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1. INTRODUCTION

Let’s consider the following isoperimetric problem

maximize J (x (·)) =
T∫

0

f(t, x(t))dt

subject to

T∫
0

hi(t, x(t))dt ≥ 0, i ∈ I = {1, ...,m}, (P)

gj(t, x(t)) ≥ 0, j ∈ J = {1, ..., k} a.e. in [0, T ],

x(·) ∈ L∞([0, T ],Rn),

where f : [0, T ]× Rn → R, hi : [0, T ]× Rn → R, i ∈ I, gj : [0, T ]× Rn → R,
j ∈ J are given functions. All integrals in this paper are in the Lebesgue sense.
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Extremal problem which includes integral inequality constraint, but no phase
constraint, is called Lyapunov-type problem and is presented in [1]. The au-
thors obtained optimality conditions for that case without a convexity assump-
tion. Our aim in this work is to provide necessary optimality conditions for convex
continuous-time problems involving both integral and phase inequality constraints,
without differentiability assumption.

Since 1953, when Bellman [2] introduced what we now consider a continuous-
time linear problem for the first time, many authors have dealt with optimal
conditions for wider classes of linear and nonlinear continuous-time programming
problems, but also duality theory [3, 4, 5]. In some works a smooth case is in-
vestigated, for example [6, 7, 8, 9, 10, 11, 12]. In [6] authors do Monte and de
Oliveira developed new Karush-Kuhn-Tucker necessary conditions first for prob-
lems with inequality constraints and then for problems with both equality and
inequality constraints. On the other hand, our results will refer to the nonsmooth
case, which was also treated by Brandão et al. in [13] or Outrata and Römisch
in [14]. Unfortunately, some results from the literature are not valid, as authors
pointed out in [15].

As a powerful tool in this manuscript we will use theorem of the alternative
presented in [15] by A.V. Arutyunov, S.E. Zhukovskiy and B. Marinković. A
theorem of the alternative asserts that for two alternative systems exactly one of
them has a solution. The relevance of these theorems in extremal problems and
some interesting applications are offered in [16].

The rest of this paper is organized as follows. In section 2 we give some
preliminaries for the problem, state auxiliary results and define the regularity
condition which is necessary for applying the theorem of the alternative. In section
3 we prove our main results and provide an illustrative example.

2. PRELIMINARIES

All vectors are column vectors, unless transposed. Notation w ≤ 0 means that
wi ≤ 0 for all i and w < 0 means that wi < 0 for all i. In a Banach space (E, ∥ · ∥)
we denote by ⟨φ, x⟩ the value of φ ∈ E∗ at x ∈ E, but also the inner product of
vectors φ, x ∈ Rn.

In text below, ∂xg(t, x) stands for the subdifferential of g(t, ·) at a point x ∈ E
in the sense of convex analysis.

In articles [17, 7] authors use Gordan’s Theorem and Motzkin-type theorem
of the alternative for system of convex inequalities for deriving optimality criteria
for extremal problems. Some results, unfortunately, weren’t valid, as noticed in
[15]. Here we use the correct form presented by Arutyunov et al [15]. To apply
this theorem a certain regularity condition has to be satisfied.

Let X ⊂ E be closed and convex. Consider the system
fi(t, x) ≤ 0, i ∈ I1

fi(t, x) < 0, i ∈ I2

x ∈ X,

(1)
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with given functions fi : [0, T ] × E → R, i = 1, ..., k and I1, I2 are sets of indexes
such that I1⊔I2 = {1, ..., k} (⊔ stands for disjoint union). A solution of system (1)
is a function x(·) ∈ L∞([0, 1], X) such that for a.e. t ∈ [0, 1] the following holds:

fi(t, x(t)) ≤ 0, i ∈ I1, fi(t, x(t)) < 0, i ∈ I2, x(t) ∈ X.

As well, we consider that the following conditions are true:

1. functions fi(t, ·) are convex and continuous on X, and X ⊂ int(dom(fi(t, ·)))
for a.e. t ∈ [0, 1], i = 1, ..., k;

2. functions fi(·, x) are Lebesgue measurable for all x ∈ X, i = 1, ..., k;
3. for each K ≥ 0 there exists M =M(K) ≥ 0 such that

|x| ≤ K ⇒ |fi(x, t)| ≤M a.e. t ∈ [0, 1], ∀x ∈ X, i = 1, ..., k.

For more details on systems of convex inequalities the reader is referred to [18].

Definition 1. We say that (1) is regular, if there exist a function x̄(·) ∈ L∞([0, 1], X),
reals R ≥ 0 and α > 0 such that for a.e. t ∈ [0, 1] and for all x ∈ X with
∥x− x̄(t)∥ ≥ R, there exists a vector e = e(t, x) ∈ −TX(x), ∥e∥ = 1, satisfying

⟨x∗, e⟩ ≥ α ∀x∗ ∈ ∂xfi(t, x), i ∈ I(t, x),

where TX(x) is a tangent cone to the set X at the point x and

I(t, x) :=

{
i : fi(t, x) = max

j=1,...,k
fj(t, x)

}
, t ∈ [0, 1], x ∈ X.

Theorem 2. (Theorem of the Alternative [15]) Assume that the Banach
space E is separable, the system (1) is regular, and for a.e. t ∈ [0, 1] there exists a
vector u = u(t) ∈ X such that fi(t, u(t)) < 0 for each i ∈ I1. Then, one and only
one of the following assertions is valid.

i There exists a solution χ(·) for system (1);
ii There exists a nonzero function φ(·) = (φ1(·), ..., φk(·)) ∈ L∞([0, 1],Rk

+) such
that φi(t) ̸≡ 0 for some i ∈ I2
and

k∑
i=1

fi(t, x)φi(t) ≥ 0 for a.e. t ∈ [0, 1], ∀x ∈ X.

This theorem stays valid by changing interval [0, 1] to interval [0, T ] .

3. NECESSARY OPTIMALITY CONDITIONS

For the posed problem (P), let

F = {x(·) ∈ L∞([0, T ],Rn) :

T∫
0

hi(t, x(t))dt ≤ 0, i ∈ I, gj(t, x(t)) ≤ 0, j ∈ J a.e. in [0, T ]}

be the set of all feasible solutions.
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Definition 3. A feasible solution x̂(·) is said to be a global maximizer of (P) if

J (x̂ (·)) ⩾ J (x (·)), ∀x(·) ∈ F.

Let’s assume that the functions f(·, x), hi(·, x) and gj(·, x) are Lebesgue mea-
surable and integrabile for all x ∈ Rn, i ∈ I, j ∈ J . Also functions f(t, ·),
hi(t, ·), i ∈ I and gj(t, ·), j ∈ J are convex for almost every t ∈ [0, T ] and for each
M ≥ 0, N ≥ 0, P ≥ 0 there exist, respectively, L = L(M) ≥ 0, K = K(N) ≥ 0
and Q = Q(P ) ≥ 0 such that

∥x∥ ≤M ⇒ |f(t, x)| ≤ L, ∀x ∈ Rn, a.e. in [0, T ],

∥x∥ ≤ N ⇒ |hi(t, x)| ≤ K, ∀x ∈ Rn, i ∈ I a.e. in [0, T ],

∥x∥ ≤ P ⇒ |gj(t, x)| ≤ Q, ∀x ∈ Rn, j ∈ J a.e. in [0, T ].

Let

ϕ0(t, x) := −
T∫

0

⟨∂xf(t, x̂(t)), x− x̂(t)⟩ dt < 0,

ϕi(t, x) := −
T∫

0

⟨∂xhi(t, x̂(t)), x− x̂(t)⟩ dt ≤ 0, i ∈ I, (S)

ϕj(t, x) := −gj(t, x̂(t))− ⟨∂xgj(t, x̂(t)), x− x̂(t)⟩ ≤ 0, j ∈ J, a.e. in [0, T ],

x ∈ Rn,

be a system corresponding to the problem (P).

Lemma 4. If there exists a global maximizer x̂(·) for (P), then system (S) doesn’t
have a solution.

Proof. Let x(·) be a solution to the system (S). It follows that

T∫
0

⟨∂xf(t, x̂(t)), x(t)− x̂(t)⟩ dt > 0, (2)

T∫
0

⟨∂xhi(t, x̂(t)), x(t)− x̂(t)⟩ dt ≥ 0, i ∈ I, (3)

gj(t, x̂(t)) + ⟨∂xgj(t, x̂(t)), x(t)− x̂(t)⟩ ≥ 0, j ∈ J, a.e. in [0, T ]. (4)

Then x(·) is feasible solution to the problem (P), because

T∫
0

(hi(t, x(t))− hi(t, x̂(t)))dt ≥
T∫

0

⟨∂xhi(t, x̂(t)), x(t)− x̂(t)⟩ dt, i ∈ I,
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so
T∫
0

hi(t, x(t))dt ≥ 0, i ∈ I . Analogously we obtain gj(t, x(t)) ≥ 0, j ∈ J

a.e. in [0, T ].
From the fact that

f(t, x(t))− f(t, x̂(t)) ≥ ⟨∂xf(t, x̂(t)), x(t)− x̂(t)⟩ , a.e. in [0, T ],

by integrating on [0, T ] we have

T∫
0

(f(t, x(t))− f(t, x̂(t)))dt ≥
T∫

0

⟨∂xf(t, x̂(t)), x(t)− x̂(t)⟩ dt > 0.

Hence

J(x(·)) =
T∫

0

f(t, x(t))dt >

T∫
0

f(t, x̂(t))dt = J(x̂(·)),

which means that x̂(·) is not a global maximizer for (P), as we assumed.

Definition 5. We say that regularity condition for system (S) is satisfied, if there
exist a function x̄(·) ∈ L∞([0, T ],Rn), reals R ≥ 0 and α > 0 such that for a.e.
t ∈ [0, T ] and for all x ∈ Rn with ∥x− x̄(t)∥ ≥ R, there exists e = e(t, x) ∈
Rn, ∥e∥ = 1, which satisfies

⟨∂xϕl(t, x), e⟩ ≥ α, ∀l ∈ I(t, x),

where

I(t, x) :=

{
l : ϕl(t, x) = max

p∈{0}∪I∪J
ϕp(t, x)

}
, t ∈ [0, T ], x ∈ Rn

denotes the set of active indexes of the system (S).

Slater’s constraint qualification is said to be satisfied if there exists x = x(t) ∈
Rn such that hi(t, x(t)) > 0, i ∈ I and gj(t, x(t)) > 0, j ∈ J a.e. in [0, T ].

Theorem 6. Let x̂(t) be a global maximizer for (P). Assume that regularity con-
dition for (S) and Slater’s constraint qualification are satisfied. Then, there exist
û ∈ Rm and v̂(t) ∈ L∞([0, T ],Rk) satisfying the following conditions:

1. û ≥ 0, v̂(t) ≥ 0 a.e. in [0, T ],

2. v̂′j(t)gj(t, x̂(t)) = 0, j ∈ J a.e. in [0, T ],

3. f(t, x(t)) +
∑m

i=1 ûihi(t, x(t)) +
∑k

j=1 v̂j(t)gj(t, x(t)) ≥
f(t, x̂(t)) +

∑m
i=1 ûihi(t, x̂(t)) +

∑k
j=1 v̂j(t)gj(t, x̂(t)),

∀x(·) ∈ L∞([0, T ],Rn), a.e. in [0, T ].
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Proof. Suppose that x̂(·) is a global maximizer for (P). Then by Lemma 4 we
conclude the system

−
T∫

0

⟨∂xf(t, x̂(t)), x− x̂(t)⟩ dt < 0,

−
T∫

0

⟨∂xhi(t, x̂(t)), x− x̂(t)⟩ dt ≤ 0, i ∈ I

− gj(t, x̂(t))− ⟨∂xgj(t, x̂(t)), x− x̂(t)⟩ ≤ 0, j ∈ J

is inconsistent a.e. in [0, T ]. From Theorem 2 there exists a nonzero function

(λ̂(·), φ̂1(·), ..., φ̂m(·), ψ̂1(·), ..., ψ̂k(·)) ∈ L∞([0, T ],Rm+k+1
+ ) with λ̂(t) ̸≡ 0 a.e. in

[0, T ], such that

λ̂(t)

T∫
0

⟨∂xf(s, x̂(s)), x(s)− x̂(s)⟩ ds+
m∑
i=1

φ̂i(t)

T∫
0

⟨∂xhi(t, x̂(s)), x(s)− x̂(s)⟩ ds+

k∑
j=1

ψ̂j(t)(gj(t, x̂(t)) + ⟨∂xgj(t, x̂(t)), x(t)− x̂(t)⟩) ≤ 0, (5)

∀x(·) ∈ L∞([0, T ],Rn), a.e. in [0, T ]. For x(·) = x̂(·) we obtain

k∑
j=1

ψ̂j(t)gj(t, x̂(t)) ≤ 0.

It holds that ψ̂j(t) ≥ 0 and gj(t, x̂(t)) ≥ 0 a.e. in [0, T ], j ∈ J , so it must be

k∑
j=1

ψ̂j(t)gj(t, x̂(t)) = 0. (6)

Now from (5) we have

λ̂(t)

T∫
0

⟨∂xf(s, x̂(s)), x(s)− x̂(s)⟩ ds+
m∑
i=1

φ̂i(t)

T∫
0

⟨∂xhi(t, x̂(s)), x(s)− x̂(s)⟩ ds+

k∑
j=1

ψ̂j(t) ⟨∂xgj(t, x̂(t)), x(t)− x̂(t)⟩ ≤ 0, ∀x(·) ∈ L∞([0, T ],Rn), a.e. in [0, T ].

Integrating this inequality on [0, T ], we get

T∫
0

µ̂ ⟨∂xf(t, x̂(t)), x(t)− x̂(t)⟩ dt+
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T∫
0

 m∑
i=1

η̂i ⟨∂xhi(t, x̂(t)), x(t)− x̂(t)⟩+
k∑

j=1

ψ̂j(t) ⟨∂xgj(t, x̂(t)), x(t)− x̂(t)⟩

 dt ≤ 0,

∀x(·) ∈ L∞([0, T ],Rn), where

µ̂ =

T∫
0

λ̂(t)dt > 0 and η̂i =

T∫
0

φ̂i(t)dt ≥ 0, i ∈ I. (7)

Previous inequality becomes

T∫
0

〈
∂xf(t, x̂(t)) +

m∑
i=1

ûi∂xhi(t, x̂(t)) +

k∑
j=1

v̂j(t)∂xgj(t, x̂(t)), x(t)− x̂(t)

〉
dt ≤ 0,

(8)

∀x(·) ∈ L∞([0, T ],Rn) by setting

ûi =
η̂i
µ̂

i ∈ I and v̂j(t) =
ψ̂j(t)

µ̂
j ∈ J.

Let’s prove that from (8) we have〈
∂xf(t, x̂(t)) +

m∑
i=1

ûi∂xhi(t, x̂(t)) +

k∑
j=1

v̂j(t)∂xgj(t, x̂(t)), x(t)− x̂(t)

〉
= 0, (9)

∀x(·) ∈ L∞([0, T ],Rn), a.e. in [0, T ].
Assume that there exists x(·) ∈ L∞(A,Rn) such that〈

∂xf(t, x̂(t)) +

m∑
i=1

ûi∂xhi(t, x̂(t)) +

k∑
j=1

v̂j(t)∂xgj(t, x̂(t)), x(t)− x̂(t)

〉
> 0 a.e. in A,

where set A ⊂ [0, T ] doesn’t have measure zero. Defining a function

y(t) =

{
x(t), t ∈ A,
0, t /∈ A,

we obtain〈
∂xf(t, x̂(t)) +

m∑
i=1

ûi∂xhi(t, x̂(t)) +

k∑
j=1

v̂j(t)∂xgj(t, x̂(t)), y(t)− x̂(t)

〉
> 0 a.e. in [0, T ],

and by integrating on [0, T ]

T∫
0

〈
∂xf(t, x̂(t)) +

m∑
i=1

ûi∂xhi(t, x̂(t)) +

k∑
j=1

v̂j(t)∂xgj(t, x̂(t)), y(t)− x̂(t)

〉
dt > 0,
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which is a contradiction to (8).
Conversely we’ll assume that there exists x(·) ∈ L∞(A,Rn) such that〈

∂xf(t, x̂(t)) +

m∑
i=1

ûi∂xhi(t, x̂(t)) +

k∑
j=1

v̂j(t)∂xgj(t, x̂(t)), x(t)− x̂(t)

〉
< 0 a.e. in A,

(10)

where set A ⊂ [0, T ] doesn’t have measure zero. Let’s define a function

y(t) =

{
2x̂(t)− x(t), t ∈ A,

0, t /∈ A.

Now we have〈
∂xf(t, x̂(t)) +

m∑
i=1

ûi∂xhi(t, x̂(t)) +
k∑

j=1

v̂j(t)∂xgj(t, x̂(t)), y(t)− x̂(t)

〉
=

〈
∂xf(t, x̂(t)) +

m∑
i=1

ûi∂xhi(t, x̂(t)) +

k∑
j=1

v̂j(t)∂xgj(t, x̂(t)), x̂(t)− x(t)

〉
> 0 a.e. in [0, T ],

which also brings us to contradiction to (8), so (9) must be valid.
Consequently

0 = ⟨∂xf(t, x̂(t)), x(t)− x̂(t)⟩+
m∑
i=1

ûi ⟨∂xhi(t, x̂(t)), x(t)− x̂(t)⟩+
k∑

j=1

v̂j(t) ⟨∂xgj(t, x̂(t)), x(t)− x̂(t)⟩ ≤

f(t, x(t))−f(t, x̂(t))+
m∑
i=1

ûi(hi(t, x(t))−hi(t, x̂(t)))+
k∑

j=1

v̂j(t)(gj(t, x(t))−gj(t, x̂(t))),

∀x(·) ∈ L∞([0, T ],Rn), a.e. in [0, T ], so condition 3 holds. Condition 2 follows
from (6) , while condition 1 is satisfied by construction.

Example 7. Let’s take a look at the problem below.

Maximize J (x (·)) =
1∫

0

(1− 2x1(t) + x2(t))dt

subject to

1∫
0

(|x1(t)− 1|+ 3x1(t)− 3)dt ≥ 0

x1(t)− 2x2(t) + 1 ≥ 0 a.e. in [0, 1],

x(·) ∈ L∞([0, 1],R2).
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Global maximizer is x̂(t) = (x̂1(t), x̂2(t)) = (1, 1) and |x1(t)− 1| + 3x1(t) − 3 >
0, x1(t) − 2x2(t) + 1 > 0, is satisfied for x(t) = (2, 0) . Given x = (x1, x2) ∈ R2,
for almost everywhere in [0, 1], we have

ϕ0(t, x) = 2x1 − x2 − 1,

ϕ1(t, x) = −

 ⟨(2, 0), (x1 − 1, x2 − 1)⟩ , x1 < 1,
⟨([2, 4]× 0), (x1 − 1, x2 − 1)⟩ , x1 = 1,

⟨(4, 0), (x1 − 1, x2 − 1)⟩ , x1 > 1,
(11)

ϕ2(t, x) = −x1 + 2x2 − 1,

x ∈ R2

Define

R0 = {(x1, x2) ∈ R2 : (θ + 2)x1 − x2 ≥ θ + 1, 3x1 − 3x2 ≥ 0, θ ∈ [2, 4]},
R1 = {(x1, x2) ∈ R2 : (θ + 2)x1 − x2 ≤ θ + 1, (θ − 1)x1 + 2x2 ≤ θ + 1, θ ∈ [2, 4]},
R2 = {(x1, x2) ∈ R2 : 3x1 − 3x2 ≤ 0, (θ − 1)x1 + 2x2 ≥ θ + 1, θ ∈ [2, 4]}.

One can easily check that
2⋃

i=0

Ri = R2.

For x ∈ intR0, ϕ0(t, x) = max{ϕ0(t, x), ϕ1(t, x), ϕ2(t, x)}, a.e. in [0,1], i.e.,
I(t, x) = {0}. For x ∈ intR1, ϕ1(t, x) = max{ϕ0(t, x), ϕ1(t, x), ϕ2(t, x)}, a.e. in
[0,1], i.e., I(t, x) = {1}. For x ∈ intR2, I(t, x) = {2} and {0, 1} /∈ I(t, x)
for x ∈ R2. For x ∈ int(R0 ∪ R1), I(t, x) = {0, 1} a.e. in [0,1]. For x ∈
int(R1 ∪R2), I(t, x) = {1, 2} and finally for x ∈ int(R0 ∪R2), I(t, x) = {0, 2} a.e.
in [0,1].

We can conclude that system

ϕ0(t, x) = 2x1 − x2 − 1 < 0,

ϕ1(t, x) = θ(1− x1) ≤ 0,

ϕ2(t, x) = −x1 + 2x2 − 1 ≤ 0,

x ∈ R2, θ ∈ [2, 4],

is regular with x̂(t) = (1, 1), R = 1
100 , α = 1√

17
and for a.e. in [0,1], e(t, x) =

( 1√
17
,− 4√

17
), for x ∈ R0 and e(t, x) = (− 1√

17
, 4√

17
), for x ∈ int(R1 ∪ R2) . Con-

ditions 1-3 from Theorem 6 are satisfied for û = 3
8 , v̂(t) =

1
2 when x1 ≥ 1 and for

û = 3
4 , v̂(t) =

1
2 when x1 < 1 .

4. CONCLUSION

This paper addressed an isoperimetric continuous-time programming problem
involving both integral and phase inequality constraints, without differentiability.
Necessary optimality conditions were obtained under a suitable regularity assump-
tion and using new theorem of the alternative in infinite-dimensional spaces. It
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would be interesting to see if it’s possible to examine optimality conditions for
isoperimetric continuous-time programming problems without convexity assump-
tion, by following a similar approach.
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