (t,0,6,9,9,q)

<fjf (f(t,0,6,9,9) + X (t,0,6,9,9,q) — TV X (t,0,5,9,9,q) dt)
S (g(t,0,6,9,0) + Y (t,0,6,9,9,9) — TV, Y (t,0,6,9,7,q) dt

(Vog(t,0,6,9,9) — DV g(t,0,6,9,9) + V,Y (t,0,5,9,9,q))] € CF,

O—T[V,Qf(ta g, da 19, 19) - Dvgf(t, g, d, 19? 19) +V¢]X(t7 g, da 197 ?97 Q)

( 2 (f(t,0,6,0,0) + X (t,0,6,9,9,q9) — "V X (t,0,6,9,0,q) dt)
2(g(t,0,6,0,0)+ Y (t,0,6,9,9,q9) — qTV,Y (t,0,6,9,9,q) dt
Y1 q

(Voy(t,0,6,9,9) — DV yq(t, 0,6,9,9) + VY (t,0,5,9,9,q))] £0,

W(t) € Cqy, tel,
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where

(1) fFIXNXRXRXxR =Ry and g: I x R xR x Rx X =R, \ {0},
(i) H, G: T xR xR xR x R x R™ — R are differentiable functions,
(iif) X, YV : I x R x R x R x R x R” = R are differentiable functions,
(iv) p and q are vectors in R™ and R", respectively.

In order to make the problem suitably defined, we consider the numerator is
nonnegative in the feasible region while on the other hand denominator is con-
strained to be positive. First of all, we convert our problem into the parametric
problem by introducing [ and m defined as below:

_ hrUteds 8) + H(t,0,0,0,8,p) — p"V,H(t,0,0,6,8,p)) dt
T2 (g(t, 0,0,6,0) + G(t, 0,0,6,6,p) — pTV,G(t, 0,6,8,0,p)) dt

_ fr;)f (f(ta a, da 193 19) + X(tv g, 0-—7 797 797 Q) - qTVqX(ta a, da 193 79; Q)) dt
J"’;le (g(t7 g, 0'-3 197 19) + Y<t7 a, d7 19, 197 q) - quqY<t7 a, 0.-7 197 197 q)) dt -

m

Equivalent form of the above problems are:

Primal (FVSP')

Minimize l

subject to
o(m) =0=0(1), o(n)=0=0o(1),
5(v) =0=103(12), (1) =0= (),

72 . . .
/ (f(t, 0, 0,0, 5) + H(t, 0, 0,0, 67]7) - pTva(t» 9, 0,0, 5,}7) dt)
0

1

Y2 . ) .
- / (9(t, 0,6.5,6) + Glt, 0,6,6.6,p) — 7V, C(t, 0, 6,6.6,p) dt) = 0, (1)
;

1

Vsf(t,0,0,8,0)— DV f(t,0,0,0,0)+V,H(t, 0,0,0,,p)

—1(Vsg(t, 0,0,0,8) — DV39(t, 0,0,0,0) + V,G(t, 0,0,6,9,p)) € Cs, (2)

ST[ng(t, 0, Qa 67 6)_Dvgf(ta 0, Q'a 67 6)+va(ta 0, Qv 67 5ap)

- l(v5g(t7 0, @7 57 6) - Dvgg(tv 0, 97 67 5) + va(t7 0, 9.7 57 Jap))] 2 07 (3)

o(t)eCy, tel.
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Dual (FVSD')

Maximize m

subject to
o(m) =0=0(7),
J(m) =0="79(72),

1
Y2
—m
71

265

o(n) =0=0(72),
19(@’1) 0=1

19(72)7

72 . . .
/ (F(t,0,6,9,0) + X (£,0,6, 9,0, ) — "V, X (1, 0,6, 0,9, q)) dt
;

(g(t, 0, d,ﬁ,ﬁ) +Y(t, 0,6,9,0, q) — qTVqY(t, 0,6,9,0, q))dt =0, (4)

—[Vof(t,0,6,9,0) =DV s f(t,0,5,9,0)+V X (t,0,6,9,9,q)

—m(V,g(t,0,6,9,0) — DV 49(t, 0,6,9,0)+ VY (t,0,5,9,70,9))] € CF, (5)

ol [V, f(t,0,6,0,0)—DV s f(t,0,6,9,0)+V X (t,0,6,9,7,q)

—m(Vog(t, 0,6,9,9) — DV s f(t,0,6,9,9) + VY (t,0,6,9,79,9))] £0, (6)

ﬁ(f) € Cs,

tel.

4. DUALITY THEOREMS

The present section discusses the well-suited duality results under higher order
invexity along with suitably chosen conditions. The following duality results have
been discussed for (FVSP’) and (FVSD’) but apply evenly to (FVSP) and (FVSD)

to the same extent.

Theorem 5. (Weak duality). Assume that (o,9,1,p) and (o,9,m,q) denote fea-
sible solutions to (FVSP ) and (FVSD ), respectively. Moreover, the following

conditions are also imposed

(a) fJf (f(t,.,.,0(),0(t)) dt is higher order invex at o(t) w.r.t.ny and
X(t,0,6,9,9,q) and fx" —g(t,.,.,0(t),0(t)) dt is higher order invex at o(t)

w.r.t. n and —Y(t7o,d7197197q),

(b) — Jf ft,0(t),0(t),.,.)dt is higher order invex at 6(t) w.r.t. 2 and
—H(t, 0, 0, 6,5,p) and ,;Yf g(t,o(t), 0(t),.,.)dt is higher order invexr at 6(t)

w.T.L. T2 and G(t7 0, 9'767 5,]?)7

(¢) (m(to(t),o(t)) +0)" € Cr,¥ o(t) € C1, tEL
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(d) (m2(t,9(t),6(t)) +0)T € Ca,V I(t) € Co, t € I
Then I = m.

Proof. Since (g, 9,1, p) and (0,9, m, q) are feasible solutions to formulations (FVSP/)
and (FVSD'), respectively. Therefore, with the help of (¢) and condition (5), we
obtain

—(m(t,0,0) +0)"[Vof(t,0,6,0,9) = DV, f(t,0,6,9,9) + VX(t,0,6,9,9,q)
—m(V,g(t,0,6,9,9) — DV;9(t,0,6,9,0) + VY (t,0,6,9,9,9))] £ 0,
which on account of (6) gives
(m(t, 0,0 [V,of(t,0,6,9,9)—~DV s f(t,0,5,9,9)+V,X(t,0,5,9,9,q)
—m(V,g(t,0,6,9,9) — DV g(t,0,5,9,0) + VY (t,0,6,9,9,9))] 2 0. (7)
Using constraint (2) in (d), we obtain
(772(t7 197 6) +6)T[v5f(t7 97 Q'a 67 6) _Dv5f<t7 Qa ,_é, 67 6) +va<t7 Qa ,_O, 67 67p)

- Z(V5g(t, o, @1 5; 5) - Dv(;g(t? 0, @a 57 5) + VPG(ta 0, Qu 5; 57]9))] g 07
which on account of (3) settles down to

(2(t,9,8)) Vs f(t, 0,0,0,0)—DV;f(t, 0,6,0,0)+V,H(t, 0,6,6,6,p)

—U(Vsg(t,0,6,6,0) — DVsg(t, 0,6,6,0) + V,G(t, 0,6,0,0,p))] £ 0. (8)
From the assumption (a), we obtain
72 . . .
f(t7 0, éa 197 19) - f(tv g, (.77 197 ﬁ)dt g (771 (t7 0, U))T[V,Qf(tv g, (.77 197 19)
71
+ DV, f(t,0,6,9,9) + Vo X(t,0,6,9,9,9)] + X(t,0,5,9,9,q)
- quqX(ta g, da 193 193 q) (9)
and

2 . . :
/ _g(ta 0, 97 197 19) + g(t7 ag, d7 197 ﬁ)dt z (771 (t7 o, U))T[_vgg(t7 ag, O"a 79’ 79)
Y

— DV,g(t,0,6,0,9) — V,Y(t,0,6,9,9,q)] = Y(t,0,6,9,9,q)
+ qTVqY(t7 0,6,9,9, q). (10)
Multiply equation (10) by m and resultant is added to (9) so as to get

72 . . . .
/ [f(ta 0, Qaﬂaﬂ) _f(tvo-a 0-719719) _m(g(t7 0, @7 197 19) _g(t70-70-719719))]dt
Y

1
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= m(t, o, U)T[ng(t, 0,0,7, 19) + DV, f(t,0,6,9, 19)

+ VX (t,0,6,9,9,q) +m(=V,g(t,0,6,9,9) — DV 49(t,0,6,9,9)
—V,Y(t,0,6,9,9,9)] + [X(t,0,6,9,9,q) — ¢" VX (t,0,6,9,9,q)
+m(=Y(t,0,0,0, 0, q) + qTVqY(t, 0,6,9,9, q)], (11)

which by equation (4) reduces to

72 . . .
/ [f(ta 0, 9.7 ﬁ7 /ﬁ) - m(g(ta 0, @7 197 ﬁ)]dt z m (t7 o, U)T[vgf(ta o, da 19a 7‘9)
Y1

+ DV f(t,0,6,9,9) + VX (t,0,6,9,9,q) —m(V,g(t,0,5,9,9)

+ Dvgg(ta U,daﬂaflé) + VqY(t,a,d,ﬁ,ﬁ,q))]. (12)
The above inequality together with equation (7) gives

Y2 . .
| (tt0.00.0) ~ ma(t,0,0.0,9))at 2 0 (13)
Y1

In the same way, by condition (b), we obtain

72 . . .
/ 7f(t7 0, é’a ﬂa 19) + f(ta 0, 4(_.)7 5a 6)dt z (772(15’?9’ 6))T[*V5f(t7 0, @767 5)
71
- Dvgf(tv o, 97 67 5) - va(t, o, é)v 5,6,]7)} - [H(tv o, 97 67 5ap)
+p "V, H(t, 0,6,6,0,p)] (14)

and

Y2 . . .
/ [g(t, 0,0,6,0) — g(t, 0,0,6,0)]dt = (n2(t,9,6))" [Vsg(t, 0, ,6,9)
y

+DVg(t, 0,0,6,6) + V,G(t, 0,6,8,0,p)] + [G(t, 0,6,6,0,p)
_pTva(tv 0, év 57671))] (15)
Multiplying (14) by [ and adding the resultant to (15), we have

72 . . . .
/ [_f(ta 0, Qal&alﬁ)—"_f(t 0, 9.7 57 6) _l<g(t7 0, Qvﬂvﬂ) _g(t7 0, év 57 6))]dt
v

> (n2(t,9,0)) [~ Vs f(t, 0,6,0,0) — DV f(t,0,6,6,0) — V,H(t, 0,6,0,0,p)
+[(Vsg(t, 0, 6,6,0) + DVsg(t, 0,6,8,0) + V,Gl(t, 0, 6,6,8,p))]dt

—H(t, 0,6,6,0,p) + p" VpH(t, 0,0,8,0,p) + I(G(t, 0,6,6,0,p)

—p"'V,G(t, 0,0,6,0,p)), (16)
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which by equation (1) reduces to

Y2 . . .
/ [_f(ta 0, Qv 197 19) + l(g(tv 0, éa 19) ﬂ)]dt 2 (nQ(t7 197 6))T[_v5f(ta 0, :_0.7 6a 5)
~

1
— DV f(t,0,6,6,6) — V,H(t, 0,,6,0.p) + (V59(t, 0, 6.6,9)
+DVg(t, 0,0,6,0) + V,G(t,0,0,6,0,p))].
On account of the above inequality and equation (8), we can write
Y2 . .
[ 0,600,904 ot 0.0, 2 0. (1)
On adding equations (13) and (17), we get

Y2 )
/ (I —=m)g(t, 0,0,9,9)dt 2 0.
v

Since f]f g(t, 0,0,6,8)dt > 0, we get
1Zm.

Hence the theorem is configured. O

Theorem 6. (Strong Duality). Let (2,8,1,p) be a solution of (FVSP") which is
also assumed to be local optimal. Under the suitable conditions

S
Il
<

Q\

=

\‘k‘#
]
o
Qi
QI

QAo

(ii) the specified Hessian matriz V,,H (t, 0, 0, 0, 5) —1IV,,G(t, 0, 0,9, 5) is positive
or negative definite,

(iti) (Vsf — DVy f+VoH) —(Vsg — DV g+ V,G) # 0,
(iv) for chosen p € R™,
P [(Vsf = DVy f+V,H) —1(Vsg — DVyg+V,G)] =0

indicate that p =0 and
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(v)
[D((vg’f+vq’x) —i(VQ/g+Vq/Y)) +D? ((vg”f+vq”X) _i(vg”g+vq”y)>
_D3 ((vg”’f + vq///X) — Z(vg”’g + vq///Y)> —|— R

+D?" ((Vg(Qn)f + Vq(sz) — i(VQ<27,)g + Vq(Qn)Y)):| =0.
(8,6,1,3 = 0) becomes feasible to (FVSD') and the two objectives yield equal output.
If, in addition to above, the conditions mentioned in Theorem 4.1 are also con-
tented for every solutions feasible to considered problems (FVSP') and (FVSD'),

then (9,9,1,p = 0) and (g,6,1,G3 = 0) become absolute optima to considered formu-
lations (FVSP') and (FVSD' ), respectively.

Proof. Since (g,0,1,p) represents optimal solution to (FVSP’), there exist a €
R, B € R, v € Cy and £ € R satisfying the following Fritz John optimality
conditions at the point (g(t),d(t),1, p(t)):
B((Vof + Vol =57V yoH) — UV 19+ V.G — 77 93,G)

~D((Vof + Vg H ="V H) = (Vg + Vy G = 5TV, G))

+ D2(V g f + Vg H = 57 Ve H) = (Vg + Y 0 G = 570 G) )

— D (Vg f 4V g H =5 Vg H) = UV g1 g+ G =57 Vg G) ) ..

+ D2 ((V gonr [+ V g H = BV oo H) = UV yamg + ¥ yom G

- pTvpg@n)G))} +(y—eo)T [((v@ f = DVsiof + Voo H) — [(Vs,g

— DVs09+ VoG)) = D((Vsgrf = DV f + Vo H) = (Vs g

— DV g+ Vg G)) + D*((Vagrf = DV f + Vg H) = (Vg g

= DVsrgrg + Vp@“G)) -D? ((Vég”’f — DV f + Vg H) = 1(Vsgrg

— DV stgng + VpgnG) ) -+ + D (Vs f = DVgigon f + Ve H)

_Z(V5g2ng—DV6/227zg+Vpg2nG)):| (Q(t)—@(t)) >0,tel,Voe(Cy, (18)
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3 [((w f+VsH — TV, sH) — [(Vsg + VsG — pTVp5G))

= D((Vorf + Vo = 'V H) = (Virg + VG — 57V G) )

+ D? ((w/ FA Vs H — g0 H) — [(Vang + VenG — pTvp(;”G))

= D* (Vi f+ Vo H =5 Vg H) = [(V g+ Vi G — 5T T G) ) ..
+ D2 ((v(m F 4 Voo H — pTV ysou H) — [(Vg2ng + Von G — pTvpgznG))
+(y=&)" [((Vééf — DVsi5f + VpsH) —1(Vss9 — DVsi59 + vp5G))
- D((Vaa’f —DVsisif + V5 H) = (V59— DV 5509+ V 5 G))

+D? ((V&s/’f — DVsisnf+ V50 H) = (V519 — DV g5+ V 0 G))
_p? ((v&;m F=DV 51500 [+ s H)=I(V 350 g— DV g, s g-l—VpéwG)) .
+D*" ((V&;?nf—Dvg'gznf‘f'vpé?n H)—1(Vss2ng— DV 55209+ V ps2n G))

—f((ng—DV(s/f—I—VpH)—l(Vgg—DV5/g+VpG)) —0,tel,¥eR" (19)

{a_B(Q+G_pTva)+(7_£S(t))T(V69_Dvé/g"_va)] =0, tel, (20)

(v =80 = Bp)" (VppH =1V, G) = 0, t € 1, (21)
yT((vé f—DVsf+V,H)—[(Vsg— DVsg-+ vpc)) =0, tel, (22)
o7 ((V(;f — DV f+V,H) —[(Vsg— DVsg+ va)) —0,tel, (23)
(a,8,7,8) #0, a>0, y€Cy, £=0. (24)
Hypothesis (ii), and Equation (21) yield

(y— & —Bp) =0. (25)

We infer that 8 # 0. In case, if § = 0, then Equation (25) turns out to be
v =& (26)

and Equation (19) gives

f((V5f — DV f+V,H) —(Vsg— DVsg+ va)) —0, (27)
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which by hypothesis (iii) yields & = 0 and from equation (26), we get v = 0 and
hence from equation (20), we have @ = 0. Thus, we get(a, 3,7,€) # 0, t € I

contradicting equation (24). Hence § > 0. Once we subtract equation (23) from
equation (22), we have

(v — gS)T((w f— DV f+V,H)—1(Vsg— DVsg+ va)) ~0.
Equation (25) and the fact that 8 # 0 give rise to
pT((V(;f — DV f +V,H) —(Vsg— DVsg+ va)) —0.

By hypothesis (iv), we have p = 0. Therefore, we obtain from equation (26) that
v =&). Hence, v € Cy. As v = &4, from equation (18), we obtain

B((Vof+V o H)~U(T 19+ ,G) ) =D (Y f+V o H)=U(V g+ G)

+D? ((vg,,er Vo H)—1(V g+ vg,,G)) _ D3 ((VQ,,,f+VQmH)

_ _ T
—l(ngg—l—VQmG)) 4. '+D2" ((Vg(zn) f—|—Vg(2n)H) —Z(Vgan)g—&-VQ(M)G)ﬂ
(o(t) = o(t)) > 0,¥ 0 € Ch. (28)

From assumption (¢) for p = 0 the above inequality turns out to be
(Vo +9X) =1V o9+9,Y)) =D (Vo [+ X) UV g+ YY) )
+D? ((vg/,f+vq,/x) _z‘(vg,/ngvq,,y)) _p3 ((vg,,,f+vq,,,X)

_ _ T
_l(Vg,,,g+quY)) +...4D%" <(VQ(2n) f+Vq(2n>X) — l(VE,(zn)quVq(zn) Y))}

(e(t) —o(t)) = 0. (29)

Suppose g(t) € C1, then o(t) + o(t) € Cy, so equation (29) implies
[(VoF+V,X) =1V 19+V,) ) =D (Vo [+ X)= UV g+V 1))
+D2 ((vg”f+vq’/X) - 7(v9”9+vq”y)> -D? ((vg”’f+vq/”X)
_ ) ~ T
,l(vg/ug{»vq/u}/)) 4.4 D" ((Vg(zn)ervq(zn)X) *Z(VQ(Qn)ngvq@n)Y))}

By a property of polar cone, we have

~[((Vof +9,X)=UT,9+V,Y) ) =D (T 4V X) UV g+ Y) )
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+D2 ((vg”f =+ Vq//X) — l_(VQ”g =+ quY)> — D3 ((vgwf —+ quX) — l_(vgu/g

+Vq,,,Y>) 4+t D2 ((Vg(gn) f+ Vq(Zn)X) — Z(vg(2n)g + Vq(zn)Y)ﬂ e O,

Let o(t) = 0 and p(t) = 20(t) in equation (29), we have

o) | (Vel+V4X)~UTog+V,Y) )= D((V 4V X) UV g+V4 )

+D2 ((VQ’/f+vq’/X) — Z_(Vgug—|—vun)) — _D3 ((VQ”’f+Vq’//X) — l_(vgu/g
—|—quY)> 44D ((Vg(zn) f+ Vq(zn)X) — Z(vg(2n)g + Vq(2n) Y))} =0. (30)
Now, using assumption (v) in above equation, we get
_ T by
o) [((Vof +V,X) = U9+ 9,1))| = 0. (31)

Thus, it becomes clear that (g,0,1,p = 0) is a feasible solution to (FVSD’) and
both objectives yields equal values. Also, due to Theorem 4.1, (g, 0,l,p = 0)
and (9, 6,/,q = 0) represents globally optimal solution to (FVSP’) and (FVSD'),
respectively. [

Theorem 7. (Converse Duality). Let (,9,m,q) be a local optimal solution of
(FVSP'). Under the suitable conditions

(i) V,H(t,5,6,9,9,0) = V,X(t,5,5,9,9,0),
V,G(t,5,5,9,9,0) = V,Y(t,5,5,0,0,0)
VyH(t,5,6,0,0,0) = VyX(t,5,6,0,0,0),
V,G(t,5,6,9,9,0) =V, Y(t,5,60,9,0)

VGt 0,6,9,9,0) =V, Y(t5,60,9,0)
vg(zn)H( ,5’,5,@,@, 0) = Vp(zn)X(t, 0,0, 1§, 1§, O),
V,oemG(t,5,5,9,9,0) = Vyen Z(t,5,6,9,9,0)

(ii) the specified Hessian matriz VX (t,7, 5,7, 5) —mVy,Y(t,5,5,9, ﬁ) is pos-
itive or negative definite,

(i11) (Vof — DV, f+ Ve X) —m(V,9 — DV, g+ VeY) #0,
(iv) for chosen q € R™,
7 [(Vof =DV [+ VeX) =i(Veg =DV yg+V,Y)] =0

implies § = 0 and
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(v) suppose

D((vg,f+vp,X)—m(vé,g+vp/y)) +D? ((vé,,ervp,/X)_m(vé,,g+vp,,y))
_D3 ((V(S///f + vp///X) — m(v(s///g + vp///Y)) + e
+ D2 ((V§(2n)f + men)X) — m(vwmg + Vp(zn)Y)) =0.

(7,9,m,p = 0) becomes solution feasible to (FVSD') and both objectives yield equal
output. If, in addition to the above, conditions mentioned in Theorem 4.1 are
contented every feasible solutions to considered problems (FVSP’) and (FVSD’),
then (&,9,m,q = 0) and (5,9, m,p = 0) becomes absolute optima to the considered
(FVSP’) and (FVSD'), respectively.

5. STATIC FORMULATION

If the time dependency of the problems (FVSP) and (FVSD) are waived off,
then our problems transform into the following form:

Primal Problem (SFVSP)

(f(0,0) 4+ H(0,6,p) — p"V,H(0,6,p))
(9(0,0) + G(o,9,p) — pTV,G(0,0,p))

Minimize

subject to

T
Vol (0.0) = Dyf(0.0) + ¥, H(e.0.p) - (LGE T ZE bl AT )

g(0,96) + G(o,6,p) — pT'V,G(0,6,p)
(Vsg(0,0) — DV3g9(0,0) + V,G(0,6,p)) € C3,

§"[Vsf(0,0)—=DVf(0,0)+V,H(o,8,p)— (f(g’ 0+ Hie.0.p) —p VyHle.5, p))

g(@? 6) + G(Qa 53 p) - pTva(Q7 57 p)
(Vsg(o,0) — DV;g(0,0) + V,G(e,6,p))] = 0,
Q(t) e (.
Dual Problem (SFVSD)

(f(O', 19) + Y(G7 197 Q) B quqY(U> 197 Q))
(g(o’, 19) + Z(07 197 Q) - qTVqZ(o', 197 Q))

Maximize

subject to

f(0,9)+Y(0,9,q9) — ¢"'V¢X(0,9,q)
Vel (0.9)=DV,f(0, 0)+Vo X (e 9, 4)= ( 9(0,0) + Z(0.9,9) — TV, ¥ (0. 0,q) )
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(vgg(g7 79) - Dvég(av 19) + VqY<U’ 7, q))] € Cfv

0TV, f(0,0)—DV 5 (0,9)+V X (0,9 q)—<f("’ )+ Yo, 0,0) = qTVqX(””?"D)

9(0,9) + Z(0,9,q) —qTV,Y (0,9, q)
(Vog(0,9) = DV 3g9(0,9) + VY (0,9, q))] =0,
ﬂ(t) € (Cs.

Equivalent formulations in the parametric form can be constructed as follows:

Primal Problem (SFVSP’)
Minimize l
subject to

(f(e,6) + H(e,6,p) —p"V,H(0,6,p)) — l(g(0,0) + G(0,0,p)
- pTvPG(Q7 57p)) = Oa

Vsf(0,6) — DV f(0,0) + VypH(0,6,p) —1(Vsg(e,6) — DV3g(0,9)
+ VPG(Qv 67]))) € C;a

§"[Vsf(e,6) — DVsf(0,6) + VpH(e,8,p) — 1(Vsg(e,6) — DV 59(0,0)
+ VPG(Qa 57p))} Z 07
o(t) € Ch.
Dual Problem (SFVSD')

Maximize m

subject to

(f(07 19) + X(Uv 197 Q) - quqX(U7 197 Q)) - m(g(o, 79) + Y(U» 197 (])

— qTVqY(a,ﬂ,q)) =0,

7[ng(0', 19) - Dvéf(a7 19) + VIIX(Uv v, q) - m(vgg(O', 19) - Dvég(aa ﬁ)
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+ vqY(O’, 19, Q))} € Cfa

o[V, f(0,9) — DV s f(0,9) + VX (0,9,q) — m(V ,g(c,9) — DV, f(c,9)

+ VgY(0,9,q))] =0,
ﬁ(t) e Cs.

We can easily establish the weak and strong duality results. One can refer for
details Jayswal and Prasad [8].

6. CONCLUSION

Our investigation in this article established higher order n-invexity as a tool
under which we can derive weak and strong duality for the parametrized higher
order variational symmetric duals considered over more general settings of cone
constraints. Well-suited duality results for higher order variational symmetric du-
als can be easily interpreted with the results established in this paper. The future
work can be grounded by extending the present work to corresponding multiobjec-
tive variants and also to the problems when objective functions subsumed support
functions making it nondifferentiable.
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