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1. INTRODUCTION

The genetic algorithms (GAs) are randomized heuristic algorithms that employ
a population of tentative solutions (individuals), which is iteratively updated
by means of selection, mutation and crossover operators, thus simulating an
evolutionary type of search for optimal or near-optimal solutions. Different mod-
ifications of GAs are widely used in areas of operations research and artificial
intelligence. A wider class of evolutionary algorithms (EAs), having a more flexible
outline, possibly neglecting the crossover operator and admitting a population
which consists of a single individual. Two major types of evolutionary algo-
rithm outline are now well-known: the elitist EAs keep a certain number of
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“most promising” individuals from the previous iteration, while the non-elitist
EAs compute all individuals of a new population independently using the same
randomized procedure.

The theoretical analysis of GAs has been subject of an increasing interest over
the last two decades and several different approaches have been developed. A
significant progress in understanding of non-elitist GAs was made in [33] by
means of dynamical systems. However most of the findings in [33] apply to the
infinite population case, so it is not clear how these results can be used to esti-
mate the runtime of GAs, i.e. the expected number of individuals computed and
evaluated until the optimum is found for the first time. A theoretical possibility
of constructing GAs that provably optimize an objective function with high prob-
ability in polynomial time was shown in [32] by rapidly mixing Markov chains.
However [32] provides only a very simple artificial example where this approach
is applicable. The drift analysis was first adapted to studying elitist EAs in [19]
and further extended in [11, 24] to non-elitist EAs without a crossover.

A series of works has attempted to show that the use of crossover operator in
GAs and other evolutionary algorithms can reduce their runtime (see e.g. [20, 23,
26, 31]) but most of the positive results apply to families of problem instances with
specific structure. At the same time [28] showed that a well-known non-elitist
GA with proportional selection operator is inefficient on one of the most simple
benchmark functions OneMax, even when the crossover is used. In [27], a general
runtime result is proposed for a class of convex search algorithms, including many
non-elitist GAs without mutation, on the so-called concave fitness landscapes (a
discrete-space counterpart of a concave maximization problem). As a corollary,
for another well-known benchmark function LeadingOnes, it is shown that the
convex search algorithm has O(n log n) runtime, which means that it is faster than
all EAs using only mutation [27]. Upper bounds obtained for the runtime of GAs
with crossover in [10] match (up to a constant factor) the analogous upper bounds
known for mutation-only GAs [11]. In [13], sufficient conditions are found under
which a non-elitist GA with tournament selection first visits a local optimum of a
pseudo-Boolean function in polynomially bounded time on average. The bounds
from [13] indicate that if a local optimum is efficiently computable by the local
search method, it is also computable in expected polynomial time by a GA with
tournament selection.

In the present paper, the genetic algorithms are studied on a wide class of
combinatorial optimization problems. The expected number of tentative solu-
tions constructed, until first visiting a desired area for the first time, is considered
as the main criterion of GA efficiency. Such an area may consist of locally optimal
solutions or of globally optimal solutions or of feasible solutions with sufficiently
small relative error. The main result is obtained by combining the approaches
from [13, 25] and the result applies to a wider range of selection operators, com-
pared to [13], including the proportional selection of Canonical GA [17] (the term
“Canonical GA” was coined in [29]). Considering the selection operators with very
high selection pressure, in this paper, we can neglect the probability of downgrad-
ing mutations although this probability needs to be taken into account in [10, 11].
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By downgrading mutations here we mean mutations that decrease the quality of
solutions (a formal definition of downgrading mutation will be given further).
In contrast to [10, 11], here we consider explicitly the constrained optimization
problems and the expected first hitting time of the set of local optima.

In the most general setting, a combinatorial optimization problem with a
maximization criterion is formulated as follows:

max{F(x) | x ∈ Sol}, (1)

where Sol ⊆ X is the set of feasible solutions, X = {0, 1}n is the search space, F(·)
is the objective function. The optimal value of the criterion is denoted by F∗. The
minimization problems are formulated analogously. Without loss of generality,
by default we will consider the maximization problems. The results will hold for
the minimization problems as well.

Genetic Algorithms.. In the process of the GA execution, a sequence of popula-
tions Pt = (x1,t, . . . , xλ,t), t = 0, 1, . . . , is computed, where each population consists
of λ genotypes. In the present paper, by the genotypes we mean the elements of
the search space X, and genes xi, i ∈ [n] are the components of a genotype x ∈ X.
Here and below, we use the notation [n] := {1, 2, ...,n} for any positive integer n.

An initial population P0 consists of randomly generated genotypes, and every
next population is constructed on the basis of the previous one. For convenience
of GA description, in what follows we assume that the population size λ is even.

In each iteration of a GA, λ/2 pairs of parent genotypes are chosen from the
current population Pt using the randomized selection procedure Sel : Xλ → [λ].
In this procedure, a parent genotype is independently drawn from the previous
population Pt where each individual is assigned a selection probability depending
on its fitness f (x). Usually a higher fitness value of an individual implies higher (or
equal) selection probability. We assume that the fitness function is defined on the
basis of objective function. If x ∈ Sol then f (x) = φ(F(x)), where φ : R → R+ is a
monotone increasing function in the case of maximization problem or a monotone
decreasing function in the case of minimization problem. Otherwise (i.e. if x <
Sol), the fitness incorporates some penalty, which ensures that f (x) < miny∈Sol F(y).

Given the current population, each pair of offspring genotypes is created
independently from other pairs by the randomized operators of crossover and mu-
tation. Some authors consider crossover operators that output a single genotype
(see e.g. [10, 7, 28, 21, 33]), while others consider crossovers with two output
genotypes (see e.g. [5, 17, 29, 32]). For the sake of uniform treatment of both ver-
sions of crossover, let us denote the number of output genotypes by r, r ∈ {1, 2}. In
what follows, we assume that Cross : X ×X → Xr and Mut : X → X are efficiently
computable by randomized routines. When a new population Pt+1 is constructed,
the non-elitist GA proceeds to the next iteration.

Algorithm 1. Non-Elitist Genetic Algorithm in the case of r = 2
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Generate the initial population P0, assign t := 1.
While a termination condition is not met do:

Iteration t.
For j from 1 to λ/2 do:

Selection: i := Sel(Pt), i′ := Sel(Pt).
Crossover: (x, y) := Cross(xit, xi′t).
Mutation: x2 j−1,t+1 := Mut(x), x2 j,t+1 := Mut(y).

End for.
t := t + 1.

End while.

Algorithm 2. Non-Elitist Genetic Algorithm in the case of r = 1

Generate the initial population P0, assign t := 1.
While a termination condition is not met do:

Iteration t.
For j from 1 to λ do:

Selection: i := Sel(Pt), i′ := Sel(Pt).
Crossover: x := Cross(xit, xi′t).
Mutation: x j,t+1 := Mut(x).

End for.
t := t + 1.

End while.

The output of a GA is an individual with the maximum fitness value in all
populations constructed until the termination condition was met.

In the theoretical analysis of GAs it is often assumed that the algorithm con-
structs an infinite sequence of populations and that the termination condition is
never met. In practice, the termination condition is required not only to stop the
search and output the result, but also to perform multiple restarts of the GA with
random initialization [5, 8]. Multiple independent runs of randomized algorithms
or local search (multistart) are widely used to prevent localization of the search
in the “unpromising” areas of the search space (see e.g. [9]) and applicability of
multistart to the evolutionary algorithms has some theoretical basis [12, 32].

In this paper, together with the standard version of Non-Elitist GA (Algo-
rithms 1 and 2), we study the GA with multistart, where a GA outlined as Algo-
rithm 1 or 2 is ran independently from the previous executions for an unlimited
number of times. The stopping criterion in Algorithm 1 or 2 in this case is the
iterations limit t ≤ tmax, where tmax is a tunable parameter.

In what follows, we consider three options for selection operator: the tourna-
ment selection [18], the (µ, λ)-selection [25], and the proportional selection [17].
In k-tournament selection, k individuals are sampled uniformly at random (with
replacement) from the population, and the fittest of these individuals is returned.
The tunable parameter k is called the tournament size. In (µ, λ)-selection, parents are
sampled uniformly at random among the fittestµ individuals in the population Pt.
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In the case of proportional selection,

Pr(Sel(Pt) = i) :=
f (xit)∑λ

j=1 f (x jt)
, (2)

if
∑λ

j=1 f (x jt) > 0; otherwise the index of the parent individual is chosen uniformly
at random.

Canonical Genetic Algorithm proposed in [17] corresponds to the GA outline
with r = 2, where all individuals of the initial population are chosen indepen-
dently and uniformly from X. This GA uses the proportional selection, a single-
point crossover Cross∗ and a bitwise mutation Mut∗. The last two operators work as
follows.

The single-point crossover computes (x′, y′) = Cross∗(x, y) for two input geno-
types x = (x1, ..., xn), y = (y1, ..., yn), so that with a given probability pc,

x′ = (x1, ..., xχ, yχ+1, ..., yn), y′ = (y1, ..., yχ, xχ+1, ..., xn),

where the random position χ is chosen uniformly from 1 to n−1. With probability
1 − pc both parent individuals are copied without any changes, i.e. x′ = x, y′ = y.

The bitwise mutation Mut∗ computes a genotype x′ = Mut∗(x), where in-
dependently of other bits, each bit x′i , i ∈ [n], is assigned a value 1 − xi with
probability pm and with probability 1 − pm it keeps the value xi. The tunable
parameter pm is also called the mutation rate. Choosing the mutation rate, many
authors assume pm = 1/n.

Another well-known operator of point mutation with a given probability pm
modifies one randomly chosen bit, otherwise (with probability 1 − pm), the given
genotype remains unchanged.

The following condition holds for many well-known crossover operators:
there exists a positive constant ε0 which does not depend on the problem instance,
such that the output of crossover (x′, y′) = Cross(x, y) satisfies the inequality

ε0 ≤ Pr
(

max{ f (x′), f (y′)} ≥ max{ f (x), f (y)}
)
. (3)

for any x, y ∈ X. Condition (3) suggests that the fitness of at least one of the
genotypes resulting from crossover (x′, y′) = Cross(x, y) is not lower than the
fitness of the parents x, y ∈ X with probability at least ε0. This condition is
fulfilled for the single-point crossover with ε0 = 1 − pc, if pc < 1 is a constant. In
the case of crossover operator with a single output genotype x′ = Cross(x, y), the
analogous condition is as follows

ε0 ≤ Pr
(

f (x′) ≥ max{ f (x), f (y)}
)
. (4)

Condition (4) is also satisfied with ε0 = 1 for the optimized crossover operators,
where at least one of the two offspring is computed as a solution to optimal
recombination problem (see e.g., [1, 5, 15]). It was shown in [10] that for some
well-known crossover operators and simple fitness functions condition (4) holds
with ε0 = 1/2.
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2. THE MAIN RESULT

In this section, we give a generalization of Non-Elitist Genetic Algorithm
analysis, carried out in [13], adapting it to different selection operators and making
it applicable to the GAs with multistart, which allows us to deal with both feasible
and infeasible solutions.

Suppose that for some m there is an ordered partition of X into subsets
A0, . . . ,Am+1, called levels [10]. Level A0 may be an empty set. Level Am+1 will
be the target level in subsequent analysis. The target level may be chosen as
the set of solutions with maximal fitness or the set of local optima, or the set of
ρ-approximation solutions for some approximation factor ρ > 1 (a feasible solu-
tion y to a maximization problem is called ρ-approximation solution if it satisfies
the inequality F∗/F(y) ≤ ρ). A well-known example of partition is the canonical
partition, where A0 = ∅ and each level A j, j ∈ [m + 1] regroups solutions having
the same fitness value (see e.g. [11, 30]). In what follows, level A0 may be used to
encompass the set of infeasible solutions.

In this paper, we will often use values which are independent of an instance of
problem (1) and of a levels partition, but completely determined by the GA outline
and its operators. Such values will be called constants. The same applies to the
constants in O(·) notation. It will be convenient to use the symbol H j := ∪m+1

i= j Ai

for the union of all levels starting from level j, j ∈ [m + 1]. The symbol e in what
follows denotes the base of the natural logarithm.

Extending the notation from [10, 25], we will define the selective pressure β(0,P)
of a selection operator Sel(P) as the probability of selecting an individual that
belongs to the highest level occupied by the individuals of P.
Theorem 2.1. Given a partition A0, . . . ,Am+1 of X, let there exist parameters s∗, p1, ε
and β0 from (0, 1], such that for any j ∈ [m]:

(C1) Pr(Mut(x) ∈ H j+1) ≥ s∗ for any x ∈ A j,

(C2) Pr
(
xi,0
∈ H1 for some i ∈ [λ]

)
≥ p1,

(C3) β(0,P) ≥ β0 for any P ∈ (X\Am+1)λ,

(C4) λ ≥ 2(1+ln m)
s∗εβ0(2−β0) ,

(C5) for any (x, y) ∈ (H j × X) ∪ (X ×H j)

ε ≤

 Pr
(
Cross(x, y) ∈ H j

)
, in case of r = 1,

Pr
(
Cross(x, y) ∈ (H j × X) ∪ (X ×H j)

)
, in case of r = 2.

Then with probability not less than p1/e at least one of the populations P0,P1, . . . ,Pm

contains an individual from Am+1.
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Let us informally describe the conditions of the theorem. Condition (C1) re-
quires that for each level j, there is a lower bound s∗ on the “upgrade” probability
from level j. Condition (C2) ensures that at least one individual of the initial pop-
ulation is above level 0 with probability not less than p1. Condition (C3) requires
that the selective pressure induced by the selection mechanism is sufficiently high.
Condition (C4) requires that the population size λ is sufficiently large. Condition
(C5) is a level-based analog of inequalities (3) and (4). This condition follows
from (3) or (4) with ε = ε0 in the case of the canonical partition.

Proof of Theorem 2.1. For any t = 0, 1, . . . let the event Et+1
i , i ∈ [λ/2], consist

in fulfilling of the following three conditions when the i-th pair of offspring is
computed:

1. At least one of the two parents is chosen from the highest level A j to which
the individuals of population Pt belong.

2. When the crossover operator is applied, at least one of its outputs belongs
to H j. W.l.o.g. we assume that this output is x.

3. The mutation operator applied to x produces a genotype in H j+1.

Let p denote the probability of the union of events Et+1
i , i ∈ [λ/2]. In what

follows, we will construct a lower bound ` ≤ p, which holds for any population Pt.
According to the outline of GA, Pr(Et+1

1 ) = · · · = Pr(Et+1
λ/2). Let us denote this

probability by q. Note that q is bounded from below by s∗ε(1 − (1 − β0)2) =
s∗εβ0(2−β0).Given a population Pt, the events Et+1

j , j = 1, . . . , λ/2, are independent,
so p ≥ 1 − (1 − q)λ/2 ≥ 1 − e−qλ/2. In what follows we shall use the fact that
condition (C4) implies

λ ≥
2

s∗εβ0(2 − β0)
≥ 2/q. (5)

To bound probability p from below, let us first note that for any z ∈ [0, 1] holds

1 −
z
e
≥ e−z. (6)

Assume z = e−qλ/2+1. Then in view of inequality (5), z ≤ 1, and consequently, we
get

p ≥ exp
{
−e1−qλ/2

}
≥ exp

{
−e1−s∗εβ0(2−β0)λ/2

}
. (7)

We will use the right-hand side expression of (7) as the lower bound ` for p.
For any t = 1, 2, . . . let us define the eventEt := Et

1+· · ·+Et
λ/2. Note that eventEt

captures some of the possible scenarios of “upgrading” the best individuals of
the current population to the next level. Besides that, let E0 denote the event that
xi,0
∈ H1 for some i ∈ [λ]. Then the probability to reach the target level Am+1 in a

series of at most m iterations is lower bounded by Pr(E0& . . .&Em) and

Pr(E0& . . .&Em) = Pr(E0)
m−1∏
t=0

Pr(Et+1|E0& . . .&Et) ≥ p1`
m. (8)



330 A., Eremeev / Hitting Times of Local and Global

in view of condition (C2). Now using condition (C4), we get:

`m = exp
{
−me1−s∗εβ0(2−β0)λ/2

}
≥ exp

{
−me− ln m

}
= 1/e.

Q.E.D.

An event of downgrading mutation of a genotype x may be defined in terms
of levels partition as Mut(x) < H j, where j is the level the individual x belongs
to. Unlike the results from [10, 11], Theorem 2.1 is applicable to the GAs where
the probability of non-downgrading mutation may tend to zero as the problem
size grows. Examples of such operators may be found in highly competitive
GAs for Maximum Independent Set Problem and Set Covering Problem [1, 7]
and many other GAs in the literature on operations research. Note that in case
|Am+1| = 1, given an optimal genotype x ∈ Am+1, the bitwise mutation with a
constant mutation rate (as used in [1]) causes non-downgrading mutations only
with probability (1 − pm)n = o(1) and the mutation operator that inverts m f bits,
where m f > 0 is a given parameter [7], has zero probability of non-downgrading
mutations.

3. LOWER BOUNDS FOR SELECTION PRESSURE

The following two propositions may be applied to check condition (C3) in
Theorem 2.1.
Proposition 3.1. Let levels A1, . . . ,Am satisfy the monotonicity condition

f (x) < f (y) for any x ∈ A j−1, y ∈ A j, j = 2, . . . ,m. (9)

Then
(i) k-tournament selection with k ≥ αλ, where the constant α > 0, satisfies condi-

tion (C3) with β0 = 1 − e−α.
(ii) (µ, λ)-selection with a constant parameter µ ≤ λ satisfies condition (C3) where

β0 = 1/µ.

Proof. In the case of k-tournament selection β(0,P) ≥ 1 − (1 − 1/λ)k and
(1 − 1/λ)k

≤ (1 − 1/λ)αλ ≤ e−α, so part (i) follows. Part (ii) follows from the
definition of (µ, λ)-selection immediately. Q.E.D.

The operator of proportionate selection does not have a tunable parameter that
allows to set its selection pressure. However such a parameter (let it be ν) may be
introduced into the fitness function by assuming that f (x) = F(x)ν for any x ∈ Sol.
The proof of the following proposition is similar to that of Lemma 8 in [25]. Here
and below Z+ denotes the set of non-negative integers.

Proposition 3.2. Let the levels A1, . . . ,Am satisfy the monotonicity condition (9), F :
Sol→ Z+ and the fitness function is of the form f (x) = F(x)ν, where ν > max(0, ln(αλ)F∗)
for some α > 0. Then the proportional selection satisfies condition (C3) with β0 =
1/(1 + α−1).
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Proof. Let Fν0 be the maximal fitness value in population P and let k denote the
number of individuals in P with fitness Fν0. The probability to choose one of the
fittest individuals is lower bounded as follows

β(0,P) ≥
kFν0

(λ − k)(F0 − 1)ν + kFν0
≥

k
λ(1 − 1/F0)ν + k

≥
k

1/α + k
≥

1
1/α + 1

,

since (1 − 1/F0)ν ≤ (1 − 1/F∗)ν ≤ e−ν/F∗ ≤ 1/(αλ). Q.E.D.

Proposition 3.2 requires the fitness function to scale very fast as the objec-
tive function grows. Scaling of objective function might be unavoidable in the
case of proportional selection. Even for the simple benchmark fitness function
OneMax :=

∑n
i=1 xi, P. Oliveto and C. Witt show [28] that in the case of propor-

tional selection, GA with high probability makes exponential number of iterations
until the optimum is visited. The need for scaling the fitness function is also ac-
knowledged in practical use of Canonical GA (see e.g. [17], where a dynamical
mechanism for fitness scaling was proposed).

4. UPPER BOUNDS ON EXPECTED HITTING TIME OF TARGET SUBSET

Let T denote the random variable, equal to the number of tentative solutions
evaluated until some element of the current population is sampled from Am+1 for
the first time. In the case when Am+1 is the set of optimal solutions, T is usually
called the runtime of an evolutionary algorithm.
Corollary 4.1. Suppose that conditions (C1)-(C5) of Theorem 2.1 hold and A0 = ∅.
Then, for the GA we have E[T] ≤ emλ.

Proof. Consider a sequence of series of the GA iterations, where the length
of each series is m iterations. Suppose, Di, i = 1, 2, . . . , denotes an event of
absence of solutions from Am+1 in the population throughout the i-th series. The
probability of each event Di, i = 1, 2, . . . , is at most 1−1/e according to Theorem 2.1.
Analogously to bound (8), we obtain the inequality Pr(D1& . . .&Di) ≤ (1 − 1/e)i.

Let Y denote the random variable equal to the number of the first run when a
solution form Am+1 was obtained. By the properties of expectation (see e.g. [16]),

E[Y] =

∞∑
i=0

Pr(Y > i) = 1 +

∞∑
i=1

Pr(D1& . . .&Di) ≤ 1 +

∞∑
i=1

(1 − 1/e)i = e.

Consequently, the average number of iterations until an element of the target
subset is first obtained is at most em. Q.E.D.

Assuming λ =
⌈

2(1+ln(m))
s∗εβ0(2−β0)

⌉
and constant β0 and ε, Corollary 4.1 implies E[T] ≤

cm ln(m)/s∗, where c > 0 is a constant. In the special case where r = 1 and the
probability of non-downgrading mutation Pr(Mut(x) ∈ H j | x ∈ A j), j ∈ [m] is
lower bounded by a positive constant, the result from [10] gives an upper bound
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E[T] ≤ c′m (ln(m/s∗) ln ln(m/s∗) + 1/s∗) with some positive constant c′. The latter
bound is less demanding to selection pressure and it is asymptotically tighter than
the bound E[T] ≤ cm ln(m)/s∗ e.g. when s∗ ≤ 1/m.

Note that the assumption A0 = ∅ in Corollary 4.1 can not be dismissed. Indeed,
suppose that A0 , ∅, and consider a GA where the mutation operator has the
following properties. On the one hand, it never outputs an offspring in H1,
given an input from A0. On the other hand, given a genotype x ∈ H1, the
result of mutation is in A0 with a probability at least c, where c > 0. Finally,
assume that the initialization procedure produces no genotypes from Am+1 in
population P0 and the crossover makes no changes to the parent genotypes. Now
all conditions of Corollary 4.1 can be satisfied but with a positive probability of at
least cλ the whole population P1 consists of solutions from A0, and subject to this
event all populations P1,P2, . . . contain no solutions from H1. Therefore, E[T] is
unbounded.

As an example of the usage of Corollary 4.1 we consider the GA with tour-
nament selection applied to the family of unconstrained optimization problems
with objective function LeadingOnes, which is frequently used in the analysis of
evolutionary algorithms. The objective function LeadingOnes : {0, 1}n → Z+ is
defined as

LeadingOnes(x) =

n∑
i=1

i∏
j=1

x j

i.e. the optimal solution is x∗ = (1, . . . , 1).
Let us use the canonical levels partition: A j = {x | F(x) = j − 1}, j ∈ [n + 1],

m = n. Assume that the bitwise mutation operator has the mutation rate pm =
1/n. To move from level A j to level A j+1 under mutation, it suffices to modify
the first zero bit and not to modify the rest of the bits. So we can use s∗ =
(1/n)(1 − 1/n)n−1 = Ω(1/n). Suppose that in the single-point crossover pc = 1.
Then in the case of LeadingOnes , as it was shown in [10], the constant ε = 1/2
satisfies condition (C5). Assuming the tournament size k = Θ(λ), Proposition 3.1
ensures satisfaction of condition (C3) with a positive constant β0. Application of
Corollary 4.1 to the GA with r = 1 or r = 2 and λ = Θ(n ln(n)), satisfying (C4),
gives the upper bound E[T] = O(n2 ln(n)).

The GA runtime analysis from [10] with r = 1 implies that E[T] = O(n2 +
nλ logλ), provided that λ ≥ C1 log n and k ≥ C2 for some specific constants
C1,C2 > 0. This yields the runtime bound E[T] = O(n2) in the case of λ = Θ(log n),
but in the case of λ = Θ(n log n) the analysis from [10] yields a greater runtime
bound E[T] = O(n2 ln(n)2). Thus for relatively small population sizes the runtime
bound from [10] is preferable, while the new bound is preferable for sufficiently
large population sizes.

Analogously to Corollary 4.1 we obtain

Corollary 4.2. Let the GA with multistart use the termination condition with tmax = m.
Then E[T] ≤ emλ/p1 holds under conditions (C1)-(C5).
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As an illustrative example for Corollary 4.2, we consider Canonical GA on the
family of instances of Set Cover Problem proposed by E.Balas in [4]. In general,
the set cover problem (SCP) is formulated as follows. Given: M = {1, ...,m} and a
set of subsets M j ⊆M, j ∈ [n]. A subset J ⊆ [n] is called a cover if ∪ j∈JM j = M. The
goal is to find a cover of minimum cardinality. In what follows we denote by Ni
the set of indices of the subsets that cover an element i, i. e. Ni = { j : i ∈ M j} for
any i.

In the family B(n, p) of SCPs introduced by E. Balas in [4], it is assumed that
m = Cp−1

n and the set {N1,N2, ...,Nm} consists of all (n − p + 1)-element subsets of
[n]. Thus J ⊆ [n] is an optimal cover iff |J| = p.

FamilyB(n, p) is known to have a large fractional cover [4], which implies that
these SCPs are likely to be hard for integer programming methods. In particular,
it was shown in [34] that problems from this class are hard to solve by the L-class
enumeration method [22]. When n is even and p = n/2, the L-class enumeration
method needs an exponential number of iterations in n. In what follows, we
analyze GA in this special case.

In the binary encoding of solutions we assume that each bit x j ∈ {0, 1}, j ∈ [n],
indicates whether j belongs to the encoded set or not, i.e. J(x) := { j ∈ [n] : x j = 1}.
If J(x) is a cover, then we assume F(x) = n − |J(x)| + 1, otherwise, we put F(x) = 0
as a penalty.

Consider Canonical GA with multistart and scaled fitness function f (x) =
F(x)ν, the termination condition where tmax = n/2, a constant parameter pc < 1,
and the mutation rate pm = 1/n.

Assume that A0 is the set of all infeasible solutions and the rest of the levels
A1, . . . ,Am+1 are defined according to the canonical partition on Sol, where m =
n/2. In the case of p = n/2, with probability 1/2, a random individual of P0 is
feasible and there exists a constant p1 > 0 satisfying condition (C2). The constant
ε = 1−pc satisfies condition (C5). The probability that, under mutation, a genotype
from level A j produces an element of H j+1, j ∈ [m] in the case of problems of
family B(n, p) is lower bounded by s∗ = Ω(1). Choosing ν > ln(αλ)n/2 with
constant α > 0 we ensure condition (C3), according to Proposition 3.2. Finally,
appropriate λ = Θ(ln(n)), satisfies condition (C4). Therefore, Corollary 4.2 implies
that an optimal solution is attained for the first time after E[T] = O (n ln(n))
tentative solutions in expectation.

5. APPLICATIONS TO LOCAL SEARCH PROBLEMS

In this section, GAs are compared to the local search method. In order to keep
track of running times w.r.t. the length of problem instance encoding, here the
combinatorial optimization problems are viewed under the technical assumptions
of the class of NP optimization problems (see e.g. [3]). Let {0, 1}∗ denote the set
of all strings with symbols from {0, 1} and the arbitrary string length. For a
string S ∈ {0, 1}∗, the symbol |S|will denote its length. In what follows,N denotes
the set of positive integers and given a string S ∈ {0, 1}∗, the symbol |S| denotes
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the length of the string S. To denote the set of polynomially bounded functions
we define Poly as the class of functions from {0, 1}∗ to N bounded above by a
polynomial in |I|, where I ∈ {0, 1}∗.
Definition 5.1. An NP optimization problem Π is a triple Π = (Inst, Sol(I),FI), where
Inst ⊆ {0, 1}∗ is the set of instances of Π and:

1. The relation I ∈ Inst is computable in polynomial time.
2. Given an instance I ∈ Inst, Sol(I) ⊆ {0, 1}n(I) is the set of feasible solutions of I,

where n(I) stands for the dimension of the search space XI := {0, 1}n(I). Given I ∈ Inst
and x ∈ {0, 1}n(I), the decision whether x ∈ Sol(I) may be done in polynomial time, and
n(·) ∈ Poly.

3. Given an instance I ∈ Inst, FI : Sol(I)→ N is the objective function (computable
in polynomial time) to be maximized if Π is an NP maximization problem or to be
minimized if Π is an NP minimization problem.

The symbol of problem instance I may often be skipped in the notation, when
it is clear what instance I is meant. A combinatorial optimization problem Π =
(Inst, Sol(I),FI) is called polynomially bounded, if there exists a polynomial in |I|,
which bounds the objective values FI(x), x ∈ Sol(I) from above.

Let a neighborhood N(y) ⊆ Sol be defined for every y ∈ Sol. The mapping
N : Sol → 2Sol is called the neighborhood mapping. The family {N(y) : y ∈ Sol}
is called the neighborhoods system. One of the standard neighborhoods systems
on Sol = {0, 1}n is Hamming neighborhoods system: N(y) = {x | d(x, y) ≤ R}, y ∈ Sol,
where the radius R is a constant and d(·, ·) denotes the Hamming distance. If the
inequality F(y) ≤ F(x) holds for all neighbors y ∈ N(x) of a solution x ∈ Sol, then x
is called a local optimum w.r.t. N . In what follows, the set of all local optima is
denoted by LO.

A local search method starts from some feasible solution y0. Each iteration of
the algorithm consists in moving from the current solution to a new solution in
its neighborhood, such that the value of objective function is increased. The way
to choose an improving neighbor, if there are several of them, will not matter in
this paper. The algorithm continues until a local optimum is reached.

Suppose that some neighborhood system N is defined for problem (1) and s
is the lower bound for probability that the mutation operator transforms a given
solution x into a specific neighbor y ∈ N(x), i.e.

s ≤ Pr(Mut(x) = y), x ∈ Sol, y ∈ N(x). (10)

Many well-known combinatorial optimization problems, such as Maximum
Satisfiability Problem, Maximum Cut Problem, and Ising Spin Glass Model [6]
have a set of feasible solutions equal to the whole search space Sol ≡ X. The
following two corollaries apply to the problems with such a property.

Let m be the number of different values of the fitness function f1 < · · · <
fm on X\LO, i.e. m = |{1 : 1 = f (x), x ∈ X\LO}|. Then, starting from any
initial solution, the local search method attains a local optimum within at most m
iterations. Let us use a modification of the canonical levels partition, grouping all
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local optima into the target subset Am+1:

A j := {x ∈ X| f (x) = f j}\LO, j ∈ [m], (11)

Am+1 := LO. (12)

Application of Corollary 4.1 and Proposition 3.1 with levels partition (11), (12)
gives

Corollary 5.2. Suppose that Sol ≡ X, a constant ε0 > 0 satisfies inequality (3) or (4),
s > 0 satisfies inequality (10) and the GA uses a k-tournament selection with k > αλ or
(µ, λ)-selection, where α and µ are constants. Then, there exists a constant c > 0 such
that a GA with population size λ ≥ c ln (m) /s first visits a local optimum of problem (1)
after at most eλm tentative solutions in expectation.

Therefore, with an appropriate population size, e.g. λ = dc ln(m)/se, under
conditions of Corollary 5.2, a local optimum of problem (1) is visited for the first
time after evaluation of at most em ln(m)/s tentative solutions on average. This
fact in the special case of the tournament selection and r = 2 was proved in [13]).

In order to consider bitwise mutation in more detail, we will use the following
definition from [2]. A neighborhood mapping N is called K-bounded, if for any
y ∈ Sol and x ∈ N(y) holds d(x, y) ≤ K, where K is a constant.

The bitwise mutation operator Mut∗ outputs a string x, given a string y, with
probability pd(x,y)

m (1 − pm)n−d(x,y). Note that probability p j
m(1 − pm)n− j, as a function

of pm, pm ∈ [0, 1], attains its minimum at pm = j/n. The following proposition
from [13] gives a lower bound for the probability Pr{Mut∗(y) = x}, which is valid
for any x ∈ N(y), assuming that pm = K/n. We reproduce this proposition here
with a proof for the sake of completeness.

Proposition 5.3. Suppose that the neighborhood mappingN is K-bounded, K ≤ n/2 and
pm = K/n. Then, for any y ∈ Sol and any x ∈ N(y) holds Pr{Mut∗(y) = x} ≥ (K/en)K .

Proof. For any y ∈ Sol and x ∈ N(y) holds

Pr{Mut∗(y) = x} =
(K

n

)d(x,y) (
1 −

K
n

)n−d(x,y)

≥

(K
n

)K (
1 −

K
n

)n−K

,

since pm = K/n ≤ 1/2. Now ∂
∂n (1−K/n)n−K < 0 for n > K, and (1−K/n)n−K

→ 1/eK

as n→∞. Therefore (1 − K/n)n−K
≥ 1/eK. Q.E.D.

Application of Corollary 4.1 and Propositions 3.2 and 5.3 to Canonical GA
yields

Corollary 5.4. Suppose that Sol ≡ X, F : Sol → Z+, a neighborhood mapping N is
K-bounded, pc < 1 is a constant, pm = K/n and the fitness function has a form f (x) =
F(x)ν, where ν > ln(αλ)F∗. Then, there exists such constant c > 0 that Canonical GA
with λ ≥ c ln (F∗) /nK visits a local optimum to problem (1) for the first time after at
most eF∗λ tentative solutions in expectation.
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Corollary 5.4 implies that in the case of polynomially bounded unconstrained
NP optimization problem, Canonical GA given appropriate choice of parame-
ters finds a local optimum in Hamming neighborhoods system within expected
polynomial time.

Let us consider a GA with multistart applied to an NP optimization problem,
i.e. in general Sol may be a proper subset of X. Corollary 4.2 and Proposition 3.1
yield

Corollary 5.5. Suppose that inequality (3) or (4) holds for some constant ε0 > 0, bound s
satisfies inequality (10) and condition (C2) is satisfied for some constant p1 > 0. Besides,
assume that GA with multistart uses a termination condition tmax = m and one of the
following selection operators:

• k-tournament selection with k > αλ where α > 0 is a constant or

• (µ, λ)-selection with a constant µ or

• proportional selection in the case of F : Sol→ Z+ and the fitness function is of the
form f (x) = F(x)ν where ν > ln(αλ)F∗ and α > 0 is a constant.

Then, there exists such positive constant c that with population size λ ≥ c ln (m) /s a
local optimum is first reached by the GA with multistart after evaluation of at most emλ
tentative solutions in expectation.

Corollary 5.5 is formulated for the GA with multistart rather than single-run
GA because, in general, this result does not hold for the single-run GA. Indeed,
suppose Sol , X and consider a GA where the mutation operator has the follow-
ing properties. On one hand Mut never outputs a feasible offspring, given an
infeasible input. On the other hand, given a feasible genotype x, Mut(x) is infea-
sible with a positive probability, lower bounded by a constant ε ∈ (0, 1]. Finally,
assume that the initialization procedure for population P0 produces only feasible
solutions, but none of them is locally optimal. Now all conditions of Corollary 5.5
are satisfied, but with a positive probability of at least ελ the whole population P1

consists of infeasible solutions, and subject to this event all populations P1,P2, . . .
are infeasible. Therefore, if the GA is run without restarts, the expected number
of iterations until the first improvement of the best found solution is unbounded,
and the expected hitting time of a local optimum is unbounded as well. The need
for restarting the GA was overlooked in the first publication of a result analogous
to Corollary 5.5 in [13]. The GA considered in [13] should be replaced by the
GA with multistart using the termination condition tmax = m to make the results
in [13] correct in the case of Sol , X. This correction is implemented in [14].

Corollary 5.5 may be used to estimate the capacities of GAs to find efficiently
the solutions with guaranteed approximation ratio if all local optima of a problem
have a known approximation ratio.

Definition 5.6. [2] A polynomially bounded NP optimization problem Π belongs to the
class of Guaranteed Local Optima (GLO) problems, if the following two conditions
hold:
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1) At least one feasible solution yI ∈ Sol is efficiently computable for every instance I ∈
Inst;

2) A K-bounded neighborhood mappingNI exists, such that for every instance I, any
local optimum of I with respect toNI has a constant guaranteed approximation ratio.

The class GLO contains such well-known NP optimization problems as the
Maximum Staisfiablity and the Maximum Cut problems, besides that, on graphs
with bounded vertex degree, the Independent Set problem, the Dominating Set
problem, and the Vertex Cover problem also belong to GLO [2].

If a problem Π belongs to GLO and n is sufficiently large, then in view of
Proposition 5.3, for any x ∈ Sol and y ∈ N(x), the bitwise mutation operator
with pm = K/n satisfies the condition Pr{Mut∗(x) = y}−1

∈ Poly. Therefore,
Corollary 5.5 implies the following

Corollary 5.7. If Π ∈ GLO and GA with multistart uses

1. a polynomial-time initialization procedure that produces a population with at least
one feasible solution with probability p1 such that 1/p1 ∈ Poly,

2. the tournament selection or the (µ, λ)-selection,
3. a crossover operator satisfying (3) or (4) for some positive constant ε0 and
4. the bitwise mutation,

then given suitable values of parameters λ, pm and k or µ, GA with multistart visits a
solution with a constant guaranteed approximation ratio within expected polynomially
bounded time.

6. CONCLUSIONS

The obtained bounds on the first hitting times for sets of global or local optima
are extending some previously known bounds of such kind for genetic algorithms
and may be applied to standard benchmarks and genetic algorithms as, well to
some stat-of-the-art genetic algorithms for combinatorial optimization problems.
Considering the selection operators with very high selection pressure, we obtain
the bounds that apply even in the cases where the probability of non-downgrading
is not lower-bounded by a positive constant.

The obtained results imply that if a problem is polynomially bounded and
the feasible solutions are present in the initial population, then a local optimum
in a Hamming neighborhood system is computable in expected polynomial time
by standard GAs with multistart. Besides, given suitable parameters and initial-
ization procedure, a non-elitist GA with tournament selection or (µ, λ)-selection
approximates any problem from GLO class within a constant ratio in polynomial
time in expectation.

If an NP optimization problem is polynomially bounded, then Canonical Ge-
netic Algorithm with appropriate parameters tuning and fitness scaling finds a
local optimum within expected polynomial time for many standard neighbor-
hood systems.
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