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Abstract: In this paper we suggest a new variant of Variable neighborhood search
designed for solving Mixed integer programming problems. We call it Variable
neighborhood formulation search (VNFS), since both neighborhoods and formu-
lations are changed during the search. VNS deals with integer variables, while an
available (commercial) solver is responsible for continues variables and the ob-
jective function value. We address the multi-item capacitated lotsizing problem
with production time windows and setup times, under the non-customer specific
case. This problem is known to be NP-hard and can be formulated as a mixed 0-1



program. Neighborhoods are induced from the Hamming distance in 0-1 vari-
ables, while the objective function values in the corresponding neighborhoods are
evaluated using different mathematical programming formulations of the prob-
lem. The computational experiments show that our approach is more effective
and efficient when compared with the existing methods from the literature.
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Formulation Space Search, Matheuristic.
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1. INTRODUCTION

Lot sizing problem. The production planning process aims to establish an overall
level of manufacturing output in order to satisfy the customer demands through-
out a given time horizon T divided into equal discrete periods (t = 1, ...,T). Several
models of production planning were presented in the literature (see Gelders and
Van Wassenhove [7] for an early review). A lot sizing problem (LSP) consists of
determining the quantity of each final product (or item) that should be produced
in each period t, while minimizing the total manufacturing cost (production cost,
inventory cost, setup cost, etc.). The Lot sizing models could be classified in
different ways:(i) following the number of items, models are single or multiple;
(ii) following the structure of items, they are single level or multi-level and (iii)
following the imposed constraints, models are capacitated, and/or with time win-
dows, etc. Clearly, one can consider a combination of (i), (ii) and (iii). For example,
LSP problem can be capacitated multi-item multi-level. In this paper, we address
the capacitated multi-item LSP with production time windows constraints. The
capacity constraint signifies that each period t (t = 1, ...,T) is characterized by
finite capacity of production. This constraint is retained because the available
resources are limited [22]. The time window constraint signifies that there is a
time interval where the customer demand can be satisfied without inventory and
backlogging costs. Under this constraint, two cases may be presented. The spe-
cific customer case means that each specific demand should be satisfied within
a given time interval. Therefore, the production between two periods, t1 and t2
can only satisfy the specific demand available before t2. On the other hand, the
non-specific customer case means that time windows are not inclusive, i.e., for
any pair of time windows (s1, e1) and (s2, e2), it holds that s1 ≤ s2 and e1 ≤ e2.

Literature review. Trigeiro et al. [23] were the first who considered the prob-
lem of multi-item CLSP with setup time. They developed a heuristic production
smoothing procedure based on lagrangian relaxation of the capacity constraints
to generate feasible solutions for the problem. Hindi [9] has proposed a col-
umn generation method and a tabu search procedure to solve multi-item CLSP.
First, a linear programming relaxation is solved by column generation algorithm.
Then, the obtained solution is improved by introducing it as an initial point to
tabu search algorithm. Özdamar and Bozyel [20] have developed new heuristic
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approaches including Hierarchical Production Planning (HPP), Simulated An-
nealing (SA) and Genetic Algorithm (GA) to solve dynamic CLSP with setup
times. The results have shown that the SA provides the best solutions in low
computational times according to the compared algorithms. In fact, the use of the
local search based algorithm appears more efficient than the population based al-
gorithm in this kind of problem. Karimi et al. [11] have presented a review of the
multi-item CLSP and its extensions. The authors mainly focused on discussing the
single level variant in both uncapacitated and capacitated cases. They concluded
that less attention was paid in the litterature to the CLSP with setup times, and
using the metaheuristics based approaches was a fruitful area of research. Miller
et al. [19] have exploited the interaction of demand and capacity constraints
over a finite time horizon to propose a single period relaxation model where these
interactions are considered for each time period. This relaxation is called Preced-
ing Inventory (PI). The polyhedral structure of the convex hull is analyzed and
valid inequalities for the original problem are obtained. Jans and Degraeve [10]
have presented a review of various metaheuristics, including TS, SA, and GA,
developed for solving lotsizing problems (Single level CLSP, Multi level lot sizing
without capacities, Capacitated multi level lot sizing, Multi level PLSP, CSLP and
DLSP with batch availability). The authors have concluded that the performance
of each solutions techniques depends on the way of its implementation. Also,
they noted an absence of research on meta-heuristics for the regular DLSP. Absi
and Kedad-Sidhoum [1] have considered the CLSP with setup times and short-
age costs, using single period relaxation of Miller et al. [19]. The resulted valid
inequalities are applied in a branch and cut algorithm.

The work of Dauzère-Pérès et al. [5] is the pioneer work presenting the LSP
with the production time windows constraint. The authors have considered unca-
pacitated single item LSP with both specific and non specific customer demands.
They proposed an extension of Wagner-Within algorithm (WW) [25] for solving
the non-specific customer case and a dynamic programming (DP) for the case of
customer specific. The authors have shown that the DP used for the customer
specific case runs in polynomial time with a complexity of O(T4) for the non
customer specific problem. Lee et al. [12] have considered the time window
with two cases with and without backlogging. For the no-backlogging problem,
an O(T2) algorithm is proposed. When backlogging is allowed, the problem is
solved in O(T3).

In Wolsey [26] the LSP with time windows under non-specific customer case is
considered. It is shown that this problem is equivalent to the single item problem
with stock upper bounds. Heuvel and Wagelmans [24] have shown that the same
problem is equivalent to the lot-sizing model with a remanufacturing option and
also with the lot-sizing model with cumulative capacities.

For solving the capacitated LSP with non customer specific a Lagrangian
relaxation based heuristic is proposed in Brahimi et al. [3], where the capacity
constraints are relaxed and the initial problem transformed into the uncapacitated
single item LSP with time windows. Then a dynamic programming approach is
used to solve the problem. Moreover, two new mix-integer 0-1 formulations of
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the problem are proposed and solved by using commercial software. The binary
variables indicate the setups of each item for each period, while the continuous
variables indicate the production and inventory quantities.

In terms of complexity, in the case of the single item, the lot sizing problems
with concave cost functions and no capacity limits or constant capacity and those
with convex cost functions and no setup costs are polynomially solvable [10].
Florian et al. [6] have shown that the general case of the single item CLSP
is NP Hard. Moreover, Trigeiro et al. [23] have stated that when set-up times
are introduced in the multi-item CLSP, even the feasibility problem becomes NP
Complete. Since the considered problem is NP-hard, an exact method suffers
from usage of an excessive computational time. To the best of our knowledge, a
meta-heuristic approach has never been used.

Contribution and outline. In this paper we propose Variable neighborhood
search (VNS) based heuristics [15, 8, 4, 18]for solving the multi-item CLSP with
setup times and time windows constraints under non customer specific case
(CLSP-TW-ST). Within the method, different mathematical programming formu-
lations of subproblems are proposed and solved with exact solver. Therefore,
designed VNS based heuristic explores an idea of formulation space search (FSS)
[16, 17] as well. We call our variant of VNS as Variable neighborhood formula-
tion search (VNFS), which can be used for solving any Mixed integer nonlinear
optimization problem: apply VNS heuristic on the integer part of the problem
by fixing continuous variables; use available (commercial) solver to get values of
continuous variables, as well as the objective function value, for a given integer
variables. Note that another VNS version for solving Mixed nonlinear problems,
that is more dependent on available solvers, is proposed in Liberti et al. [13].
VNFS idea has recently been explored also for solving Min-max integer programs
in Pardo et al. [21].

Our VNFS based heuristic starts with finding an initial solution for the set
of binary variables (the production days for each item during the time horizon)
heuristically, using a mathematical programming formulation. In each VNS based
method developed in this paper, after fixing 0-1 variables, the continues subprob-
lem is solved by using an exact method through the application of mathematical
programming. In that way, the production and inventory quantities for each item
for all periods are found.

In the first proposed VNS heuristic (VNFS-1), the continuous subproblems are
solved in each neighboring point of 0-1 variables. The number of variables and
constraints can be large, and therefore the time spent to solve LP sub-problems
can be too long. In order to reduce the running time, we develop a second
algorithm VNFS-2. It is based on transformation of the multi-item CLSP into
a sequence of single-item CLSP. In VNFS-2, we solve the LP subproblem item
by item. While optimizing the production days of an item, we assume that the
production days and the produced quantities of all the remaining items are fixed
to the best values found so far. However, this algorithm appears unable to perform
a deeper exploration of the search space because of the hardness of constraints
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presented in some instances. This fact has motivated the development of the
third VNS based heuristic (VNFS), that combines the main features of the two
previous heuristics. It takes the deeper exploration from the first algorithm, and
the efficiency of the resolution of the mathematical programming from the second
one.

The paper is organized as follows. In section 2 we give the steps of our
VNFS method. Section 3 contains a description of the problem addressed in this
paper. The initialization phase of the VNFS algoritm is presented in section 4.
Our methods, VNFS-1, VNFS-2 and VNFS are described in sections 5, 6 and 7,
respectively. Computational results are reported in Section 8. The conclusions are
given in Section 9.

2. VARIABLE NEIGHBORHOOD FORMULATION SEARCH

Variable neighborhood formulation search (VNFS) is a VNS based method
designed for solving Mixed integer programs (MIPs). Therefore, in order to use
it, the mathematical programming formulation of the problem is necessary

min
X,Y
{ f (X,Y) | 1i(X,Y) ≤ 0, i = 1, ..,m, X ∈ Rp, Y ∈ Zq

}. (1)

Variables X = (x1, . . . , xp)T are real and variables Y = (y1, . . . , yq)T are integer.
Functions f and 1i map the corresponding mixed spaces into a set of real numbers
R. All m + 1 functions need to be at least defined for each (X,Y). More specific
conditions on those functions, which are problem dependent, may be added.

VNFS follows a scheme of General VNS (GVNS) for solving discrete (com-
binatorial) problem in integer variables Y. Continuous variables, as well as the
objective function values are found within local search step. GVNS algorithm is
given in Algorithm 8.

Algorithm 1: Steps of the general VNS

Function GVNS (Y, `max, kmax, tmax);
1 Y← Initial // Get Initial solution;
2 repeat
3 k← 1;
4 repeat
5 Y′ ← Shake(Y, k);
6 Y′′ ← VND(Y′, `max) ;
7 NeighborhoodChange(Y,Y′′, k);

until k = kmax;
8 t← CpuTime()

until t > tmax;

As it is well known [8, 18] the input parameters of GVNS are kmax, `max and tmax,
representing the number of neighborhood structures used in Shaking, the number
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of neighborhood structures used in VND, and the total CPU time that will be used
in the search, respectively. VND is a deterministic version of VNS, where `max
neighborhoods are explored one after another, unless the final solution becomes
a local minimum with respect to all neighborhoods. Shake, or perturbation,
procedure generates random point from the predefined neighborhood Nk. Its
aim is a diversification of the search, while VND is used for intensification. In
NeighborhoodChange the values of f (Y) and f (Y′′) are compared. If Y′′ is better,
the search is re-centered around Y′′ (Y← Y′′, k← 1). Otherwise the neighborhood
counter is increased by 1 for the next shaking step.

For solving MIPs, the VNFS explores discrete neighborhood structures. When
point in kth neighborhood of (Y) is chosen, i.e., when all discrete values are fixed,
then much simplified mathematical program using continuous variables X is
obtained. Moreover, VNFS may use different formulations of the problem (1).
Initial model may be reformulated by introducing penalties, Lagrangian multi-
pliers, could be decomposed etc. All those reformulation possibilities may give
some advantages in the search. Change of formulation is in fact included in each
local search step. Since VND may contain several (`max) local searches, this implies
the use of different mathematical programming models within local search step
of VND. Thus, in each neighborhood point considered, the corresponding math-
ematical program is solved. General steps of VNFS are given below in Algorithm
8. The details for VND step within VNFS are problem specific and will not be
given here.

Algorithm 2: Steps of the general VNFS

Function VNFS (Y,X, `max, kmax, tmax);
1 X,Y← Initial // Get Initial solution;
2 repeat
3 k← 1;
4 repeat
5 Y′ ← Shake(Y, k);
6 X′,Y′′ ← VND(Y′,X, `max) ;
7 NeighborhoodChange(Y,Y′′,X,X′, k);

until k = kmax;
8 t← CpuTime()

until t > tmax;

The differences between GVNS and VNFS are in steps 6 and 7. Steps 6 and 7
of VNFS contain continuous variables X, as well. In Step 6 different formulations
are used in finding the best values (X,Y). In step 7, a move to new mixed integer
solution is made, or neighborhood counter increased. Obviously, the details of
step 6 are problem dependent and we will give its details when solving a variant
of lot-sizing problem.
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3. DESCRIPTION OF CLSP-TW-ST PROBLEM

We consider the general approaches for lot-sizing problem with production
time windows and setup times, where the objective is to minimize the total cost.
In order to achieve the optimal plan, one needs to find optimal production and in-
ventory quantities, as well as a setup decisions. While doing so, capacities should
not be exceeded and demand should be satisfied. The notation and meaning of
terms used throughout the paper are:

N Number of items (i = 1, . . . ,N);
T Number of time periods (t = 1, . . . ,T);
pit Production cost for item i at the end of period t;
Sit Setup cost of item i in period t;
dikt External demand for item i available at period k

that should be produced before period t. In the non-customer
specific demand case, it is assumed that the demand of item i in
period t can be preprocessed (available and produced) at another
availability period k;

Dit The aggregate demand in period t of item i: Dit=
∑t

k=1 dikt;
Ii0 Initial inventory of item i;
Ct The total available capacity at period t;
hit Non-negative holding costs for item i in period t;
sti Setup time of product i;
ri Unit resource consumption for item i;

Decision variables are:
Iit Inventory for item i at the end of period t.
xit The quantity of item i produced at period t.
yit Binary variable which indicates whether

a setup for item i occurs in period t.
Referring to Brahimi et al. [3], this problem can be formulated as follows.

f (Y,X, I) = min
Y,X,I

N∑
i=1

T∑
t=1

(SitYit + pitXit + hitIit) (2)
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Subject to:

Ii,t−1 + xit − Iit = Dit, (∀i, t); (3)
t∑

k=1

xik ≤

t∑
k=1

T∑
l=k

dikl (∀i, t); (4)

N∑
i=1

(rixit + stiyit) ≤ Ct (∀ t); (5)

xit ≤ (
T∑

l=t

Dil)yit (∀ i, t); (6)

yit ∈ {0, 1} (∀i, t); (7)
Iit, xit ≥ 0 (∀i, t). (8)

The objective function (2) gives the total production, inventory and setup costs
in T periods that should be minimized. Constraints (3) represent the inventory
balance equations. Constraints (4) state that cumulative production in the first
t periods does not exceed the cumulative quantity available from periods 1 to t.
Constraints (5) indicate that the amount of capacity used for production is limited.
Constraints (6) relate the binary setup variables yit to the continuous variables xit.
Constraints (7) and (8) characterize the variable types: yit are binary and xit and
Iit are non-negative real variables, for i = 1, . . . ,N and t = 1, . . . ,T.

4. INITIALIZATION OF VNFS FOR SOLVING THE CLSP-TW-ST

In the first step of VNFS heuristic we need to find an initial solution. As an
input of the problem, we consider the setup sequence presented by the binary
matrix Y = {yit}N×T. Besides the usual objective, we introduce a new one that
minimizes infeasibility of the current solution, as well. A new formulation of the
CLSP-TW-STmay be presented by a linear mixed integer program as follows:

Let Ei denote the set of periods where yit takes the value of 1, (∀ i), and let Ft
denote the set of items produced in period t (∀ t).

f (Y) = min
X,I,Z

 N∑
i=1

∑
t∈Ei

pitxit +

N∑
i=1

T∑
t=1

(hitIit + γitzit)

 (9)

subject to

Ii,t−1 + xit + zit − Iit = Dit (∀ i), t ∈ Ei (10)
Ii,t−1 + zit − Iit = Dit (∀ i), t ∈ {1, . . . ,T}\{Ei} (11)

t∑
k=1

xik ≤

t∑
k=1

T∑
l=k

dikl (∀ i), t ∈ Ei (12)∑
i∈Ft

rixit ≤ Ct −
∑
i∈Ft

sti (∀ t) (13)

Iit, xit, zit ≥ 0 (∀ i), (∀ t) (14)
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In this formulation, new variables zit are introduced. They represent the
shortage of the demand for item i at period t. In other words, variables are used
for creating a feasible solution by minimizing the total infeasibility. Indeed, the
measure of infeasibility may be presented as

N∑
i=1

T∑
t=1

γitzit,

where γit denotes the associated penalty. In addition, the acceptance of unfeasible
solutions (i.e. the shortage of the demand) is associated with high cost γit.

At first, we set yit = 1 for all items and for all periods, and then solve the
corresponding program. In our experimentation we have considered the instances
of Trigeiro et al. [23]. The parameter capacity is generated by setting a target
average utilization capacity. These instances are used under the assumption that
the presence of setup time allows feasible solutions for the problems that initially
use more than 100% of capacity. For all instances, at each period, the sum of setup
times of all items is always lower than the capacity. Therefore, our initialization
is operational.

As the result, the production quantities xit, ∀i ∈ {1, . . . ,N} and ∀t ∈ {1, . . . ,T}
are found. In such a solution, some xit may be zero, whereas all yit are initially set
to 1. In order to eliminate such cases, we set yit = 0 for all i and t, where xit = 0 .
Based on this modification of Y, the problem is reformulated and resolved. These
steps are repeated until there is no xit = 0 with the corresponding yit , 0.

The initialization procedure obviously requires N × T iterations, at most. At
each iteration, at least one variable is eliminated. In that way, the capacity con-
straint becomes ’more relaxed’ and the value of the objective function decreases.

5. VNFS-1 FOR THE CLSP-TW-ST

In this section we describe our first algorithm VNFS-1. The initial solution
is obtained by the algorithm described in the previous section. Then, we give
details of Shake (step 5) and VND (step 6) developed for solving CLSP-TW-ST.

5.1. Shaking.
An improvement phase starts with moves in the setup sequence Y = {yit}N×T.

Since Y is a binary matrix, the Hamming distance is a natural choice in defining
the neighborhood of a solution: a new solution Y′ from the neighborhood k of Y
(Y′ ∈ Nk(Y)) is obtained by flipping k components simultaneously. Let us denote,
Y′ the neighboring solution of Y (Y′ ∈ N1) and y′it the value of yit after being
flipped. We denote by Ybest the incumbent solution (the best solution obtained so
far).
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5.2. The first local search procedure LS-1.
The first neighborhood structure is based on one flip move, i.e. one element

of Y is flipped at each iteration: y′it = 1 − yit, (∀i, t). Therefore, if the setup of an
item i occurs over one period t in the current solution (yit = 1), then it will be
cancelled in the new solution (yit = 0) and vice-versa. After each such move, the
value of the objective function is computed by solving the mathematical program
(9)-(14). If f (Y′) < f (Ybest) then Ybest = Y′. It should be noted that the first
improvement strategy is used. Therefore, an improved neighboring solution is
immediately selected to replace the current one. This procedure is repeated until
no improvement is found (Algorithm 3). If a local optimum is found, the second
neighborhood structure will be explored.

Algorithm 3: Local search LS-1

1 fbest = f (Y);
2 repeat
3 improve← false;
4 for i = 1, . . . ,N do
5 for t = 1, . . . ,T do
6 yit = 1 − yit; // Flipping move
7 Find Y by solving the mathematical program (9)-(14);
8 if f (Y) < fbest then
9 fbest = f (Y), improve← true

else
10 yit = 1 − yit

until no improve;
11 output: Y

5.3. The Second local search procedure LS-2
In this algorithm, the neighborhood is defined by flipping two 0-1 variables,

i.e., neighboring solutions are chosen among those whose Hamming distance
from Y is equal to two. For each item i and for each period t, all possible 2-flip
moves are checked out. An exchange move consists of exchanging the value of
two distinct periods for one item i in Y. So, if yit , yit́ with t < t́ then, Ýit = yit́

and Ýit́ = yit. If f (Ý) < f (Ybest) then, Ybest = Ý and f (Ybest) = f (Ý). This step is
repeated until no improvement is found (Algorithm 4). The choice of changing
the structure of one item and not of two distinct items is based on an extensive
experimentation. We have found that 90% of improvements are obtained when
we perform the moves in the structure of the same item between two distinct
periods. Thus, the number of possible flip moves (and therefore the running time
of the algorithm) is reduced, for the price of loosing 10% of improving moves.
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Algorithm 4: Local search LS-2

1 fbest = f (Y);
2 repeat
3 improve← false;
4 for i = 1, . . . ,N do
5 for t = 1, . . . ,T − 1 do
6 for t′ = t + 1, t + 2, . . . ,T do
7 if yit , yit′ then
8 Flip yit and yit′

9 Solve mathematical program (9)-(14) to find Y;
10 if f (Y) < fbest then
11 fbest = f (Y); improve← true

else
12 Flip back (yit, yit′ )

until no improve;
13 OutputY

The local optimum of the second local search procedure LS-2 will be than an
input for the first procedure LS-1. The algorithm will stop when the local optima
of the second and the first procedures are the same (see Algorithm 5).

Algorithm 5: VND local search

1 improvement = true
2 repeat
3 Y′ ← LS-1(Y)
4 Y′ ← LS-2(Y′)
5 if f (Y′) ≥ f (Y) then
6 not improvement

7 Y← Y′

until improvement = false;
8 output: Y

Each move is evaluated according to the resolution of the mathematical pro-
gram with (

∑N
i=1 |Ei|+ 2×N × T) variables and (

∑N
i=1 |Ei|+ (N × T) + T) constraints.

Thus the complexity increases according to the number of items. Moreover, the
size of the neighborhood is very large and large computational time is needed to
complete the search.

The experimental experience has shown that the efficiency of this algorithm
depends a lot on the size of the problem. Moreover, the final solution quality is
very sensitive to the choice of the starting point.
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6. DECOMPOSITION APPROACH FOR SOLVING CLSP-TW-ST (VNFS-2)

It is shown that when using VNFS-1, the mathematical programming part is
relatively slow. Here, we propose a decomposition scheme of the problem to
reduce the number of constraints and variables in mathematical programming
phase of the method.

The move is evaluated for the single item LSP by considering the remaining
items as fixed. So, the multi-item LSP is transformed into the single-item LSP by
performing the moves to the setup sequence of an item ī and assuming that the
setup sequence for all remaining items are known. Therefore, in each iteration, a
new mathematical formulation of the problem is developed as follows:

f (Y) = min
X,I,Z

∑
t∈Eī

(pītxīt) +

T∑
t=1

(hītIīt + γītzīt)

 (15)

Subject to:

Iī,t−1 + xīt + zīt − Iīt = Dīt ∀ t ∈ Eī (16)
Iī,t−1 + zīt − Iīt = Dīt ∀ t ∈ {1, . . . ,T} \

{
Eī

}
(17)

t∑
k=1

xīk ≤

t∑
k=1

T∑
l=k

dīkl ∀ t ∈ Eī (18)

δi∗xīt ≤ Ct −

N∑
ī=1

τīyīt −

N∑
í=1
í,ī

δíxí t ∀ t = 1, . . . ,T (19)

xīt ≤

T∑
l=t

Dīl ∀ t ∈ Eī (20)

Iīt, xīt, zīt ≥ 0 ∀ t = 1, . . . ,T (21)

where Eī, the set of periods whose yīt = 1 ∀ ī = 1, . . . ,N.
The objective function (15) minimizes the total cost induced by the production

plan, like production, inventory, and penalty of the demand shortage costs for
the item ī. The capacity constraints (19) is modified while taking into account the
known production of the items other than ī.

The evaluation of each move is computed according to the resolution of the
mathematical programming presented above. This reformulation includes (

∣∣∣Eī

∣∣∣ +
2 × T) variables and (3 ×

∣∣∣Eī

∣∣∣ + (T −
∣∣∣Eī

∣∣∣) + T) constraints. We observe that the
evaluation of moves in VNFS-2 is faster than the evaluation of VNFS-1 due to the
obtained reduction of the size of the problem in the mathematical programming
model.

The initialization of this algorithm has the same steps as VNFS-1. Our idea
is to propose a new improvement procedure by using the Variable neighborhood
search algorithm (VNS) [15, 17, 4, 18, 21]. This main loop of the algorithm consists
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of three steps, after defining the neighborhood structures: (i) the shaking phase;
(ii) the local search phase; (iii) the neighborhood change. The first step leads
to performing moves onto the current solution. The local optima found will be
subject to the shaking by applying random moves. These three steps will be
repeated until a given stopping criterion is reached.

The VNS algorithm advantage is to explore regions far from the current region
of the searching space. So, once the best solution is found in a large region, it is
necessary to go quite far to get better solutions. Therefore, this algorithm employs
the concept of shaking to move from one region to another which can be more
profitable. In the literature, the VNS algorithm has not been much explored for
solving the LSP. We can find the work of Xiao et al. [27] where this algorithm is
used for solving the uncapacitated multi-level LSP.

In our application, the neighborhood structures are the same as those used
in the first algorithm. However, within the local search, the way solutions are
evaluated in each move is based on the decomposition scheme described above
(Algorithms 6, 7 and 9).

Algorithm 6: VNFS-2, i.e., LS-1 local search for decomposed problem

begin
1 LS1′(Y) //first local search in VNFS-2
2 fbest = f (Y);
3 repeat
4 for i∗ = 1, . . . ,N do
5 for t = 1, . . . ,T do
6 yi∗t = 1 − yi∗t; //perform move
7 solve the mathematical program (15)-(21) according to Y;
8 if f (Y) < best then
9 best = f (Y)

else
10 yi∗t = 1 − yi∗t

until no improvement;
output: Y

The step of perturbation consists in performing h consecutive random moves
into the binary vector. Two items and two periods are selected at random and
their values are exchanged (Algorithm 10).

The reduction of the computational time of the evaluation is accompanied by
reduction of the size of the neighborhood. Therefore, the exploration of the space
search remains partial, and some promising regions may not be visited by this
algorithm.
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Algorithm 7: Second local search procedure in VNFS-2

begin
1 LS′2(Y) //second local search in VNFS-2
2 best = f (Y);
3 repeat
4 for i∗ = 1, . . . ,N do
5 for t = 1, . . . ,T − 1 do
6 for t = t + 1, t + 2, . . . ,T do
7 if yi∗t , yi∗t′ then
8 exchange (yi∗t, yi∗t′ )
9 Find Y by solving the mathematical program (14)-(20);

10 if f (Y) < fbest then
11 fbest = f (Y)

else
12 exchange (yi∗t, yi∗t′ )

until no improvement;
output: Y

Algorithm 8: VND local search in VNFS-2

begin
1 VND-1
2 repeat
3 Y← RD − 1(Y)
4 Y← RD − 2(Y)

until no improvement;
output: Y

Algorithm 9: VND local search in VNFS-2

begin
1 VND-1
2 repeat
3 Y← RD − 1(Y)
4 Y← RD − 2(Y)

until no improvement;
output: Y
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Algorithm 10: Variable neighborhood formulation search method

begin
1 VNFS − 1(Y)
2 Ybest = Y
3 repeat
4 k = 1;
5 while k < kmax do
6 Select random solution Y ∈ Nk(Ybest);
7 Y′ ← VND-1(Y);
8 if f (Y′) < f (Ybest) then
9 Ybest ← Y′; k = 1;

else
10 k = k + 1

until until stopping criterion;
output: Y

7. GENERAL VNFS FOR SOLVING CLSP-TW-ST

The third proposed approach is a combination of the two previous approaches.
Note that the VNFS-1 offers a deep exploration of the space search, and that the
VNFS-2 offers the convergence speed. In VNFS we used both of them in sequential
way as in the Variable neighborhood descent VND algorithm.

VND is a deterministic version of VNS, where the best neighbor of the cur-
rent solution is considered instead of a random one. Also, no local descent is
performed with this neighbor. Rather, it automatically becomes the new current
solution if an improvement is obtained, and the search is then restarted from the
first neighborhood. The VND algorithm presents a particular feature where the
different neighborhoods are explored in an increasing order of their sizes and
evaluations. That is to say, it starts by exploring the smallest and thus the fastest
neighborhoods, finishing with the slowest (the largest) neighborhoods. While
investigating this idea in our VNFS algorithm, two local search procedures are
used within VND local search. They have the same structure as the two local
searches given in Algorithms 3, 4 and, 5. Therefore, we will not repeat their steps
here.

In the first phase of our final VNFS, the decomposition algorithm VNFS-2
is applied. As presented above, the size of neighborhoods is small and less
computation time is used than for VNFS-1. After finding the local optima, the
algorithm VNFS-1 is run in the second phase.

The algorithm leaves this second structure after performing a given number
of successive improvements and returns to the first structure. If the local optima
of the first and the second structures are the same, then we perform some random
moves (shake) into the current solution and return to the first structure. These
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steps will be repeated until the given stopping criteria are met

8. COMPUTATIONAL RESULTS

This section reports the computational results that evaluate the effectiveness
of our algorithms against the proposed algorithms in the literature of the CLSP
with time windows and setup times. The algorithms were implemented in C++
and run in Windows XP on desktop PC with Intel Pentium IV, running at 3.2 GHz
processor with 512 MB of RAM memory.

The data sets used in our experiments are generated by Brahimi et al. [3]. These
instance problems are based on the data sets of Trigeiro et al. [23] and extended by
adding the time windows. More detailed information about these test problems
is available in Brahimi et al. [3]. The comparison was conducted after classifying
the instances into 13 classes. The first three classes depend on the number of items
N =10, 20 and 30. The utilization rate of total capacity is 75%, 85%, and 95%. The
time between two successive orders (TBO) is 1, 2, and 4. The variation coefficient
of the demand is set to 0.35, and 0.59. The average value of setup times over all
products is 11, and 43 capacity unit. In total, there are 540 instances to be tested.

The competing approaches used in our comparative study include the ap-
proaches developed by Brahimi et al. [3]. The first approach denoted by (LR)
is a Lagrangian relaxation based heuristic. The second is an exact mixed integer
programming approach, based on a new reformulation of the problem and solved
with the commercial software (MIPX). The last one is a mixed integer approach,
based on the original formulation of the problem (MIPB).

In order to evaluate our results according to the competing approaches, we
use the following measure of performances as in [14, 2, 3]:

Gap(UBA,LB) = 200 ×
UBA − LB
UBA + LB

(22)

where Gap(UBA,LB) denotes the gap between upper bound values of the algo-
rithm A and the best lower bound values, for each instance, among the different
lower bounds provided by [3].

Gap(UBA,UBB) = 200 ×
UBA −UBB

UBA + UBB
(23)

where Gap(UBA,UBB) is the gap between the upper values of the algorithm A,UBA,
and those of the algorithm B,UBB, such that UBA ≥ UBA.

Brahimi et al. [3] have noted that the use of the relative percentage deviation as
a performance measure computed by UBA−LB

LB , according to the obtained solution
by an algorithm A, and the lower bound value may underestimate or overestimate
the gap. Also, the same stands for comparing to upper bound values. Extensive
experiments were conducted in order to set the values of parameters of our
proposed algorithms as follows:
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VNFS-2: the number of successive random haves is h = 1 + random number
in [1, 10]. The stopping criterion is the number of iterations which is fixed to 100.
For the algorithm (VNFS), the number of iterations is used as a stopping criterion
and is set to be the number of items × 50.

Table 1: Computational experiments of the proposed approaches
GAP UB (VNFS-1,VNFS-2) GAP UB (VNFS-2,VNFS)

VNFS-1 is better VNFS-2 is better VNFS-2 is better VNFS is better
parameter Value gap gap gap gap

10 0,4 0,93 0,08 0,62
N 20 0,25 1,41 0,1 0,71

30 0,07 1,74 0,47 0,1
75% 0,21 0,68 0,16 0,26

Capacity 85% 0,18 0,86 0,24 0,38
95% 0,63 2,51 0,65 1,09

1 0,28 1,26 0,55 0,62
TBO 2 0,62 1,16 0,26 0,65

4 0,24 1,73 0,3 0,42
CV 0.35 0,27 1,8 0,32 0,53

0.59 0,2 1,37 0,47 0,58
STC 11 0,26 1,7 0,4 0,57

43 0,16 1,44 0,38 0,54
Global average 0,29 1,43 0,34 0,54

Number of better UBs 41 (0,04%) 374 (79%) 64 (12%) 171 (31%)

Table 1 shows the comparative study between the three proposed approaches.
In the third and fourth columns, we compare the gap between the upper bound
values provided by VNFS-1 and VNFS-2 according to Eq. (23). It can be seen
that VNFS-2 is better than VNFS-1 both in terms of average percentage deviations
(0.29% in favor of VNFS-1 and 1.43% in favor of VNFS-2) and the number of better
values of upper bounds.

When VNFS-2 is better than VNFS-1, we find that the number of better upper
bounds is larger than in the opposite case (41 upper bounds in favor of VNFS-
1 and 374 in favor of VNFS-2). This is provided by the decomposition scheme,
introduced in VNFS-2 for improving the results. However, in some cases, VNFS-1
is better than VNFS-2 because VNFS-1 explores more deeply the space searched.

In the fifth and sixth columns, we have compared the gap between the upper
bound values of VNFS-2 and VNFS. We see that VNFS outperforms VNFS-2 both
in terms of average percentage deviations (0.34% in favor of VNFS-2 and 0.54%
in favor of VNFS) and the number of better upper bounds (64 upper bounds in
favor of VNFS-2 and 171 in favor of VNFS).

This result is expected since the use of the VND within VNFS, coordinates the
main advantages of the two algorithms VNFS-1 and VNFS-2. Therefore, in the
first neighborhood structure we have used the local search procedure based on
the decomposition scheme of the VNFS-2 in order to accelerate the exploration
of the space search. Then we have used the second neighborhood structure as
employed in VNFS-1 in order to perform a deeper exploration of the search space.

Table 2 presents the number of feasible solutions provided by each approach
of resolution. It can be seen that VNFS-2 and VNFS are able to find 535 feasible
solutions, i.e. five instances remain unsolved as in LR algorithm.
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Table 2: Number and percentage of problems for which feasible solutions
MIPB MIPX LR VNFS-1 VNFS-2 VNFS

Number of feasible solutions 466 529 535 535 535 535
Percentage (%) 86.3 98 99.1 99.1 99.1 99.1

Table 3: Computational experiments of the proposed approaches
GAP (UB,LB)

parameter Value MIPB MIPX LR VNFS-1 VNFS-2 VNFS
10 3,78 2,92 2,54 2,48 2,01 1,79

N 20 18,67 1,32 0,96 2,35 1,27 0,94
30 19,40 1,26 0,55 1,92 0,50 0,60

75% 15,19 0,332 0,29 0,66 0,26 0,19
Capacity 85% 17,77 1,20 0,94 1,35 0,72 0,62

95% 19,54 4,11 2,97 4,91 2,94 2,63
1 2,10 0,60 0,54 1,37 0,77 0,66

TBO 2 16,86 1,01 0,86 2,48 1,15 0,87
4 40,58 4,05 2,79 3,40 1,93 1,88

CV 0.35 23,64 1,61 1,43 2,22 0,87 0,77
0.59 14,08 0,97 1,31 2,05 0,91 0,76

STC 11 20,95 1,31 1,42 2,41 1,27 1,12
43 12,42 1,26 1,31 2,09 1,26 1,11

Global average 17,31 1,7 1,38 2,25 1,22 1,07

Table 3 displays the computational results based on the gap between the upper
bounds, got by our proposed approaches and the approaches of [3], and the lower
bound according to Eq. (22). Note that these gaps are computed according to
the feasible solutions obtained by each approach. It can be seen that VNFS has
got the best gaps in average for 10 classes of instances among 13, whereas the LR
algorithm has provided 3 best gaps.

The average gaps obtained by VNFS are lower than those obtained by LR,
except for three classes of N = 30, TBO=1 and 2. In terms of global average, for
all instances, VNFS outperforms all the other approaches with 1, 07%. Moreover,
VNFS-2 outperforms LR algorithm when N = 30. Concerning our proposed
approaches, we notice that VNFS is the best algorithm, and VNFS-2 is better than
VNFS-1.

Table 4 provides a comparison between the upper bounds of VNFS-2, MIPX
and LR. It is shown that the proposed algorithm outperforms the two other
approaches. In average, for all classes, the percentage gap between VNFS-2 and
MIPX is equal 1.91%, where VNFS-2 is better than MIPX and is equal to 0.54%
in the opposite case. The number of better upper bounds in favor of VNFS-2
according to MIPX algorithm is 206. Regarding the LR algorithm, we see that
VNFS-2 is better in terms of average percentage deviations, whereas the former
is better in terms of the number of improved upper bounds.

Table 5 displays the gaps between UB (VNFS), UB (MIPX) and UB (LR). It
is shown that, in average, when VNFS is better, the average relative deviations
are larger than MIPX and LR. Moreover, according to MIPX algorithm, the VNFS
has provided 33% of better upper bounds, and MIPX has provided 21%, the
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Table 4: Gaps between UB(VNFS-2),UB(MIPX) and UB(LR)
GAP UB (VNFS-2,MIPX) GAP UB (VNFS-2,LR)

VNFS-2 is better MIPX is better VNFS-2 is better LR is better
parameter Value gap gap gap gap

10 2,32 0,49 1,54 0,82
N 20 1,81 0,77 0,78 0,76

30 2,13 0,15 0,26 0,22
75% 0,69 0,29 0,51 0,33

Capacity 85% 2,08 0,41 1,10 0,45
95% 2,88 1,13 1,63 1,23

1 0,22 0,70 0,25 0,85
TBO 2 0,92 0,57 0,53 0,76

4 3,32 0,40 1,52 0,39
CV 0.35 2,57 0,52 0,63 0,74

0.59 1,69 0,57 0,64 0,60
STC 11 1,86 0,55 0,56 0,61

43 2,39 0,55 0,77 0,73
Global average 1,91 0,54 0,82 0,65

Number of better UBs 206 (38%) 178 (33%) 165 (31%) 187 (35%)

Table 5: Gaps between UB(VNFS),UB(MIPX) and UB(LR)

GAP UB (VNFS,MIPX) GAP UB (VNFS,LR)
VNFS is better MIPX is better VNFS is better LR is better

parameter Value gap gap gap gap
10 2,30 0,33 1,40 0,53

N 20 1,77 0,52 0,46 0,50
30 2,86 0,42 0,19 0,45

75% 0,78 0,22 0,39 0,26
Capacity 85% 2,10 0,38 0,78 0,35

95% 3,07 0,82 1,33 0,70
1 0,34 0,66 0,21 0,68

TBO 2 1,20 0,42 0,36 0,43
4 3,46 0,32 1,41 0,33

CV 0.35 2,93 0,42 0,43 0,43
0.59 1,93 0,49 0,42 0,53

STC 11 2,13 0,54 0,39 0,43
43 2,80 0,39 0,46 0,51

Global average 2,13 0,46 0,63 0,47
Number of better UBs 177 (33%) 116 (21%) 232 (43%) 140 (26%)

average deviations of VNFS are larger than those of MIPX. On the other hand,
VNFS outperforms LR algorithm both in terms of average gaps and the number
of better upper bounds.

Table 6 displays the average CPU times of the approaches for each class of
instances. We can see that VNFS-2 has the smallest CPU time (5,86) according to
VNFS-1 and VNFS. This is due to the decomposion scheme used in this algorithm,
where, at each iteration, a single item problem is solved. On the other hand, the
VNFS-1 algorithm appears to be the slowest algorithm. Besides, the CPU time
and the gaps of the proposed algorithms increase when the number of items and
TBO increase, and when the capacity is tightly constrained. In comparison with
Brahimi et al. [2] approaches, the average CPU time values of our algorithms are
relatively higher.



320 R. Erromdhani, et al. / Variable Neighborhood Formulation Search Approach

Table 6: Average CPU times of the six solution approaches proposed
CPU (s)

parameter Value MIPB MIPX LR VNFS-1 VNFS-2 VNFS
10 3,32 3,33 2,09 5,3 5,28 5,47

N 20 5,79 5,81 4,14 6,96 6,39 6,63
30 7,84 7,95 5,92 8,33 6,67 7,62

75% 4,73 4,05 3,09 5,13 4,95 5,86
Capacity 85% 5,48 5,38 3,94 6,24 5,18 6,79

95% 6,73 7,66 5,12 9,01 5,32 6,54
1 4,16 3,36 2,69 5,16 5,12 5,11

TBO 2 6,25 6,09 4,55 6,13 6,92 6,32
4 6,54 7,64 4,90 8,18 7,28 7,43

CV 0.35 5,67 5,81 3,94 7,39 6,06 7,92
0.59 5,63 5,59 4,16 9,04 5,73 6,64

STC 11 5,64 5,66 4,05 6,42 5,66 5,79
43 5,66 5,73 4,05 6,53 5,62 5,87

Global average 5,70 5,65 4,05 6,90 5,86 6,46

9. CONCLUDING REMARKS

In this paper we introduce a new variant of the Variable Neighborhood Search
(VNS). It is designed for solving Mixed integer nonlinear programs, and we
call it Variable neighborhood formulation search (VNFS). The integer part of
the problem is treated as in a general VNS, while the continuous part is fixed.
Then, for the fixed neighboring solutions, if variables are discrete, the optimal
continues values are found by using some available commercial solver. The
term ’formulation’ comes from the fact that several mathematical programming
formulations of the same problem may be used during the search.

Three variants of VNFS based heuristics are proposed for solving the multi-
item capacitated lot-sizing problem with time windows and setup times, where
the non-customer specific demand is considered. In the literature, this problem
was never solved by a meta-heuristic framework. Therefore, we have taken the
challenge to prove the efficiency of this class of methods.

The problem is formulated as a nonlinear mixed integer program. In each
VNFS variant the problem is divided into two sub-problems: (i) search through
the space of binary variables; (ii) for the fixed binary variables, find the continuous
variables and the objective function values by using LP solver. Search through
the 0-1 space following the rules of general VNS: the neighborhoods for shaking
phase are induced from the Hamming distance; two neighborhoods are used
within the local search. The VNS variants differ in mathematical programming
formulation that is used to get the continuous values. We call our final heuristic
Variable Neighborhood Formulation Search (VNFS) since it changes both the
solution space and the formulation during the search for the better solution. The
computational results have shown the efficiency of the proposed approaches.
Our results compare favorably with recent state-of-the-art heuristics. Our work
contributes to adding new value to the literature of lot sizing problems when
the setup times and time windows constraints are considered. In the future, the
proposed approach can be extended to solve other CLSP, inter alia, the multi-level



R. Erromdhani, et al. / Variable Neighborhood Formulation Search Approach 321

problems. Also, forthcoming work may include application of our VNFS to other
optimization problems which can be formulated as mixed integer programs.
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