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Abstract: G. Klir proposed to describe the behavior of complex systems using behavior 

functions (BFs) - invariant constraints on the set of system states. BFs are one of the most 

productive tools for studying the functioning of systems. To study systems, it is necessary 

to have a metric for measuring of the difference between two BFs. To describe BFs modern 

researchers do not use distributions other than probability or possibility. But these 

distributions can be considered as special cases of Sugeno fuzzy measures, the use of which 

greatly expands the possibilities in the study of systems. However, metrics to measure the 

difference between fuzzy measures have not been developed. Therefore, in this article, the 

authors proposed a new metric and an algorithm for its calculation for the case when BFs 

are described by Sugeno fuzzy measures. This metric is based on the Cartesian product of 

fuzzy measures and the use of our proposed concentration function. The metric makes it 

possible to compare the behavior of systems in the case of describing BFs by Sugeno fuzzy 

measures with different modalities, as well as to ensure the priority of taking into account 

the set of the most significant states of the system. 

Keywords: System, behavior function, metric, metric space, fuzzy measure, fuzzy integral, 

distance function, norm. 
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1. INTRODUCTION 

In accordance with the approach proposed by G. Klir [1], the behavior of the system 

can be uniquely described by BF, which is a mapping of the form 𝑓(𝑐): 𝐶 → [0,1]. Unlike 
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differential or difference equations, BF defines an invariant constraint on the set of system 

states 𝐶 with respect to some parameter (for example, time, space, or group). Therefore, 

BF allows the researcher to present and easily analyze all admissible states of the system 

in a holistic way. If time is chosen as a parameter, then the dynamics of the output variables 

of the system can be easily defined as the composition of the input variables and BF. 

Examples of solving system problems can be found in many studies, for example, in 

[2, 3]. To solve these problems, it is often necessary to estimate the distance between BFs. 

For example, it is necessary to determine the degree of stability of behavior for a system 

that has been affected. Or another example – from a variety of systems, it is necessary to 

choose a system that best performs a given target behavior. In the latter case, the problem 

can be formulated as the problem of choosing the best purposeful system (we will consider 

the solution of this problem below): 

𝑓∗(𝑐𝑖) = 𝑎𝑟𝑔 min
𝑓(𝑐𝑖)∈ℱ

(𝑑(𝑓(𝑐𝑖), 𝑓𝑔𝑜𝑎𝑙(𝑐𝑖))),                                                                     (1) 

where:  

ℱ = {𝑓𝑗(𝑐𝑖), 𝑗 = 1, 𝑁ℱ
̅̅ ̅̅ ̅̅ ̅} is the set of BFs of possible systems; 

𝑁ℱ = 𝐶𝑎𝑟𝑑(ℱ) is size of the set ℱ; 

𝑓𝑔𝑜𝑎𝑙(𝑐𝑖) is the target BF; 

𝑑(∙,∙) is the distance function between BFs. 
 

BF 𝑓(𝑐) formalizes the distribution of confidence in the appearance of the state 𝑐 ∈ 𝐶. 

The set of states is 𝑛 – dimensional unit hypercube 𝐶 = [0,1]𝑛. Significant states for the 

system are states that are observed with maximum confidence on a specified parametric 

set. The state of the system 𝑐𝑖 ∈ 𝐶, 𝑖 = 1, 𝑛̅̅ ̅̅̅, 𝑛 = 𝐶𝑎𝑟𝑑(𝐶) can be described by the values 

of the set 𝑋 of sampling variables of the system. Each variable 𝑥𝑚 ∈ 𝑋, 𝑚 = 1, 𝑁𝑋
̅̅ ̅̅ ̅̅ ̅ (where 

𝑁𝑋 is the number of sampling variables) is defined on its own set of values 𝑉𝑚. Then the 

state of the system 𝑐𝑖 ∈ 𝐶 is a vector in the space defined on the Cartesian product 𝑉1 ×
𝑉2 × ⋯ × 𝑉𝑚.  

BF can be defined using various mathematical constructions, the properties of which 

directly affect the productivity of BF as a system analysis tool. In particular, G. Klir [1] 

used distributions of the probability measure and the measure of possibility. The same 

measures have been used in other studies, for example [4-6]. However, as shown by 

D. Pospelov [7], both the probability distribution and the possibility distribution are partial 

cases of fuzzy measures, in particular, Sugeno's fuzzy measure [8]. 

The Sugeno fuzzy measure 𝑓(∙) is a non-additive function of the set 𝑓(∙): 2𝐶 → [0,1], 
where 2𝐶  is the set of all subsets of the universal set 𝐶. The following rule is used to define 

the Sugeno fuzzy measure. Let 𝐴, 𝐵 ⊆ 𝑋, 𝐴 ∩ 𝐵 = ∅. Then 𝑓(𝐴 ∪ 𝐵) = 𝑓(𝐴) + 𝑓(𝐵) +
𝜆 ∙ 𝑓(𝐴) ∙ 𝑓(𝐵), where 𝜆 is the normalization parameter of the fuzzy measure 𝑓(∙). If 𝜆 =
0 the fuzzy measure is a probability measure. If 𝜆 = −1, the fuzzy measure is a possibility 

measure. The parameter 𝜆 reflects modality, that is, the attitude of the content of the 

judgment (assessments represented by this measure) to reality. In other words, modality is 

a qualification of judgments, according to which they are distinguished as affirming or 

denying the possibility, impossibility, randomness or necessity of their content. 

Thus, Sugeno fuzzy measure is a generalization of probability and possibility measures. 

Therefore, its use for BFs representation expands the capabilities for describing the 

functioning of complex systems. In particular, determining the distance between two fuzzy 
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measures makes it possible to improve the solution of system problems through the use of 

estimates with different modalities. Although G. Klir mentioned the possibility of using 

fuzzy measures, he did not develop this thesis. In addition, we did not find such references 

in the known literature. To compare BFs, researchers most often suggest using the class of 

Minkowski distances [9] or the information distance between BFs [1]. However, as we 

have shown below, in the case of arbitrary fuzzy measures, the application of these 

distances can lead to incorrect results. This became the main motivation for our study, the 

purpose of which is to develop a distance function 𝑑(∙,∙) between two Sugeno fuzzy 

measures. 

This distance must meet several general requirements. First, based on the practice of 

solving system problems, it is desirable that the distance 𝑑(∙,∙) satisfy the properties of the 

metrics. Secondly, for two systems similar in behavior, the distance should have a 

minimum value: 𝑑(𝑓1, 𝑓2) → 0. Here, as similar in behavior, we will consider systems for 

which the sets of their significant states coincide as much as possible. That is, if 𝐴 ⊆ 𝐶 and 

𝐵 ⊆ 𝐶 are sets of significant states for two systems, respectively, then the condition of 

approximate equality 𝐴 ≅ 𝐵 must be satisfied. Significant states of the system as a whole 

should not depend on the modality of fuzzy measures with which BFs are described. 

Therefore, for the case of fuzzy measures, the condition ∀𝜆𝑓1
, 𝜆𝑓2

,  𝑑(𝑓1, 𝑓2) → 0 must be 

satisfied, where 𝜆𝑓1
, 𝜆𝑓2

 are the normalization parameters of Sugeno fuzzy measures. 

Thirdly, if the systems are fundamentally different in their behavior, then the distance 

should have a maximum value, and the sets of significant states should not intersect 𝐴 ∩
𝐵 = ∅. 

Thus, the task of our study is to develop the distance between two Sugeno fuzzy 

measures that are used to describe the behavior of complex systems. We also need to 

develop an algorithm for calculating this distance and prove that the distance satisfies the 

general requirements discussed above, as well as demonstrate the productivity of the 

distance in solving system problems in practice. 

To solve this problem, we proposed a limited metric and an algorithm for its 

calculation. The metric allows you to compare two Sugeno fuzzy measures, taking into 

account the most significant states of the system. We have shown that the metric satisfies 

the general requirements discussed above. We also considered an example of solving a 

system problem, demonstrating the performance of this metric and the possibility of 

obtaining erroneous solutions using the well-known Minkowski metric. 

 2. LITERATURE REVIEW AND ANALYSIS OF KNOWN 

APPROACHES 

To ensure the constructiveness of the review of the literature and the analysis of known 

approaches, let us clarify the general requirements for the metrics of the BFs space. Then 

we will correlate known approaches with these requirements. 

Requirements for the distance function 𝑑(∙,∙). 

So, the similarity of two comparable systems defined on the common set of system 

states C is expressed in terms of the metric distance 𝑑(∙,∙) between their BFs. To solve 

system problems in practice, it is necessary that the distance 𝑑(∙,∙) satisfy the following 

requirements. 
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1. The distance 𝑑(∙,∙) must satisfy the requirements of the metric. In particular, the 

distance 𝑑(∙,∙): ℱ × ℱ → 𝑅 will be a metric if ∀𝑥, 𝑦, 𝑧 ∈ ℱ the following conditions are 

satisfied: 

positive definiteness: 𝑑(𝑥, 𝑦) ≥ 0; 

identity: if 𝑑(𝑥, 𝑦) = 0, then 𝑥 = 𝑦; 

symmetry: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥); 

triangle inequality 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦). 
 

2. Since the significant states of the system most fully describe the behavior of the 

system, the distance 𝑑(∙,∙) should first of all take into account the sets of significant states, 

that is, the states of systems for which 𝑓(𝑐𝑖) → 𝑚𝑎𝑥. 

3. For the constructive use of the metric, it is desirable that the limitation condition 𝑑(∙
,∙) ∈ [0,1] be satisfied. 

4. Systems with similar behavior should have maximally close sets of significant states 

𝐴, 𝐵 ⊆ 𝐶, 𝐴 ≅ 𝐵. 

5. The systems that maximally differ in behavior must have non-intersecting sets of 

significant states 𝐴, 𝐵 ⊆ 𝐶, 𝐴 ∩ 𝐵 = ∅. 

Analysis of known approaches. 

Today we know about a large number of different distances, a representative list of 

which is considered in the study [10]. Here we will consider distances that are most 

convenient for comparing BFs in system problems, where BFs are defined on the common 

discrete set of states 𝐶 = [0,1]𝑛. 

To determine the distance on the space ℱ, we can use metric functions based on the 

following formalisms: 

norm metrics; 

norm metrics defined on spaces with scalar product; 

distances specified on a set of distribution laws; 

symmetrical difference metrics; 

distances between sets. 
 

Consider the most suitable distances from the indicated groups in accordance with the 

requirements mentioned above. 
sa 

Norm’s metrics [10]. The norm’s metrics on a real vector space 𝑉 are defined as: 

∀𝑥, 𝑦 ∈ 𝑉, ‖𝑥 − 𝑦‖, where ‖∙‖ is the norm on 𝑉. The norm function ‖∙‖: 𝑉 → 𝑅, satisfies 

the conditions: 1) ∀𝑥 ∈ 𝑉, ‖𝑥‖ ≥ 0 (‖𝑥‖ = 0 only when 𝑥 = 0); 2) ‖𝑎 ∙ 𝑥‖ = |𝑎| ∙ ‖𝑥‖, 

where 𝑎 is a scalar; 3) ∀𝑥, 𝑦 ∈ 𝑉, ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖. A finite-dimensional normed 

vector space (𝑉, ‖∙‖) is complete, that is, a Banach space. All norms defined on it are 

equivalent. If the space ℱ is considered as a Banach space, then metrics of type 𝑙𝑝
𝑛 from 

the class of Minkowski distances [10-12] of the following form can be considered as a 

metric: 

∀𝑔, 𝑣 ∈ ℱ, 𝑙𝑝
𝑛(𝑔, 𝑣) = (∑ |𝑔(𝑐𝑖) − 𝑣(𝑐𝑖)|𝑝

𝑐𝑖∈𝐶
)

1
𝑝⁄

,                                                    (2) 

where 𝑛 = 𝐶𝑎𝑟𝑑(𝐶), 𝑝 ∈ [1, +∞[ is the distance function parameter. 
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If 𝑝 = 1, dependence (2) describes the Hamming distance, if 𝑝 = 2 – the Euclidean 

distance. If 𝑝 → +∞, we have 𝑙𝑝
𝑛(𝑔, 𝑣) = max

𝑐𝑖∈𝐶
|𝑔(𝑐𝑖) − 𝑣(𝑐𝑖)|. The 𝑙𝑝

𝑛 metrics can be 

normalized to 1 when divided by 𝑛. However, the use of these metrics entails an error when 

comparing systems with fuzzy measures of different modalities. 

Example 1. Let two similar systems have BFs described using fuzzy measures (see 

Figure 1). These fuzzy measures have similar density functions 𝑣(𝑐𝑖) = 2 ∙ 𝑔(𝑐𝑖), 𝑖 = 1, 𝑛̅̅ ̅̅̅, 

but different modalities: 𝜆𝑔 ≅ −0.79,, 𝜆𝑣 ≅ 0.94. In this case, the condition 𝑙𝑝
𝑛(𝑔, 𝑣) = 0 

must be satisfied. As can be seen from metric values on Figure 1, this condition is not 

satisfied. The analysis showed that the use of 𝑙𝑝
𝑛 type metrics is admissible only for fuzzy 

measures of one modality. In addition, the 𝑙𝑝
𝑛 metric considers all states of systems as 

equivalent, that is, it does not take into account their significant states. 

 

Figure 1: Density distribution of similar fuzzy measures and values of metrics of type lp
n 

for different parameters p 

Norm's metrics on spaces with scalar product. To compare two BFs, we can use the 

norm metrics, which are defined by the scalar product ‖𝑥‖ = √〈∙,∙〉, where: 𝑉 is a real 

vector space; 〈∙,∙〉: 𝑉 × 𝑉 → 𝑅 is a function. For this function ∀𝑥, 𝑦, 𝑧 ∈ 𝑉 and scalars 𝑎, 𝑏, 

the following conditions must be satisfied: 1) 〈𝑥, 𝑥〉 ≥ 0, 〈𝑥, 𝑥〉 = 0 ⇒ 𝑥 = 0; 2) 〈𝑥, 𝑦〉 =
〈𝑦, 𝑥〉; 3) 〈𝑎 ∙ 𝑥 + 𝑏 ∙ 𝑦, 𝑧〉 = 𝑎 ∙ 〈𝑥, 𝑧〉 + 𝑏 ∙ 〈𝑦, 𝑧〉. In particular, we can use the angular 

half-metric [10] between the density vectors of discrete fuzzy measures 𝑔, 𝑣 ∈ ℱ, which 

has the form: 

𝑑𝑐𝑜𝑠(𝑔, 𝑣) = cos−1 (
〈𝑔, 𝑣〉

‖𝑔‖2 ∙ ‖𝑣‖2

),                                                                                   (3) 

where cos−1 is the inverse cosine function; 

‖𝑔‖2 = √∑ (𝑔(𝑐𝑖))
2𝑛

𝑖  is the Euclidean norm on 𝐶; 

〈𝑔, 𝑣〉 = ∑ (𝑔(𝑐𝑖) ∙ 𝑣(𝑐𝑖))𝑛
𝑖  is the scalar product of fuzzy measure density vectors. 

 

The half-metric 𝑑𝑐𝑜𝑠(𝑔, 𝑣) is a positive-definite, symmetric, reflexive function that 

satisfies the triangle condition. This half-metric is also called the spectral angle of contrast 

[13]. 

For all strictly positive measures, the Hellinger metric [14, 15] can be used: 
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𝑑𝐻𝑒𝑙(𝑔, 𝑣) = 2 ∙ ( ∑ (√𝑔(𝑐𝑖) − √𝑣(𝑐𝑖))
2

𝑖=1,𝑛̅̅̅̅̅

)

1
2⁄

.                                                          (4) 

The metric (4) is used to compare distributions of measures defined on 𝐶. This metric 

belongs to special Riemannian metrics that are used in information theory [16]. 

Example 2. The values of metrics (3) and (4) for the case of three measure distributions 

are shown in Figure 2. As can be seen, the measures 𝑔(∙) and 𝑣(∙) are similar in accordance 

with the sets of significant states, and the measures 𝑣(∙) and ℎ(∙) are maximally dissimilar 

𝑆𝑢𝑝𝑝(𝑣(∙)) ∩ 𝑆𝑢𝑝𝑝(ℎ(∙)) = ∅. The analysis showed that functions (3) and (4) are not 

limited to a unit interval if the measures are not probability measures. The Hellinger metric 

does not allow taking into account the similarity in behavior of systems, that is, the 

condition 𝑑𝐻𝑒𝑙(𝑔, 𝑣) ≠ 0 is not satisfied. In this sense, the angular half-metric (3) is more 

preferable. However, both functions do not take into account the significance of system 

states. This increases the influence of insignificant states of the system, which introduces 

a distortion in the estimate of the distance between BFs. 

  

Figure 2: Densities' distribution of fuzzy measures and metrics' values 

The distances given on the set of distribution laws. The distances given on the set of 

distribution laws can be separated into a special group [10]. They are used primarily for 

probability distributions and reflect relative entropy or information error. Most of these 

distances are not symmetrical. The exception is the symmetric version of the Kullback-

Leibler distance (Jeffrey divergence), which we will discuss below. 

To compare probabilistic BFs, G. Klir proposed using the information distance based 

on the Shannon entropy [17]. This distance is the asymmetric information distance of the 

distribution 𝑔(𝑐𝑖) with respect to 𝑣(𝑐𝑖) and is defined as: 

𝑑𝐶𝐸𝑆(𝑔, 𝑣) =
1

log2|𝐶|
∙ ∑ 𝑔(𝑐𝑖) ∙ log2 (

𝑔(𝑐𝑖)

𝑣(𝑐𝑖)
) .

𝑖=1,𝑛̅̅̅̅̅

                                                          (5) 

The distance is an estimate of the loss of information about the behavior of the system 

in the transition from BF 𝑔(𝑐𝑖) to BF 𝑣(𝑐𝑖). Distance reflects the directional relative 

difference between BFs and therefore may apply to not all system tasks. 

To compare discrete BFs represented by probability measure distributions, Klir and 

Higashi proposed using an information distance of the form: 
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𝑑𝐷𝑈(𝑔, 𝑣) = ∑ (𝑙𝑖 − 𝑙𝑖+1) ∙
𝑛

𝑖=1
log2 (

|𝐴𝑙𝑖
|

|𝐵𝑙𝑖
|
),                                                                   (6) 

where 𝐴𝑙𝑖
= {𝑐𝑖 ∈ 𝐶|𝑔(𝑐𝑖) ≥ 𝑙𝑖 ∈ [0,1]}, 𝐵𝑙𝑖

= {𝑐𝑖 ∈ 𝐶|𝑣(𝑐𝑖) ≥ 𝑙𝑖 ∈ [0,1]}, 𝑙1 = 1 >

𝑙2 > ⋯ > 𝑙𝑖 > ⋯ > 𝑙𝑛 = 0.  
 

It is possible that 𝑙𝑖 = �̂�(𝑐𝑖), where �̂�(𝑐𝑖)is the descending distribution of the 

possibility measure 𝑔(∙), �̂�(𝑐𝑛+1) = 0. However, this distance is also not symmetric, like 

(5). 

As a rule, the distances specified on the set of distribution laws are not symmetrical. 

To fulfill the symmetry condition, you can use the symmetrical version of the Kullback-

Leibler distance (Jeffrey divergence) [10, 18] of the form: 

𝑑𝐽(𝑔, 𝑣) = ∑ [𝑔(𝑐𝑖) ∙ ln (
𝑔(𝑐𝑖)

𝑣(𝑐𝑖)
) + 𝑣(𝑐𝑖) ∙ ln (

𝑣(𝑐𝑖)

𝑔(𝑐𝑖)
)] .

𝑖=1,𝑛̅̅̅̅̅

                                         (7) 

Example 3. Figure 3 shows the distance values (5) and (7) for the BFs from Example 

1. Jeffrey's divergence (7) is not normalized to 1 and does not provide the equality 

condition 𝑑𝐽(𝑔, 𝑣) = 0 for similar systems. Information distance (5) 𝑑𝐶𝐸𝑆(𝑔, 𝑣) is not a 

metric. This distance is asymmetric 𝑑𝐶𝐸𝑆(ℎ, 𝑣) ≠ 𝑑𝐶𝐸𝑆(𝑣, ℎ) and does not satisfy the 

requirements for comparing BFs represented by fuzzy measures. 

 

 
Figure 3: The distance values of the Jeffrey divergence (7) and the modified version of the Shannon 

entropy (5) 

Figure 4 shows BFs represented by possibility distributions and distances (6) between 

them. 
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Figure 4: BFs represented by possibility distributions and distances (6) between them 

The use of distance (6) is not always possible. This distance is not a metric. The 

function 𝑑𝐷𝑈(𝑔, 𝑣) is asymmetric. This leads to the appearance of its negative values. In 

addition, the use of distance (6) requires additional conditions for the BFs [1], which are 

not satisfied when the BFs is represented by arbitrary fuzzy measures. 
 

Metrics of symmetric difference. These metrics [10, 19] are defined on the space 

(𝐶, 𝒜, 𝜇) with measure, where 𝒜 is the set of all subsets of the set 𝐶, ∀𝐴 ∈ 𝒜, 𝜇(𝐴) < ∞. 

In a particular case, the measure 𝜇(∙) can be a cardinal number, area, or volume. The metric 

of the symmetric difference on the set 𝒜 can be determined based on the following half-

metric: 

𝑑∆(𝐴, 𝐵) = 𝜇(𝐴∆𝐵), 𝐴∆𝐵 = (𝐴 ∪ 𝐵)\(𝐴 ∩ 𝐵).                                                              (8) 

If 𝐴 and 𝐵 are equal almost everywhere, then 𝑑∆(𝐴, 𝐵) = 0. If we identify 𝐴 and 𝐵 

under the condition 𝑑∆(𝐴, 𝐵) = 0, then we obtain the metric of the symmetric difference 

(the Fréchet–Nikodym–Aronszyan metric [20]). 

The modified metric of the symmetric difference is the Steinhaus metric [21]: 

𝑑𝑆ℎ(𝐴, 𝐵) =
𝜇(𝐴∆𝐵)

𝜇(𝐴 ∪ 𝐵)
= 1 −

𝜇(𝐴 ∩ 𝐵)

𝜇(𝐴 ∪ 𝐵)
, 𝜇(𝐴 ∪ 𝐵) > 0.                                               (9) 

The use of these metrics for solving system problems requires the definition of sets 𝐴 

and 𝐵 based on the distributions of fuzzy measures 𝑔(∙) and 𝑣(∙). For arbitrary fuzzy 

measures, level sets 𝐴𝑙 = {𝑐𝑖 ∈ 𝐶|𝑔(𝑐𝑖) ≥ 𝑙 ∈ [0,1]}, 𝐵𝑙 = {𝑐𝑖 ∈ 𝐶|𝑣(𝑐𝑖) ≥ 𝑙 ∈ [0,1]}. 

The metrics can be normalized to the cardinality of the state set 𝐶: 

𝑑∆
𝑙 (𝑔, 𝑣) =

𝑑∆(𝐴𝑙 , 𝐵𝑙)

𝐶𝑎𝑟𝑑(𝐶)
, 𝑑𝑆ℎ

𝑙 (𝑔, 𝑣) =
𝑑𝑆ℎ(𝐴𝑙 , 𝐵𝑙)

𝐶𝑎𝑟𝑑(𝐶)
.                                                          (10) 

Example 4. Figure 5 shows the values of the symmetric difference metrics for three 

fuzzy measures (see Figure 2). Metric values are calculated for levels 𝑙 ∈
{0.2; 0.3; 0.5; 0.6} provided that 𝜇(∙) = |∙| is a cardinal number. 
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Figure 5: The values of the metrics of the symmetric difference for three fuzzy measures from 

Figure 2: the Fréchet–Nikodym–Aronszyan and the Steinhaus metric 

The analysis shows that the metrics of the symmetric difference are normalized to 1. 

These metrics make it possible to measure the distance between BFs, but they strongly 

depend on the level 𝑙, which determines the compared sets 𝐴𝑙 and 𝐵𝑙 . The use of the metrics 

of the symmetric difference can cause distance estimation errors in the case of comparing 

fuzzy measures that have different modalities. For example, if  𝜆𝑔 ≫ 𝜆𝑣, then 𝑔(𝑐𝑖) ≪

𝑣(𝑐𝑖), hence the subsets 𝐴𝑙 and 𝐵𝑙  are very different, which causes a significant increase 

in 𝐴∆𝐵 even in the case of systems with similar behavior. 

Distances between sets. A separate group of metrics includes metrics that are based on 

an estimate of the distance between sets [10]. In particular, this is the Hausdorff 𝐿𝑝-distance 

[22] , which has the form: 

∀𝑔, 𝑣 ∈ ℱ, 𝑑𝐻𝑎𝑢𝑠(𝑔, 𝑣) = (∑ |𝑑(𝑔(𝑐𝑖), 𝑣(∙)) − 𝑑(𝑔(∙), 𝑣(𝑐𝑖))|
𝑝

𝑐𝑖∈𝐶
)

1
𝑝⁄

,          (11) 

where 𝑑(𝑔(𝑐𝑖), 𝑣(∙)) = min
𝑐𝑗∈𝐶

𝑑 (𝑔(𝑐𝑖), 𝑣(𝑐𝑗)) is the distance between the point and the 

set, in the special case 𝑑 (𝑔(𝑐𝑖), 𝑣(𝑐𝑗)) = |𝑔(𝑐𝑖) − 𝑣(𝑐𝑗)|. 
 

Example 5. Figure 6 shows the values of  𝐿𝑝-distances between BFs shown in Figure 2 

for different values of the distance function parameter 𝑝 ∈ [1, +∞[. 
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Figure 6: Values of 𝐿𝑝-distances between BFs (see Figure 2) for 𝑝 ∈ {1,2,10} 

The use of the distance 𝑑(𝑔(𝑐𝑖), 𝑣(∙)) between a point and a set in formula (11) reduces 

the sensitivity of the Hausdorff 𝐿𝑝-distance for the case of fuzzy measures. The distance 

𝑑𝐻𝑎𝑢𝑠(𝑔, 𝑣) does not distinguish between significant and insignificant states. This leads to 

errors when comparing the behavior of systems. 

An analysis of the possibility of using known distance functions and metrics to compare 

BFs showed that: 

1. Known distances and metrics do not fully meet the requirements for comparing BFs 

represented by fuzzy measures. 

2. The most productive metrics for comparing BFs are the angular half-metric 

𝑑𝑐𝑜𝑠(𝑔, 𝑣), as well as the metric of the symmetric difference of Fréchet–Nikodym–

Aronszyan 𝑑∆
𝑙 (𝑔, 𝑣). The half-metric 𝑑𝑐𝑜𝑠(𝑔, 𝑣) makes it possible to take into account the 

similarity of systems, but requires normalization and does not take into account the priority 

of significant states of the system. The metric 𝑑∆
𝑙 (𝑔, 𝑣) takes into account the similarity of 

systems and the priority of significant states of the system, but strongly depends on the 

choice of the level 𝑙 ∈ [0,1], which determines the compared sets. 

Thus, in order to eliminate these shortcomings, it is necessary to develop a new distance 

function on the set F BFs represented by arbitrary fuzzy measures. This function must 

satisfy the properties of the metric, and must also be normalized and take into account the 

priority of significant states of a system. 

3. RESEARCH PROBLEM 

It is necessary to develop a new metric 𝑑𝐹𝑀(∙,∙) for the space ℱ of BFs, which are 

represented by Sugeno fuzzy measures. These measures are defined on the set 𝐶 and can 

have different modalities 𝜆 ∈ [−1, +∞[. The metric must be normalized: ∀𝑔, 𝑣 ∈
ℱ, 𝑑𝐹𝑀(𝑔, v) ∈ [0,1]. The metric should also take into account the priority of meaningful 

sets of system states that are being compared. In addition, it is necessary to develop an 

algorithm for calculating a new metric and demonstrate its performance. 
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4. NEW METRIC BASED ON THE CARTESIAN PRODUCT OF FUZZY 

MEASURES 

The main idea in constructing the metric 𝑑𝐹𝑀(∙,∙) is to take into account the sets of 

significant states when comparing fuzzy measures. To determine these sets, we proposed 

to use the measure concentration function. Based on this, in order to solve the research 

problem, it is necessary: 

develop the mechanism for determining the significant states of the system, which do 

not depend on the modality of fuzzy measures; 

justify the procedure for comparing subsets of significant states of the system and build 

a metric for comparing fuzzy measures; 

develop an algorithm for calculating the metric. 
 

Determination of the measure concentration function. Let 𝑔(∙): 2𝐶 → [0,1] be the fuzzy 

Sugeno measure [8], which models a parameter-invariant constraint on the state set 𝐶 of 

the system. The measure 𝑔(∙) describes the BF of the system. Moreover, within the set of 

states 𝐶, there are areas of significant states. Let's denote this area as 𝐴 ⊆ 𝐶. The 

confidence in the appearance of states from 𝐴 is much higher than that of states from �̅�. 

Taking into account the monotonicity of fuzzy measures [23], we can state that ∀𝑐𝑖 ∈

𝐴, 𝑐𝑗 ∉ 𝐴, 𝑔(𝑐𝑖) ≥ 𝑔(𝑐𝑗). Let us order the density function of the fuzzy measure 𝑔(𝑐𝑖) in 

descending order. Then ∀𝑐𝑖 ∈ 𝐶 splits the set of states into two subsets 𝐴(𝑐𝑖) =

{𝑐𝑗 ∈ 𝐶, 𝑗 ≤ 𝑖} and its complement �̅�(𝑐𝑖) so that 𝐴(𝑐𝑖) ∪ �̅�(𝑐𝑖) = 𝐶, 𝐴(𝑐𝑖) ∩ �̅�(𝑐𝑖) = ∅. 

Let's define a function of the form: 

𝛿𝑔(𝑐𝑖) = 𝑔(𝐴(𝑐𝑖)) − 𝑔(�̅�(𝑐𝑖)), ∀𝑐𝑖 ∈ 𝐶, 𝛿𝑔(𝑐𝑖) ∈ [−1,1] .                                        (12) 

Taking into account the normalization condition of the fuzzy measure [23], we can 

write: 

𝛿𝑔(𝑐𝑖) = 𝑔(𝐴(𝑐𝑖)) − 𝑔(�̅�(𝑐𝑖)) = 𝑔(𝐴(𝑐𝑖)) −
1 − 𝑔(𝐴(𝑐𝑖))

1 + 𝜆𝑔 ∙ 𝑔(𝐴(𝑐𝑖))
. 

For the case when the fuzzy measure is the probability measure 𝑔(∙) = 𝑃𝑟(∙), we have 

𝜆𝑔 = 0. Then 𝑔(𝐴(𝑐𝑖)) = 0.5 ∙ (𝛿𝑔(𝑐𝑖) + 1). 

We define the measure concentration function as: 

𝐶𝑜𝑛𝑐𝑔(𝑐𝑖) = 0.5 ∙ (𝛿𝑔(𝑐𝑖) + 1).                                                                                        (13) 

Note that the function 𝐶𝑜𝑛𝑐𝑔(𝑐𝑖) satisfies the following condition: ∀𝑔(∙) ∈

ℱ, 𝐶𝑜𝑛𝑐𝑔(𝑐𝑖) ∈ [0,1]. This function shows how much more confidence is concentrated in 

the subset of states 𝐴(𝑐𝑖) ⊆ 𝐶 than in its complement. In other words, the function 

𝐶𝑜𝑛𝑐𝑔(𝑐𝑖) displays the confidence concentration on the subset 𝐴(𝑐𝑖) = {𝑐𝑗 ∈ 𝐶, 𝑗 ≤ 𝑖} for 

a fuzzy measure. 

Figure 7 shows the concentration function for the fuzzy measure 𝑔(∙) in Figure 1. 
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Figure 7: Function 𝐶𝑜𝑛𝑐𝑔(𝑐𝑖) for the measure 𝑔(∙) in Figure 1 

Comparison of two fuzzy measures. Denote by 𝐴𝑙 = {𝑐𝑖 ∈ 𝐶|𝐶𝑜𝑛𝑐𝑔(𝑐𝑖) ≤ 𝑙 ∈

[0,1], 𝑔(𝑐𝑖) ≠ 0} the concentration set of the measure 𝑔(∙) at the level 𝑙. This expression 

means that the set 𝐴𝑙 ⊆ 𝐶 with confidence 𝑙 concentrates in itself all significant states of 

the system. Similarly, for the measure 𝑣(∙), we define the concentration set as follows: 

𝐵𝑙 = {𝑐𝑖 ∈ 𝐶|𝐶𝑜𝑛𝑐𝑣(𝑐𝑖) ≤ 𝑙 ∈ [0,1], 𝑣(𝑐𝑖) ≠ 0 }. Obviously, in the general case 𝐴𝑙 ≠ 𝐵𝑙 . 

The Fréchet–Nikodym–Aronszyan metric can be used to compare two sets 𝐴𝑙 , 𝐵𝑙 ⊆ 𝐶. 

For comparison, we use the relation 𝜇(𝐴∆𝐵), 𝐴∆𝐵 = (𝐴 ∪ 𝐵)\(𝐴 ∩ 𝐵). To take into 

account the values of fuzzy measures 𝑔(∙) and 𝑣(∙) we define the measure 𝜇(∙) as the 

Cartesian product [24] of fuzzy measures in the form: 𝜇(∙) = 𝑔(∙) × 𝑣(∙) = 〈𝑔, 𝑣〉(∙). Let 

𝐷𝑙 = 𝐴𝑙∆𝐵𝑙 . Let's define a subset 𝐻𝑙 = 𝐷𝑙 × 𝐷𝑙 ⊆ 𝐶 × 𝐶. Then the measure of the 

Cartesian product 〈𝑔, 𝑣〉(∙) for 𝐻𝑙  will be determined by the expression: 

〈𝑔, 𝑣〉(𝐻𝑙) = (𝑠) ∫ 𝑔(𝐷𝑙)
𝐷𝑙

∘ 𝑣(∙) = 𝑔(𝐷𝑙) ∧ 𝑣(𝐷𝑙),                                                     (14) 

where (𝑠)∫  – designation of Sugeno integral. 
 

The measure 〈𝑔, 𝑣〉(𝐻𝑙) depends on the value of the level 𝑙. To compare fuzzy 

measures, we have to consider 𝑛 = 𝐶𝑎𝑟𝑑(𝐶) levels for concentration functions. Therefore, 

we define the level 𝑙𝑖 using the relation: 𝑙𝑖 = 𝐶𝑜𝑛𝑐𝑔(𝑥𝑖) ∨ 𝐶𝑜𝑛𝑐𝑣(𝑦𝑖), where 𝑥𝑖 , 𝑦𝑖 ∈ 𝐶. 

We also denote the set of levels as 𝐿 = {𝑙𝑖 , 𝑖 = 1, 𝑛̅̅ ̅̅̅, 𝑛 = 𝐶𝑎𝑟𝑑(𝐶)}. Then the distance 

between the fuzzy measures 𝑔(∙) and 𝑣(∙) will be determined by the expression: 

𝑑𝐹𝑀(𝑔, 𝑣) = s𝑢𝑝
𝑙𝑖∈𝐿

{𝑙𝑖 ∧ 〈𝑔, 𝑣〉(𝐻𝑙𝑖
)} ,                                                                                  (15) 

where 〈𝑔, 𝑣〉(𝐻𝑙𝑖
) = 𝑔(𝐴𝑙𝑖

∆𝐵𝑙𝑖
) ∧ 𝑣(𝐴𝑙𝑖

∆𝐵𝑙𝑖
), 𝐴𝑙𝑖

= {𝑐𝑖 ∈ 𝐶|𝐶𝑜𝑛𝑐𝑔(𝑐𝑖) ≤ 𝑙𝑖 ∈

[0,1], 𝑔(𝑐𝑖) ≠ 0}, 𝐵𝑙𝑖
= {𝑐𝑖 ∈ 𝐶|𝐶𝑜𝑛𝑐𝑣(𝑐𝑖) ≤ 𝑙𝑖 ∈ [0,1], 𝑣(𝑐𝑖) ≠ 0}, 𝑙𝑖 = 𝐶𝑜𝑛𝑐𝑔(𝑥𝑖) ∨

𝐶𝑜𝑛𝑐𝑣(𝑦𝑖), 𝑥𝑖 , 𝑦𝑖 ∈ 𝐶, 𝐶𝑜𝑛𝑐𝑔(𝑥𝑖) и 𝐶𝑜𝑛𝑐𝑣(𝑦𝑖)  – concentration functions of the form (13) 

for the measures 𝑔(∙) and 𝑣(∙), respectively. 
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Below we will show that expression (15) satisfies all the requirements for metrics and, 

therefore, is a metric distance. 

An algorithm for comparing two BFs represented by fuzzy measures. In view the 

expressions presented above, the algorithm for comparing two fuzzy measures 𝑔(∙) and 

𝑣(∙)  consists in performing the following steps: 

Step 1. Determining the concentration functions 𝐶𝑜𝑛𝑐𝑔(𝑐𝑖) and 𝐶𝑜𝑛𝑐𝑣(𝑐𝑖) for the fuzzy 

measures 𝑔(∙) and 𝑣(∙). The following steps must be performed for each fuzzy measure: 

Step 1.1. Descending ordering of the fuzzy measure density function 𝑔(∙) so that ∀𝑐𝑖 ∈
𝐶, 𝑔(𝑐𝑖) ≥ 𝑔(𝑐𝑖+1), 𝑖 = 1, 𝑛̅̅ ̅̅̅, 𝑛 = 𝐶𝑎𝑟𝑑(𝐶). 

Step 1.2. Construction of the function 𝛿𝑔(𝑐𝑖) = 𝑔(𝐴(𝑐𝑖)) − 𝑔(�̅�(𝑐𝑖)), where 𝐴(𝑐𝑖) ∪

�̅�(𝑐𝑖) = 𝐶, 𝐴(𝑐𝑖) ∩ �̅�(𝑐𝑖) = ∅, and 𝐴(𝑐𝑖) = {𝑐𝑗 ∈ 𝐶, 𝑗 ≤ 𝑖}. 

Step 1.3. Determination of the concentration function for the fuzzy measure 𝑔(∙) by 

expression (13). 

Step 1.4. Construction of the concentration function for the measure 𝑣(∙) by performing 

steps 1.1-1.3. 

Step 2. Determining the set of levels 𝐿 = {𝑙𝑖 , 𝑖 = 1, 𝑛̅̅ ̅̅̅, 𝑛 = 𝐶𝑎𝑟𝑑(𝐶)}, where 𝑙𝑖 =
𝐶𝑜𝑛𝑐𝑔(𝑥𝑖) ∨ 𝐶𝑜𝑛𝑐𝑣(𝑦𝑖), 𝑥𝑖 , 𝑦𝑖 ∈ 𝐶. 

Step 3. Determining the concentration sets of fuzzy measures 𝑔(∙) and 𝑣(∙) at levels 

𝑙𝑖 ∈ 𝐿 in the form: 𝐴𝑙𝑖
= {𝑐𝑖 ∈ 𝐶|𝐶𝑜𝑛𝑐𝑔(𝑐𝑖) ≤ 𝑙𝑖 ∈ [0,1], 𝑔(𝑐𝑖) ≠ 0}, 𝐵𝑙𝑖

= {𝑐𝑖 ∈

𝐶|𝐶𝑜𝑛𝑐𝑣(𝑐𝑖) ≤ 𝑙𝑖 ∈ [0,1], 𝑣(𝑐𝑖) ≠ 0}. 

Step 4. Calculation of the metric value 𝑑𝐹𝑀(𝑔, 𝑣) in accordance with expression (15). 

4. NEW METRIC BASED ON THE CARTESIAN PRODUCT OF FUZZY 

MEASURES 

So, above we have developed a new metric, as well as an algorithm for its calculation. 

In an effort to ensure the completeness of the research, below we want to discuss three 

questions: 

is expression (15) a metric distance? 

what are the advantages and disadvantages of the proposed distance (15) in comparison 

with the known distances? 

is expression (15) a productive tool that can be used to solve system problems? 
 

 

Question 1. Is relation (15) a metric distance? 

As mentioned above, for a function to be a metric, the conditions [10] of positive 

definiteness, identity, symmetry, and the triangle inequality must be satisfied. Let us show 

that the proposed distance (15) satisfies these conditions and is therefore a metric. 

1. The proposed metric 𝑑𝐹𝑀(𝑔, 𝑣) is positive definite. Since the value of the measure 

concentration function belongs to the unit interval, then ∀𝑙𝑖 ∈ 𝐿, 𝑙𝑖 ∈ [0,1]. Because of the 

fuzzy measure axiomatics, the measure 〈𝑔, 𝑣〉(𝐻𝑙𝑖
) is a positive definite set function whose 

value belongs to the unit interval. Therefore, expression (15) for 𝑑(𝑔, 𝑣) will also be 

positive definite, that is, ∀𝑔, 𝑣 ∈ ℱ, 𝑑𝐹𝑀(𝑔, 𝑣) ≥ 0. Moreover, since 𝑙𝑖 ∈ [0,1] and 

〈𝑔, 𝑣〉(𝐻𝑙𝑖
) ∈ [0,1], then 𝑑𝐹𝑀(𝑔, 𝑣) ∈ [0,1] is a limited metric. 

2. Two similar in behavior systems have similar BFs. If BFs are described by fuzzy 

measures, then for such systems the following condition is satisfied: ∀𝑐𝑖 ∈ 𝐶, 𝑣(𝑐𝑖) ∈
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[0,1], 𝑣(𝑐𝑖) = 𝛼 ∙ 𝑔(𝑐𝑖), where 𝛼 is the similarity coefficient. Then, ∀𝑐𝑖 ∈ 𝐶, the condition 

𝐴𝑙𝑖
= 𝐵𝑙𝑖

 is satisfied. Therefore, the symmetric difference 𝐴𝑙𝑖
∆𝐵𝑙𝑖

= ∅ and 

∀𝑙𝑖 , 〈𝑔, 𝑣〉(𝐻𝑙𝑖
) = 0. Obviously, then for systems similar in behavior, the identity condition 

𝑑𝐹𝑀(𝑔, 𝑣) = 0 is satisfied. 

3. Symmetric operators are used in constructing the metric. In particular, the symmetric 

operation ∨ is used to determine 𝑙𝑖. The operation 𝐴𝑙𝑖
∆𝐵𝑙𝑖

 is symmetric by definition. The 

measure of a Cartesian product is also a symmetric operation [24]. Therefore, the proposed 

metric satisfies the symmetry condition 𝑑𝐹𝑀(𝑔, 𝑣) = 𝑑𝐹𝑀(𝑣, 𝑔). 

4. The validity of the triangle inequality for the developed metric follows from metric 

transformations [10]. In particular, to construct the metric 𝑑𝐹𝑀(𝑔, 𝑣) at the level 𝑙𝑖, the 

metric of the symmetric difference of Fréchet–Nikodym–Aronszyan is used. 

Transformations of the form min(𝑡, 𝑑(𝑥, 𝑦)) and max(𝑑1(𝑥, 𝑦), 𝑑2(𝑥, 𝑦)) are metric and 

form a metric as a result. Therefore, the successive application of the indicated metric 

transformations preserves the properties of the metric of the symmetric difference in the 

developed metric. 

Thus, for 𝑑𝐹𝑀(𝑔, 𝑣) all conditions of the metric will be satisfied. 

Example 6. Let's show an example that 𝑑𝐹𝑀(∙,∙) satisfies the properties of the metric 

and the conditions, which are necessary for comparing BFs systems. Figure 8 shows the 

density distributions of fuzzy measures that describe several BFs and the values of the 

metric 𝑑𝐹𝑀(∙,∙) for all possible pair combinations of fuzzy measures. 

 

 

Metric Value Metric Value 

𝑑𝐹𝑀(𝑔, 𝑣) 0 𝑑𝐹𝑀(𝑔, 𝑢) 0.817 

𝑑𝐹𝑀(𝑔, ℎ) 1 𝑑𝐹𝑀(𝑢, 𝑔) 0.817 

𝑑𝐹𝑀(𝑣, ℎ) 1 𝑑𝐹𝑀(ℎ, 𝑢) 0.763 

Figure 8: The density distributions of fuzzy measures that describe several BFs and the values of 

the metric 𝑑𝐹𝑀(∙,∙) for all possible pair combinations of fuzzy measures 
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Calculations show that the proposed metric is positive definite, normalized ∀𝑓1, 𝑓2 ∈
ℱ, 𝑑𝐹𝑀(𝑓1, 𝑓2) ∈ [0,1] and symmetric, for example 𝑑𝐹𝑀(𝑔, 𝑢) = 𝑑𝐹𝑀(𝑢, 𝑔) = 0.817. The 

proposed metric effectively takes into account the priority of significant states of the 

system even in the case of different modalities. In particular, systems with BFs 𝑔(𝑐𝑖) and 

𝑣(𝑐𝑖) are similar ∀𝑐𝑖 ∈ 𝐶, 𝑣(𝑐𝑖) ∈ [0,1], 𝑣(𝑐𝑖) = 0.5 ∙ 𝑔(𝑐𝑖), 𝜆𝑔 = −0.619, 𝜆𝑣 = 1.556, as 

evidenced by 𝑑𝐹𝑀(𝑔, 𝑣) = 0. The proposed metric satisfies the triangle condition 

∀𝑓1, 𝑓2, 𝑓2 ∈ ℱ, 𝑑𝐹𝑀(𝑓1, 𝑓2) ≤ 𝑑𝐹𝑀(𝑓1, 𝑓3) + 𝑑𝐹𝑀(𝑓3, 𝑓2). For example, 𝑑𝐹𝑀(𝑔, ℎ) = 1, 

𝑑𝐹𝑀(𝑔, 𝑢) = 0.817, 𝑑𝐹𝑀(𝑢, ℎ) = 0.763. And then 𝑑𝐹𝑀(𝑔, 𝑢) + 𝑑𝐹𝑀(𝑢, ℎ) = 1.580 >
𝑑𝐹𝑀(𝑔, ℎ). 

Note that the entire set of systems similar in behavior form a class of systems equivalent 

in behavior, since ∀𝑓1, 𝑓2 ∈ ℱ, 𝑑𝐹𝑀(𝑓1, 𝑓2) = 0. The distance from an arbitrary BF to any 

BFs of a system from the class of equivalent systems will be preserved. For example, 

𝑑𝐹𝑀(𝑔, ℎ) = 𝑑𝐹𝑀(𝑣, ℎ). In this sense, the proposed metric is similar to the metric of the 

symmetric difference of Fréchet–Nikodym–Aronszyan. 

The proposed metric takes on a maximum value for systems that have completely 

different behavior, i.e. when 𝑆𝑢𝑝𝑝(𝑔(𝑐𝑖)) ∩ 𝑆𝑢𝑝𝑝(ℎ(𝑐𝑖)) = ∅. On Figure 8 these are 

systems with BFs 𝑔(𝑐𝑖) and ℎ(𝑐𝑖). For them 𝑑𝐹𝑀(𝑔, ℎ) = 1. 

We see that the calculations also confirm the conclusion that expression (15) is a metric 

and satisfies the conditions considered above, which are necessary for comparing the BFs 

of systems. 
 

 

Question 2. What are the advantages and disadvantages of the proposed distance (15) 

in comparison with the known distances? 

In order to compare the proposed distance (15) with the distances discussed above, we 

use the requirements listed at the beginning of section 2. We also use the additional 

constraint “Processability of the calculation”, which reflects the need to specify additional 

data for the metrics calculation. The comparison results are presented in Table 1. 

Table 1: Distance comparison results 

Distance 

 

 

 

 

 

Constraints 

Norm’s 

metrics (2) 

Norm's 

metrics on 

spaces with 

scalar 

product (3), 

(4) 

The distances 

given on the 

set of 

distribution 

laws (5)-(7) 

Metrics of 

symmetric 

difference (8)-

(10) 

Distances 

between sets 

(11) 

Proposed 

metric (15) 

Positive definiteness + + -,+ + + + 

Identity + + + + + + 

Symmetry + + -,+ + + + 

Triangle inequality + + -,+ + + + 

Taking into account 

the sets of significant 

states 

- - - + - + 

The limitation 

condition 

- - + + - + 

Matching similar BFs - + - + - + 

Manufacturability of 

the calculation 

+ + - - + + 

 



16  V. Borcharnikov and S. Sveshnikov / Metric on the Space of Systems Behavior 

As you can see, most of the distances indicated do not take into account the priority of 

significant states of the system. In accordance with the listed properties, the proposed 

metric is closest to the metric of the symmetric difference. 
 

 

Question 3. Is relation (15) a productive tool that can be used to solve system 

problems? 

Let's consider an example that demonstrates the performance of using the proposed 

metric in solving practical problems of systems research. 

Example 7. The problem of choosing a goal-oriented system. 

The problem is to choose an effective marketing tool that is used to change the 

preferences (behavior) of the target group of consumers (system 𝐹1), in other words, to 

increase trust in the brand. This is a classic marketing problem. 

The system state is specified on the set of three variables 𝐶 = 𝑉1 × 𝑉2 × 𝑉3: 

𝑣1 – "Attitude to the company's trademark". This variable is defined on the values set 

𝑣1 ∈ 𝑉1 = {0,1}, where 𝑣1 = 0 means "Positive attitude" and 𝑣1 = 1 means "Not always 

positive attitude". 

𝑣2 – "Visit to a specialized store of the company". This variable is defined on the values 

set 𝑣2 ∈ 𝑉2 = {0,1}, where 𝑣2 = 0 means "Yes", 𝑣2 = 1 means "No". 

𝑣3 – "Financial viability of consumer". This variable is defined on the values set 𝑣3 ∈
𝑉3 = {0,1}, where 𝑣3 = 0 means "Insolvent consumer", 𝑣3 = 1 means "Wealthy 

comsumer". 
 

As a result of observing the behavior of the system, we constructed BF as a density 

distribution of the fuzzy measure 𝑓123(𝑐): 𝐶 → [0,1] (see Table 2). 

Table 2: BF of system 𝐹1 

#𝑐, 𝑐 ∈ 𝐶 𝑣1 𝑣2 𝑣3 𝑓123(𝑐) 

1 0 0 0 0.023 

2 0 0 1 0.08 

3 0 1 0 0.018 

4 0 1 1 0.014 

5 1 0 0 0.023 

6 1 0 1 0.065 

7 1 1 0 0.043 

8 1 1 1 0.044 

 
The company plans to conduct a marketing action to increase the trust in the brand from 

the side of wealthy customers. In other words, the goal of a marketing action is to move 

from the current behavior of the system to the desired behavior, which is described by the 

target BF in the form of a density distribution of a fuzzy measure 𝑓13
∗ (𝑐): 𝑃𝑟𝑜𝑗13𝐶 → [0,1], 

where 𝑃𝑟𝑜𝑗13𝐶 = 𝑉1 × 𝑉3 (see Table 3). 
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Table 3: Target BF of system 

#𝑐, 𝑐 ∈ 𝑃𝑟𝑜𝑗13𝐶 𝑣1 𝑣3 𝑓13
∗ (𝑐) 

1 0 0 0.0230 

2 0 1 0.0870 

3 1 0 0.0180 

4 1 1 0.0140 

 
The company considers two options for marketing actions, which can be described by 

an additional variable 𝑣4 – "Marketing actions". This value is specified on a set of values: 

𝑣4 ∈ 𝑉4 = {0,1}, where 𝑣4 = 0 – "Performing a PR-action in the mass media”, 𝑣4 = 1 – 

“Performing a PR-action in the stores”. 

Based on marketing research, the expected behavior of the system after marketing 

actions (system 𝐹2) will be determined by BF with the fuzzy measure density 𝑓1234(𝑐): 𝐶 ×
𝑉4 → [0,1] (see Table 4). 

Table 4: BF of the system 𝐹2 

#𝑐, 𝑐 ∈ 𝐶 × 𝑉4 𝑣1 𝑣2 𝑣3 𝑣4 𝑓1234(𝑐) 

1 0 0 0 0 0.25 

2 0 0 0 1 0.22 

3 0 0 1 0 0.6 

4 0 0 1 1 0.6 

5 0 1 0 0 0.28 

6 0 1 0 1 0.28 

7 0 1 1 0 0.14 

8 0 1 1 1 0.18 

9 1 0 0 0 0.15 

10 1 0 0 1 0.12 

11 1 0 1 0 0.25 

12 1 0 1 1 0.25 

13 1 1 0 0 0.34 

14 1 1 0 1 0.35 

15 1 1 1 0 0.14 

16 1 1 1 1 0.15 
 

 

In terms of systems theory, our problem is to determine the degree of purposefulness 

of the new system 𝐹2 in comparison with the purposefulness of the original system 𝐹1 

relative to the target system (see Table 3). The purposefulness of the system can be defined 

as the distance between the BF of the target system and the BF of the projection of the 

original system onto the set of states of the target system. Here, the projection of the 

original system is used to provide the condition of the common set of states.  
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The projection BF is considered as a projection of the measure [25] onto some subset. 

Based on this, the purposefulness of the system is determined by the expression [1]: 

𝜔(𝐹2, 𝐹1) = 𝑑𝐹𝑀 (𝑓13
𝐹1(𝑐), 𝑓13

∗ (𝑐)) − 𝑑𝐹𝑀 (𝑓13
𝐹2(𝑐), 𝑓13

∗ (𝑐)),                                       (16) 

where: 𝑑𝐹𝑀(∙,∙) – proposed metric, defined on ℱ;  

𝑓13
𝐹1(𝑐), 𝑓13

𝐹2(𝑐) – projections BFs of systems 𝐹1 and 𝐹2 onto the common set of states 

𝑃𝑟𝑜𝑗13𝐶, which for fuzzy measures can be determined by the following expressions: 

𝑓13
𝐹1(𝑐) =

1

𝜆1

∙ (∏(1 + 𝜆1 ∙ 𝑓123(𝑥))

𝑥∈𝐴𝑐

− 1),                                                                (17) 

where 𝐴𝑐 = {𝑥 ∈ 𝐶|𝑐 = 𝑃𝑟𝑜𝑗13𝑥}; 

𝜆1 – normalization parameter of fuzzy measure 𝑓123(𝑥): 𝐶 → [0,1],  

𝑓13
𝐹2(𝑐) =

1

𝜆2

∙ (∏(1 + 𝜆2 ∙ 𝑓1234(𝑦))

𝑦∈𝐵𝑐

− 1),                                                              (18) 

where 𝐵𝑐 = {𝑦 ∈ 𝐶 × 𝑉4|𝑐 = 𝑃𝑟𝑜𝑗13𝑦}; 

𝜆2 – normalization parameter of fuzzy measure 𝑓1234(𝑦): 𝐶 × 𝑉4 → [0,1]. 
 

The higher the purposefulness, the better suited the system is to achieve the goal of the 

behavior. A negative value of purposefulness indicates that the new 𝐹2 system is worse 

than the original 𝐹1 system in terms of the purpose of the behavior. Table 5 shows the 

calculation results of BFs 𝑓13
𝐹2(𝑐) and 𝑓13

𝐹1(𝑐). 

Table 5: Calculation of BFs 𝑓13
𝐹2(𝑐) and 𝑓13

𝐹1(𝑐) 

#𝑐, 𝑐 ∈ 𝑃𝑟𝑜𝑗13𝐶 𝑣1 𝑣3 𝑓13
𝐹2(𝑐) 𝑓13

𝐹1(𝑐) 

1 0 0 0.6989 0.0447 

2 0 1 0.8911 0.1040 

3 1 0 0.6810 0.0749 

4 1 1 0.5902 0.1346 
 

 

Figure 9 shows the density of fuzzy measures that are used in calculating the 

purposefulness of the system. For clarity Figure 9 instead of 𝑓13
𝐹2(𝑐) shows 𝑓13

𝐹2
′

(𝑐) = 0.07 ∙

𝑓13
𝐹2(𝑐). 
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Figure 9: Densities of fuzzy measures that are used in determining the purposefulness of a system 

A preliminary analysis of the distributions in Figure 9 shows that 𝑓13
𝐹2(𝑐) more closely 

describes the target system in terms of significant states. Therefore, we can expect the new 

system 𝐹2 to be more targeted than the system 𝐹1. 

Let's compare the use of the proposed metric 𝑑𝐹𝑀(∙,∙) and the previously described 

Minkowski metric 𝑙1
𝑛 to calculate the purposefulness of the system 𝐹2 in relation to the 

original system 𝐹1. The calculation results are reflected in Table. 5. 

Table 5: Values of metrics and estimations of the purposefulness of the system 

𝑑𝐹𝑀 (𝑓13
𝐹1(𝑐), 𝑓13

∗ (𝑐)) 𝑑𝐹𝑀 (𝑓13
𝐹2(𝑐), 𝑓13

∗ (𝑐)) 𝜔𝐹𝑀(𝐹2, 𝐹1) 

0.1779 0.0140 0.1639 

𝑙1
𝑛 (𝑓13

𝐹1(𝑐), 𝑓13
∗ (𝑐)) 𝑙1

𝑛 (𝑓13
𝐹2(𝑐), 𝑓13

∗ (𝑐)) 𝜔𝑙1
𝑛(𝐹2, 𝐹1) 

0.0309 0.3885 -0.3576 
 

 

Analysis of the obtained results shows that the proposed metric 𝑑𝐹𝑀(∙,∙) gives a positive 

estimation of purposefulness. That is, the new system provides an increase in the 

purposefulness of the behavior of the original system. Therefore, the planned marketing 

actions are effective, what we expected.  

However, the calculation result in accordance with the Minkowski metric is negative, 

which does not correspond to the expected result from the view-point of significant system 

states. It can be assumed that in this example, the insignificant states of the system formed 

a systematic error, which led to an incorrect conclusion. Therefore, the use of the 

Minkowski metric to determine the difference between BFs described by fuzzy measures 

can lead to erroneous decisions in practice. 
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7. CONCLUSIONS 

Thus, the proposed distance allows us to use BFs described by Sugeno fuzzy measures 

to solve system problems in which it is necessary to evaluate the difference in the behavior 

of systems. The advantage of the proposed distance is that it meets all the requirements 

that apply to metrics. In particular, the proposed distance is positive, symmetrical, 

identical, normalized, and subject to the triangle inequality condition. Consequently, the 

space of BFs described using Sugeno fuzzy measures is a metric space. We can establish 

an order relation on this space and solve many system problems that require the use of a 

measure of difference in the behavior of systems. In turn, Sugeno fuzzy measures make it 

possible to use estimates with different modalities to describe the behavior of systems and 

to explore the dynamics of systems in the context of modality. Unlike known metrics and 

distances, the proposed metric gives priority to significant system states over insignificant 

states. The use of well-known metrics in relation to Sugeno fuzzy measures (in particular, 

Minkowski distances) can lead to incorrect solutions to system problems. 

The limitations of the proposed metric follows from the properties of the fuzzy 

measure, which must be specified on the set of all subsets of system states. This 

significantly increases the amount of assessments required, as well as the amount of work 

to ensure they are adequate and consistent. 

This research is the basis for starting work on the definition of an event as one of the 

fundamental categories of science. In particular, as an event, we consider an impact that 

causes a change in the behavior of a complex system. In turn, the proposed metric can be 

considered both as a measure of the strength of an event and as a measure of the system's 

resistance to external influences. 
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